THE LANCET Neurology

Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Balendra R, Sreedharan J, Hallegger M, et al. Amyotrophic lateral sclerosis caused by TARDBP mutations: from genetics to TDP-43 proteinopathy. *Lancet Neurol* 2025; **24:** 456–470.

Supplementary Appendix

Amyotrophic lateral sclerosis caused by *TARDBP* mutations: from genetics to TDP-43 proteinopathy

Rubika Balendra, Jemeen Sreedharan, Martina Hallegger, Raphaëlle Luisier, Hilal A Lashuel, Jenna M Gregory, Rickie Patani

Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London, UK (R Balendra MRCP PhD, Prof R Patani FRCP PhD); UK Dementia Research Institute at UCL, London, UK (R Balendra,); Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK (J Sreedharan MRCP PhD); UK Dementia Research Institute at King's, London, UK, The Francis Crick Institute, London, UK (M Hallegger PhD); current address: Oxford-GSK Institute of Molecular and Computational Medicine, Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK (M Hallegger); Genomics and Health Informatics Group, Idiap Research Institute, Martigny, Switzerland (R Luisier PhD); Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Prof H A Lashuel PhD); Qatar Foundation, Doha, Qatar (Prof H A Lashuel); Institute of Medical Sciences, University of Aberdeen, UK (Prof J M Gregory MB PhD); Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK (Prof R Patani)

Correspondence to:

Prof Rickie Patani, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK, WC1N 3BG.

rickie.patani@ucl.ac.uk

or

Dr Rubika Balendra, UK Dementia Research Institute at UCL, London, UK, WC1E 6AE.

r.balendra@ucl.ac.uk

Selected *TARDBP* mutations identified by the resultant protein change. For each *TARDBP* mutation, clinical phenotypes are detailed. Evidence for involvement of downstream phenotypes from *TARDBP* mutant models for *in vitro* systems, human cells, hiPSC neurons or glial cells, rodent primary neurons and mouse models are detailed. Green text specifies *TARDBP* mutant models with evidence for therapeutic interventions. pp 4–13

Supplementary Table 2

hiPSC models of TDP-43 proteinopathy

This table details findings from hiPSC models examining TDP-43 proteinopathy. p 14

Supplementary Table 3

A multitude of approaches have been used to target TDP-43 in pre-clinical models. Approaches using antibodies, small molecules directly targeting TDP-43, small molecules targeting other pathways with effects on TDP-43, indirect and direct genetic approaches, peptides and bait RNA are detailed with the evidence for their efficacy in different disease models. pp 15–31

Predicted Protein Change	Clinical Phenotype and comments	<i>in vitro</i> (no cells)	Human/rodent cells	hiPSC neurons	hiPSC glia/other cells	Rodent primary neurons	<i>Drosophila</i> model	Mouse model
K176I	Mutated lysine residue associated with FTD phenotypes							
K181E	Mutated lysine residue associated with FTD phenotypes							
K263E	Mutated lysine residue associated with FTD phenotypes			Transcriptomic impairments; hiPSC- derived motor neurons displayed disrupted RNA processing (Imaizumi et al. 2022)				
N267S	Common variant							

G287S	Common variant	TDP-43 mislocalisation, phosphorylation, accumulated insoluble TDP-43 species containing high levels of C-terminal TDP-43 fragments and mitochondrial transport defects, improved with HDAC6 inhibition (Fazal et al 2021)	
G294V	Common	D-Sorbitol is known to	
	variant	induce stress	
		granules, but	
		treatment with this	
		improves defective axonal transport	
		(Kreiter et al. 2018)	
G295S	Common variant		

G298S	ALS founder	1. Purocymin-induced	Oligodendrocytes:	Rescue of	Neuromuscular
02303	variant in	and TDP-43-	TDP-43 cytoplasmic	larval	junction phenotypes
	southern	associated stress	inclusions and	locomotor	and progress to
	China	granule formation;	aberrant persistence	function	spinal cord gliosis but
	Cillia	improved with small	of functional Ca2+-	with small	in the absence of
		molecule with	permeable AMPARs	molecule	clear
			•		
		extended planar	(Barton et al. 2021)	acting on	neurodegeneration -
		moeity (Fang et al.		nuclear	homozygous to a
		2019) 2. Widespread		export	greater extent that
		mislocalisation of both		pathway	heterozygous
		RNAs and proteins		(Chou et al	(Ebstein,
		between the nucleus		2018)	Yagudayeva, and
		and cytoplasm in			Shneider 2019).
		addition to various			
		cellular phenotypes			
		including increased			
		ROS generation,			
		mitochondrial			
		depolarisation,			
		lysosomal phenotypes			
		and DNA damage.			
		Phenotypes rescued			
		following treatment			
		with a VCP D2 ATPase			
		inhibitor (Harley et al.			
		2021; Ziff, Harley, et			
		al. 2023). 3.			
		cGAS/STING has been			
		shown to drive NF-кВ			
		and interferon			
		activation in TARDBP			
		mutations and STING			
		inhibition reduced			
		death of hiPSCs (Yu et			
		al. 2020) 4.			
		Accumulation of			
		insoluble TDP-43			
		fragments (Liu-			

Yesucevitz et al. 2014)		
5. Motor neurons - but		
not sensory or cortical		
neurons carrying the		
same mutations -		
captured up to one		
third of the		
transcriptomic		
changes seen in lower		
motor neurons		
microdissected from		
ALS postmortem		
tissue cases (Held et		
al. 2023) 6. Increase in		
axon initial segment		
(AIS) length, perturbed		
activity-dependent AIS		
plasticity and		
hyperexcitability		
(Harley et al. 2023)		

A315T	Common	An acridine		Reduced (TDP-43	1. Repeated
	variant	derivative,		related) granule	intrathecal TDP-43
		AIM4, inhibits		density and	monoclonal antibody
		the in vitro		mobility (Liu-	treatment reduces
		phase		Yesucevitz et al.	TDP-43
		separation of a		2014)	mislocalisation and
		TDP-43 C-		,	NF-ĸB activation
		terminal			(Pozzi et al 2020) 2.
		fragment with			Treatment with a CK-
		the			1δ (protein casein
		TARDBPA315T			kinase-1δ) inhibitor
		mutation			led to preserved
		(Girdhar et al.			motor neurons in the
		2020)			lumbar anterior horn,
					reduced TDP-43
					phosphorylated and
					reduced microglial
					and astroglial
					reactivity (Martínez-
					González et al. 2020).
					2. 3. cGAS/STING has
					been shown to drive
					NF-κB and interferon
					activation in TARDBP
					mutations and STING
					inhibition led to
					preservation of
					cortical neurons and
					improved motor
					performance (Yu et
					al. 2020).
M323K	Not found in				Homozygous: Slowly
	humans,				progressive motor
	studied in a				neuron death,
	mouse				aberrant splicing
	model				(Fratta et al. 2018)

Q331K	SecinH3, a	Rescue of	Heterozygous
	cytohesin	nucleocytoplasmic	mutation: disturbs
	inhibitor,	defects with small	TDP-43
	reduced toxicity	molecule acting on	autoregulation,
	induced by TDP-	nuclear export	increased TDP-43
	43Q331K	pathway (Chou et	expression, gain of
	overexpression in	al 2018)	splicing and cognitive
	human cells by		dysfunction (White et
	increasing		al. 2018)
	autophagic flux		
	(Hu et al. 2019)		
	TDP-43Q331K		
	overexpression in		
	N2a cells led to		
	cytoplasmic		
	mislocalisation		
	of Nup98 and		
	cytoplasmic		
	aggregates of		
	Nup93, Nup107		
	and Nup214		
	(Chou et al.		
	2018)		

M007\/	0	4 Flavotadla di d	4 4-4	Oursellation decide	NI
M337V	Common	1. Elevated levels of	1. Astrocytes:	Cumulative death	Neuromuscular
	variant	soluble and insoluble	Increased TDP-43	rate improved with	junction phenotypes
		TDP-43 protein	expression,	small molecule	and progress to
		together with a survival		with extended	spinal cord gliosis but
		phenotype and	mislocalisation and	planar moeity (Fang	in the absence of
		susceptibility to PI3K	a survival phenotype	et al. 2019)	clear
		pathway (Bilican et al	(Serio et al 2013) 2.		neurodegeneration -
		2012) 2. Glutamate-	Oligodendrocytes:		homozygous to a
		induced calcium	TDP-43 cytoplasmic		greater extent that
		release and	inclusions and		heterozygous
		mitochondrial calcium	aberrant persistence		(Ebstein,
		buffering (Dafinca et	of functional Ca2+-		Yagudayeva, and
		al. 2020) 3.	permeable AMPARs		Shneider 2019).
		Electrophysiological	(Barton et al. 2021)		Decreased retrograde
		aberrance (Devlin et			transport of
		al. 2015). 4. Increased			endosomes has been
		cytosolic TDP-43, and			demonstrated (Sleigh
		this improved with an			et al. 2020).
		siRNA to TARDBP			,
		(Nishimura et al 2014)			
		5. Altered SORTILIN			
		splicing and loss of			
		activity-dependent			
		BDNF secretion (Tann			
		et al 2019), improved			
		with CRISPR/Cas9			
		correction 6.			
		cGAS/STING has been			
		shown to drive NF-κB			
		and interferon			
		activation in TARDBP			
		mutations and STING			
		inhibition reduced			
		death of hiPSCs (Yu et			
		al. 2020).			
		al. 2020 J.		1	

Q343R		Elevated levels of arachidonic acid and, reduced by pharmacologically targeting this pathway with caffeic acid (5-LOX inhibitor) (Lee et al. 2021)		Reduced (TDP-43 related) granule density and mobility (Liu- Yesucevitz et al. 2014)	
N345K			hiPSCs differentiated to brain microvascular endothelial cells revealed cell autonomous increased permeability to small molecules due to loss of tight junction integrity (Matsuo et al. 2024)		
N352S		Purocymin-induced and TDP-43-associated stress granule formation; improved with small molecule with extended planar moeity (Fang et al. 2019)			
Y374Term	Atypical TDP-43 expression in person with ALS				

G376D		Dysregulated axonal growth (Mitsuzawa et al. 2021)		
A382T	Common variant in Sardinia leading to behavioural variant FTD with temporal lobe atrophy.	1. Specific vulnerability of hiPSC- derived motor but not sensory neurons to oxidative stress (Onda-Ohto et al. 2023) 2. TDP-43 mislocalisation, phosphorylation, accumulated insoluble TDP-43 species containing high levels of C-terminal TDP-43 fragments and mitochondrial transport defects, inproced with HDAC6 inhibition (Fazal et al 2021) 3. cGAS/STING has been shown to drive NF-kB and interferon activation in TARDBP mutations and STING inhibition reduced death of hiPSCs (Yu et al. 2020).		
1383T		Glutamate-induced calcium release and mitochondrial calcium buffering (Dafinca et al. 2020)		

N390S	TDP-43 mislocalisation, phosphorylation, accumulated insolut TDP-43 species containing high level of C-terminal TDP-43 fragments and mitochondrial transport defects, improved with HDAC inhibition (Fazal et al	5		
N390D				Heterozygous: TDP- 43 pathology and motor neuron degeneration (Huang et al 2020)
S393L	D-Sorbitol is known to induce stress granules, but treatment with this improves defective axonal transport (Kreiter et al 2018)			

Reference	Findings
Hall et al. 2017	Wild-type TDP-43 mislocalisation in VCP-mutant hiPSC-derived spinal cord motor neurons coincide with ER stress.
Smethurst et	Sarkosyl insoluble extracts from sporadic ALS post-mortem tissue transfected into control hiPSC-derived motor neurons and astrocytes to
al. 2020	study seeded aggregation. Demonstrated a prion-like spread of TDP-43 in these cell culture models, leading to TDP-43 mislocalisation from
	the nucleus to the cytoplasm, aggregation and cell death. Motor neurons were more vulnerable than astrocytes to the seeded aggregation.
Weskamp et	Hyperexcitability leads to alternative splicing of <i>TARDBP</i> and to shortened TDP-43 (lacking a C-terminus) accumulating in cytoplasm in hiPSC-
al. 2020	neurons.
Altman et al.	TDP-43 has been found to accumulate in axons in hiPSC derived motor neurons from ALS patients with C9orf72 mutations, leading to
2021	assembly of G3BP1 ribonucleoprotein condensates and a resultant inhibition of local translation in distal axons and NMJs
Ziff, Neeves,	All public data from ALS hiPSC-derived motor neurons used (429 hiPSC-MNs) and demonstrated a positive correlation between TDP-43
et al. 2023	nuclear depletion and p53 activation, in the context of demonstrating that genome instability is a hallmark of sALS and fALS.
Hung and	Wild-type TDP-43 mislocalisation in VCP-mutant hiPSC-derived cortical neurons.
Patani 2024	

Type of		Compound type / Mechanism of	<i>in vitro</i> (no		Rodent cells lines / primary	Human		Drosop hila in vivo	
therapy	Molecule	action	cells)	Yeast	neurons	cells	hiPSCs	model	Rodent <i>in vivo</i> model
петару	A single-chain variable fragment intrabody derived	acuon	ceus)	reast	Improves viability in HEK293A cells and N2a cells through proteasom e, autophagy- lysosomal pathways and HSP70	Reduced mutant TDP-43 aggregation in HEK293A cells and improves viability in HEK293A cells through proteasome , autophagylysosomal pathways and HSP70	IIIFSUS	iniodet	Reduced TDP-43 aggregation in embryonic mouse brain
	from a monoclonal antibody	Bind to TDP-43			(Tamaki et	(Tamaki et			overexpressing mutant
Antibody	to TDP-43	protein			al. 2018)	al. 2018)			TDP-43 (Tamaki et al. 2018)

	Monoclonal antibody targeting C-erminal domain of TDP-43	Bind to TDP-43 protein	Reduces pathogenic TDP-43 seed amplificatio n in CSF from sporadic ALS patients (Audrain et al. 2023)		Reduced seeding induced by FTD-TDP brain derived extracts in vitro (Afroz et al. 2023)		Reduced aggregrated and pheophorylated TDP-43 in rNLS8 mouse model and reduced neuronal loss resulting from inoculating FTD-TDP brain extracts in a mouse model (Afroz et al. 2023)
Small molecul es	Auranofin	Organic gold thiol compound		Inhibits TDP-43 self- interaction in a screen of compound s in mouse cell lines (Oberstadt et al. 2018)			

Chelethryne	Benzophenanth ridine alkaloid	self- interaction in a screen of compound s in mouse cell lines (Oberstadt et al. 2018)	Reduced stress		
			granule formation, TDP-43 ubiquitylati on and insolubility in a human cell model		
N-acetylcysteine	Antioxidant		(Hans, Glasebach, and Kahle 2020)		

		Decreased the phosphoryl ation of TDP-43, and improved	
		its nucleo- cytoplasmi c mislocalisat ion in lymphoblas ts from sporadic ALS	
Protein casein kinase-1δ (CK-1δ) inhibitor	Protein casein kinase-1δ (CK- 1δ) inhibitor	patients (Posa et al. 2019)	
		Led to lower levels of TDP-43 inclusions in a neuronal cell model	
Small molecules inhibiting CK1	CK1 inhibition	(Hicks et al. 2020).	

rTRD01 and nTRD22: Compounds binding to TDP- 43's RRMs or N terminal domain (in silico screen)	Bind to TDP-43, modulate TDP- 43-RNA interaction		Reduced TDP-43 levels in primary motor neurons (Mollasale hi et al. 2020).		Small molecul es which improve d the locomot or function of Drosoph ila larval models of ALS (Françoi s-Moutal et al. 2019; Mollasal ehi et al. 2020).	
domain (in silico screen)			2020).		2020).	
	Chamian	Increases the LLPS of TDP-43, whilst inhib iting its fibrillation				
Trimethylamine N-oxide	Chemical chaperone	(Choi et al. 2018)				

Compounds which inhibit TDP-43 nuclear export	Nuclear export inhibition	Improve nts of survival primary motor neurons overexpising wild type TDF 43 (Archbol et al. 20	es -	p	artial rescue of a motor henotype in a TDP-43 verexpression rat model Archbold et al. 2018).
VCP D2 ATPase inhibitor			Rescue molecu cellular phenoty both <i>TA</i> and <i>VCI</i> mutatio hiPSC-c motor n (Ziff, Ha al. 2023	lar and /pes in RDBP p ns in derived eurons irley, et	

PA	RP inhibitors	PARP inhibition	Rescued primary neuronal cultures from TDP-43 mediated toxicity (L. McGurk et al. 2018)	1. Reduced arsenite-induced TDP-43 aggregation in human cells (L. McGurk et al. 2018) 2. Reduced TDP-43 induced cytotoxicity in a neural cell model (Duan et al. 2019)		
Tar	nall molecule inhibitor of nkyrase-1/2 (part of the RP family)	Tankyrase 1/2 inhibition		Reduced arsenite- induced TDP-43 cytoplasmi c foci in a human cell line (Leeanne McGurk et al. 2018).		

Diallyl trisulfide	Organosulphur compound	Clearance of overexpress ed TDP-43 by inducing autophagy (Liu et al. 2018)	
EN6	Autophagy activator	Clearance of overexpress ed TDP-43 by inducing autophagy (C. YS. Chung et al. 2019)	
MEK5 inhibition	MEK5 is a component of the autophagy-lysosome pathway	Reduced TDP-43 in the cytoplasm and toxicity in neural cells overexpress ing TDP-43 (Jo et al. 2019)	

T					
Trehalose	Autophagy activator		Led to decreased TDP-43 levels in human cells overexpress ing TDP-43 (Y. Wang et al. 2018).		
Helialose	activatol	landa ilaita	al. 2010).		
		Inhibits			
		TDP-43			
		aggregat ion in			
		yeast			
		model			
		(Prasad			
	Reduce TDP-43	et al.			
AIM4 (acridine derivative)	aggregation	2016)			
	100 101	/			
			Reduced		
			TDP-43		
			aggregates		
			in		
			transfected		
			HEK cells		
			and		
			rescued		
			survival in		
			NSC-34		
	Dhaonhadiath		cells		
	Phosphodiester		overexpress		
Ibudilast - in clinical trial	ase inhibitor,		ing TDP-43		
	enhances		(Chen et al		
(See Table 1)	autophagy		2020)		

Tideglusih - in clinical trial	Non-ATP competitive GSK-3R	Reduced pTDP-43 levels and improved TDP-43 nuclear localisatio n in a TDP- 43 neuroblast oma model (Martínez- González	Reduced pTDP-43 levels and improved TDP-43 nuclear localisation in ALS lymphoblas ts (Martínez-		Oral treatment reduced pTDP-43 in the spinal cord of Prp-hTDP- 43A315T mouse model (Martínez-González et al
Tideglusib - in clinical trial	GSK-3β	et al.	González et		(Martínez-González et al.
(See Table 1)	inhibitor	2021).	al. 2021).		2021).

	Bosutinib - in clinical trial (See Table 1)	Src/c-Abl inhibitor, tyrosine kinase inhibitor					Reduced fragmented/misf olded TDP-43 and increased survival in TARDBP mutant hiPSC lines (Imamura et al. 2017).		Reduced TDP-43 postive cells in mouse TDP-43 model, reduced neuronal cell death in brain and spinal cord and reversed motor and cognitive phenotypes (Wenqiang et al. 2014). Restored synpatic proteins, astrocytic function and neurotransmitter homeostasis in TDP-43 mice (Heyburn et al. 2016).
--	--	---	--	--	--	--	---	--	---

Bait RNA	Bait RNA oligonucleotides which bind to TDP-43	Bind to TDP-43				Improve aberrant TDP-43 phase transition in TDP-43 overexpress ing human cortical neurons, and can reduce neurotoxicit y (Mann et al. 2019)			
----------	---	----------------	--	--	--	---	--	--	--

Indirect genetic approac hes	Ataxin 2 ASO	Reduced <i>Ataxin</i> 2 mRNA				Leads to improved phenotypes in a mouse model overexpressing human TDP-43 (Becker et al. 2017) Note that Biogen/Ionis Phase 1/2 clinical trial terminated due to no reduction in NfL (https://investors.biogen.c om/news-releases/news-release-details/biogen-and-ionis-announce-topline-phase-12-study-results)

		RfxCas13d reduced TDP-43	RfxCas13d improved motor
Ataxin 2 targ	eting with RNA-	aggregation in human cells	phenotypes, slowed disease progression and reduced TDP-43 in a mouse
	ISPR effector	(Zeballos et al. 2023)	TDP-43 model (Zeballos et al. 2023)

CHMP7 ASO	Reduced CHMP7 mRNA			Leads to an improved disease phenotype and TDP-43-related molecular changes, and TDP-43 mislocalisation in a subset of sporadic ALS hiPSC lines (Coyne et al. 2021).	
Degron gene therapy vector targeting interaction of 14-3-30 with TDP-43	Degrades TDP- 43				Improved phenotypes in three mouse models of disease (Ke et al. 2024)

Genetic approac hes targetin g TDP-43	TDP-REG vectors encoding a TDP-43/Raver1 fusion protein	Activated in cells with TDP loss of function			TDP-REG is activated by TDP-43 loss of function and leads to autoregulat ed splicing rescue in human cells (Wilkins et al. 2024)		TDP-REG is activated by TDP-43 loss of function in mice (Wilkins et al. 2024)
Peptides	D4 peptide - hydrophobic motif, TDP recognition motif and cell penetrating peptide motif QBP1 (small peptide)	Polyglutamine amyloid inhibitor	Binds TDP- 43 and prevent its amyloid formation in vitro	Reduces TDP-43 levels in N2A cells overexpres sing TDP- 43 (Gao et al. 2019)			Reduces TDP-43 levels in Drosophila overexpressing TDP-43 in muscles (Gao et al. 2019)

	(Mompe et al. 201				
		,			

Supplementary Tables - References

- 1 Bilican B, Serio A, Barmada SJ, *et al.* Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. *Proc Natl Acad Sci U S A* 2012; **109**: 5803–8.
- 2 Manohar V, Crowley L, Sreedharan J. -Related Amyotrophic Lateral Sclerosis-Frontotemporal Dementia. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, eds. GeneReviews. Seattle (WA): University of Washington, Seattle, 2009.
- Held A, Adler M, Marques C, et al. iPSC motor neurons, but not other derived cell types, capture gene expression changes in postmortem sporadic ALS motor neurons. *Cell Rep* 2023; **42**: 113046.
- Lee H, Lee JJ, Park NY, *et al.* Multi-omic analysis of selectively vulnerable motor neuron subtypes implicates altered lipid metabolism in ALS. *Nat Neurosci* 2021; **24**: 1673–85.
- Moujalled D, Grubman A, Acevedo K, et al. TDP-43 mutations causing amyotrophic lateral sclerosis are associated with altered expression of RNA-binding protein hnRNP K and affect the Nrf2 antioxidant pathway. *Hum Mol Genet* 2017; **26**: 1732–46.
- 6 Mitsuzawa S, Suzuki N, Akiyama T, et al. Reduced PHOX2B stability causes axonal growth impairment in motor neurons with TARDBP mutations. *Stem Cell Reports* 2021; **16**: 1527–41.
- Onda-Ohto A, Hasegawa-Ogawa M, Matsuno H, et al. Specific vulnerability of iPSC-derived motor neurons with TDP-43 gene mutation to oxidative stress. *Mol Brain* 2023; **16**: 62.
- 8 Dafinca R, Barbagallo P, Farrimond L, et al. Impairment of Mitochondrial Calcium Buffering Links Mutations in C9ORF72 and TARDBP in iPS-Derived Motor Neurons from Patients with ALS/FTD. Stem Cell Reports 2020; 14: 892–908.
- 9 Devlin A-C, Burr K, Borooah S, et al. Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability. *Nat Commun* 2015; **6**: 5999.
- Harley P, Kerins C, Gatt A, et al. Aberrant axon initial segment plasticity and intrinsic excitability of ALS hiPSC motor neurons. Cell Rep 2023; 42: 113509.
- 11 Liu-Yesucevitz L, Lin AY, Ebata A, et al. ALS-linked mutations enlarge TDP-43-enriched neuronal RNA granules in the dendritic arbor. *J Neurosci* 2014; **34**: 4167–74.
- Serio A, Bilican B, Barmada SJ, *et al.* Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. *Proc Natl Acad Sci U S A* 2013; **110**: 4697–702.

- 13 Barton SK, Magnani D, James OG, et al. Transactive response DNA-binding protein-43 proteinopathy in oligodendrocytes revealed using an induced pluripotent stem cell model. *Brain Commun* 2021; **3**: fcab255.
- 14 Matsuo K, Nagamatsu J, Nagata K, *et al*. Establishment of a novel amyotrophic lateral sclerosis patient ()-derived brain microvascular endothelial cell model reveals defective Wnt/β-catenin signaling: investigating diffusion barrier dysfunction and immune cell interaction. *Front Cell Dev Biol* 2024; **12**: 1357204.
- Fang MY, Markmiller S, Vu AQ, et al. Small-Molecule Modulation of TDP-43
 Recruitment to Stress Granules Prevents Persistent TDP-43 Accumulation in ALS/FTD.

 Neuron 2019; 103: 802–19.e11.
- Pozzi S, Codron P, Soucy G, et al. Monoclonal full-length antibody against TAR DNA binding protein 43 reduces related proteinopathy in neurons. *JCI Insight* 2020; **5**. DOI:10.1172/jci.insight.140420.
- 17 Yu C-H, Davidson S, Harapas CR, et al. TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS. *Cell* 2020; **183**: 636–49.e18.
- 18 Kreiter N, Pal A, Lojewski X, et al. Age-dependent neurodegeneration and organelle transport deficiencies in mutant TDP43 patient-derived neurons are independent of TDP43 aggregation. *Neurobiol Dis* 2018; **115**: 167–81.
- 19 Martínez-González L, Rodríguez-Cueto C, Cabezudo D, *et al.* Motor neuron preservation and decrease of in vivo TDP-43 phosphorylation by protein CK-1δ kinase inhibitor treatment. *Sci Rep* 2020; **10**: 4449.
- 20 Fazal R, Boeynaems S, Swijsen A, et al. HDAC6 inhibition restores TDP-43 pathology and axonal transport defects in human motor neurons with TARDBP mutations. *EMBO J* 2021; **40**: e106177.
- 21 Harley J, Hagemann C, Serio A, Patani R. TDP-43 and FUS mislocalization in VCP mutant motor neurons is reversed by pharmacological inhibition of the VCP D2 ATPase domain. *Brain Commun* 2021; **3**: fcab166.
- 22 Ziff OJ, Harley J, Wang Y, et al. Nucleocytoplasmic mRNA redistribution accompanies RNA binding protein mislocalization in ALS motor neurons and is restored by VCP ATPase inhibition. *Neuron* 2023; **111**: 3011–27.e7.
- 23 Imaizumi K, Ideno H, Sato T, Morimoto S, Okano H. Pathogenic mutation of TDP-43 impairs RNA processing in a cell type-specific manner: Implications for the pathogenesis of ALS/FTLD. *eNeuro* 2022; **9**: ENEURO.0061–22.2022.
- 24 Chou C-C, Zhang Y, Umoh ME, et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. *Nat Neurosci* 2018; **21**: 228–39.
- 25 Ebstein SY, Yagudayeva I, Shneider NA. Mutant TDP-43 Causes Early-Stage Dose-Dependent Motor Neuron Degeneration in a TARDBP Knockin Mouse Model of ALS.

- Cell Rep 2019; 26: 364-73.e4.
- 26 Girdhar A, Bharathi V, Tiwari VR, et al. Computational insights into mechanism of AIM4-mediated inhibition of aggregation of TDP-43 protein implicated in ALS and evidence for in vitro inhibition of liquid-liquid phase separation (LLPS) of TDP-43-A315T by AIM4. Int J Biol Macromol 2020; 147: 117–30.
- 27 Fratta P, Sivakumar P, Humphrey J, *et al.* Mice with endogenous TDP-43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis. *EMBO J* 2018; **37**. DOI:10.15252/embj.201798684.
- Hu W, Liu X, Wang S, Sun G, Zhao R, Lu H. SecinH3 attenuates TDP-43 p.Q331K-induced neuronal toxicity by suppressing endoplasmic reticulum stress and enhancing autophagic flux. *IUBMB Life* 2019; **71**: 192–9.
- White MA, Kim E, Duffy A, et al. TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD. *Nat Neurosci* 2018; **21**: 552–63.
- 30 Nishimura AL, Shum C, Scotter EL, et al. Allele-specific knockdown of ALS-associated mutant TDP-43 in neural stem cells derived from induced pluripotent stem cells. *PLoS One* 2014; **9**: e91269.
- 31 Tann JY, Wong L-W, Sajikumar S, Ibáñez CF. Abnormal TDP-43 function impairs activity-dependent BDNF secretion, synaptic plasticity, and cognitive behavior through altered Sortilin splicing. *EMBO J* 2019; **38**: e100989.
- 32 Huang S-L, Wu L-S, Lee M, et al. A robust TDP-43 knock-in mouse model of ALS. Acta Neuropathol Commun 2020; 8: 3.
- 33 Sleigh JN, Tosolini AP, Gordon D, *et al.* Mice Carrying ALS Mutant TDP-43, but Not Mutant FUS, Display In Vivo Defects in Axonal Transport of Signaling Endosomes. *Cell Rep* 2020; **30**: 3655–62.e2.
- 34 Ziff OJ, Neeves J, Mitchell J, *et al.* Integrated transcriptome landscape of ALS identifies genome instability linked to TDP-43 pathology. *Nat Commun* 2023; **14**: 2176.
- Hung C, Patani R. Elevated 4R tau contributes to endolysosomal dysfunction and neurodegeneration in VCP-related frontotemporal dementia. *Brain* 2024; **147**: 970–9.
- 36 Smethurst P, Risse E, Tyzack GE, *et al.* Distinct responses of neurons and astrocytes to TDP-43 proteinopathy in amyotrophic lateral sclerosis. *Brain* 2020; **143**: 430–40.
- 37 Hall CE, Yao Z, Choi M, et al. Progressive Motor Neuron Pathology and the Role of Astrocytes in a Human Stem Cell Model of VCP-Related ALS. *Cell Rep* 2017; **19**: 1739–49.
- 38 Altman T, Ionescu A, Ibraheem A, et al. Axonal TDP-43 condensates drive neuromuscular junction disruption through inhibition of local synthesis of nuclear encoded mitochondrial proteins. *Nat Commun* 2021; **12**: 6914.

- Weskamp K, Tank EM, Miguez R, et al. Shortened TDP43 isoforms upregulated by neuronal hyperactivity drive TDP43 pathology in ALS. J Clin Invest 2020; **130**: 1139–55.
- 40 Afroz T, Chevalier E, Audrain M, et al. Immunotherapy targeting the C-terminal domain of TDP-43 decreases neuropathology and confers neuroprotection in mouse models of ALS/FTD. *Neurobiol Dis* 2023; **179**: 106050.
- 41 Tamaki Y, Shodai A, Morimura T, *et al.* Elimination of TDP-43 inclusions linked to amyotrophic lateral sclerosis by a misfolding-specific intrabody with dual proteolytic signals. *Sci Rep* 2018; **8**: 6030.
- 42 Archbold HC, Jackson KL, Arora A, et al. TDP43 nuclear export and neurodegeneration in models of amyotrophic lateral sclerosis and frontotemporal dementia. *Sci Rep* 2018; **8**: 4606.
- 43 McGurk L, Mojsilovic-Petrovic J, Van Deerlin VM, et al. Nuclear poly(ADP-ribose) activity is a therapeutic target in amyotrophic lateral sclerosis. *Acta Neuropathol Commun* 2018; **6**: 84.
- 44 McGurk L, Gomes E, Guo L, et al. Poly(ADP-Ribose) Prevents Pathological Phase Separation of TDP-43 by Promoting Liquid Demixing and Stress Granule Localization. Mol Cell 2018; 71: 703–17.e9.
- 45 Chung CY-S, Shin HR, Berdan CA, et al. Covalent targeting of the vacuolar H-ATPase activates autophagy via mTORC1 inhibition. *Nat Chem Biol* 2019; **15**: 776–85.
- 46 Coyne AN, Baskerville V, Zaepfel BL, et al. Nuclear accumulation of CHMP7 initiates nuclear pore complex injury and subsequent TDP-43 dysfunction in sporadic and familial ALS. *Sci Transl Med* 2021; **13**. DOI:10.1126/scitranslmed.abe1923.
- 47 Oberstadt M, Stieler J, Simpong DL, et al. TDP-43 self-interaction is modulated by redox-active compounds Auranofin, Chelerythrine and Riluzole. Sci Rep 2018; 8: 2248.
- 48 Hans F, Glasebach H, Kahle PJ. Multiple distinct pathways lead to hyperubiquitylated insoluble TDP-43 protein independent of its translocation into stress granules. *J Biol Chem* 2020; **295**: 673–89.
- 49 Posa D, Martínez-González L, Bartolomé F, et al. Recapitulation of Pathological TDP-43 Features in Immortalized Lymphocytes from Sporadic ALS Patients. Mol Neurobiol 2019; 56: 2424–32.
- 50 Mann JR, Gleixner AM, Mauna JC, et al. RNA Binding Antagonizes Neurotoxic Phase Transitions of TDP-43. *Neuron* 2019; **102**: 321–38.e8.
- 51 Becker LA, Huang B, Bieri G, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. *Nature* 2017; **544**: 367–71.
- 52 Zeballos C MA, Moore HJ, Smith TJ, et al. Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins. *Nat Commun* 2023; **14**:

- 53 Hicks DA, Cross LL, Williamson R, Rattray M. Endoplasmic reticulum stress signalling induces casein kinase 1-dependent formation of cytosolic TDP-43 inclusions in motor neuron-like cells. *Neurochem Res* 2020; **45**: 1354–64.
- 54 Chen Y, Wang H, Ying Z, Gao Q. Ibudilast enhances the clearance of SOD1 and TDP-43 aggregates through TFEB-mediated autophagy and lysosomal biogenesis: The new molecular mechanism of ibudilast and its implication for neuroprotective therapy. *Biochem Biophys Res Commun* 2020; **526**: 231–8.
- Mompeán M, Ramírez de Mingo D, Hervás R, Fernández-Ramírez MDC, Carrión-Vázquez M, Laurents DV. Molecular mechanism of the inhibition of TDP-43 amyloidogenesis by QBP1. *Arch Biochem Biophys* 2019; **675**: 108113.
- François-Moutal L, Felemban R, Scott DD, et al. Small molecule targeting TDP-43's RNA recognition motifs reduces locomotor defects in a Drosophila model of amyotrophic lateral sclerosis (ALS). ACS Chem Biol 2019; 14: 2006–13.
- 57 Mollasalehi N, Francois-Moutal L, Scott DD, *et al.* An allosteric modulator of RNA binding targeting the N-terminal domain of TDP-43 yields neuroprotective properties. *ACS Chem Biol* 2020; **15**: 2854–9.
- 58 Choi K-J, Tsoi PS, Moosa MM, *et al.* A chemical chaperone decouples TDP-43 disordered domain phase separation from fibrillation. *Biochemistry* 2018; **57**: 6822–6.
- 59 Duan Y, Du A, Gu J, et al. PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins. *Cell Res* 2019; **29**: 233–47.
- 60 Liu C, Leng B, Li Y, *et al.* Diallyl trisulfide protects motor neurons from the neurotoxic protein TDP-43 via activating lysosomal degradation and the antioxidant response. *Neurochem Res* 2018; **43**: 2304–12.
- 61 Jo M, Lee S, Kim K, Lee S, Kim SR, Kim H-J. Inhibition of MEK5 suppresses TDP-43 toxicity via the mTOR-independent activation of the autophagy-lysosome pathway. *Biochem Biophys Res Commun* 2019; **513**: 925–32.
- Wang Y, Liu F-T, Wang Y-X, et al. Autophagic Modulation by Trehalose Reduces Accumulation of TDP-43 in a Cell Model of Amyotrophic Lateral Sclerosis via TFEB Activation. *Neurotox Res* 2018; **34**: 109–20.
- Wilkins OG, Chien MZYJ, Wlaschin JJ, et al. Creation of de novo cryptic splicing for ALS and FTD precision medicine. Science 2024; **386**: 61–9.
- 64 Ke YD, van Hummel A, Au C, et al. Targeting 14-3-3θ-mediated TDP-43 pathology in amyotrophic lateral sclerosis and frontotemporal dementia mice. *Neuron* 2024; **112**: 1249–64.e8.

- Audrain M, Egesipe A-L, Tentillier N, et al. Targeting amyotrophic lateral sclerosis by neutralizing seeding-competent TDP-43 in CSF. Brain Commun 2023; 5: fcad306.
- Gao N, Huang Y-P, Chu T-T, et al. TDP-43 specific reduction induced by Di-hydrophobic tags conjugated peptides. *Bioorg Chem* 2019; **84**: 254–9.
- 67 Prasad A, Raju G, Sivalingam V, et al. An acridine derivative, [4,5-bis{(N-carboxy methyl imidazolium)methyl}acridine] dibromide, shows anti-TDP-43 aggregation effect in ALS disease models. *Sci Rep* 2016; **6**: 39490.
- 68 Martínez-González L, Gonzalo-Consuegra C, Gómez-Almería M, *et al.* Tideglusib, a Non-ATP Competitive Inhibitor of GSK-3β as a Drug Candidate for the Treatment of Amyotrophic Lateral Sclerosis. *Int J Mol Sci* 2021; **22**. DOI:10.3390/ijms22168975.
- 69 Wenqiang C, Lonskaya I, Hebron ML, et al. Parkin-mediated reduction of nuclear and soluble TDP-43 reverses behavioral decline in symptomatic mice. *Hum Mol Genet* 2014; 23: 4960–9.
- 70 Heyburn L, Hebron ML, Smith J, et al. Tyrosine kinase inhibition reverses TDP-43 effects on synaptic protein expression, astrocytic function and amino acid dis-homeostasis. *J Neurochem* 2016; **139**: 610–23.
- 71 Imamura K, Izumi Y, Watanabe A, *et al.* The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis. *Sci Transl Med* 2017; **9**. DOI:10.1126/scitranslmed.aaf3962.