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Background: Immune checkpoint inhibition (ICI) with anti-CTLA-4 and/or anti-PD-1 
antibodies is standard treatment for metastatic melanoma. Anti-PD-1 (pembrolizumab, 
nivolumab) and anti-PD-L1 antibodies (atezolizumab, durvalumab, and avelumab) 
have been approved for treatment of several other advanced malignancies, including 
non-small-cell lung cancer (NSCLC); renal cell, and urothelial carcinoma; head and 
neck cancer; gastric, hepatocellular, and Merkel-cell carcinoma; and classical Hodgkin 
lymphoma. In some of these malignancies approval was based on the detection of 
biomarkers such as PD-L1 expression or high microsatellite instability.

Methods: We review the current status of prognostic and predictive biomarkers used 
in ICI for melanoma and other malignancies. We include clinical, tissue, blood, and stool 
biomarkers, as well as imaging biomarkers.

Results: Several biomarkers have been studied in ICI for metastatic melanoma. In clinical 
practice, pre-treatment tumor burden measured by means of imaging and serum lactate 
dehydrogenase level is already being used to estimate the likelihood of effective ICI treat-
ment. In peripheral blood, the number of different immune cell types, such as lymphocytes, 
neutrophils, and eosinophils, as well as different soluble factors, have been correlated 
with clinical outcome. For intra-tumoral biomarkers, expression of the PD-1 ligand PD-L1 
has been found to be of some predictive value for anti-PD-1-directed therapy for NSCLC 
and melanoma. A high mutational load, particularly when accompanied by neoantigens, 
seems to facilitate immune response and correlates with patient survival for all entities 
treated by use of ICI. Tumor microenvironment also seems to be of major importance. 
Interestingly, even the gut microbiome has been found to correlate with response to ICI, 
most likely through immuno-stimulatory effects of distinct bacteria. New imaging bio-
markers, e.g., for PET, and magnetic resonance imaging are also being investigated, and 
results suggest they will make early prediction of patient response possible.

Conclusion: Several promising results are available regarding possible biomarkers for 
response to ICI, which need to be validated in large clinical trials. A better understand-
ing of how ICI works will enable the development of biomarkers that can predict the 
response of individual patients.
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iNTRODUCTiON

In the last decade, treatment of metastatic melanoma and other 
malignancies has improved significantly. In addition to targeted 
treatment options, immunotherapy with immune checkpoint 
inhibitors (ICI) has contributed greatly to this development.

The anti-CTLA-4 antibody (CTLA4ab) ipilimumab was first 
approved by the U.S. Food and Drug Administration (FDA) for the 
treatment of metastatic melanoma in 2011 (1), followed by the anti-
PD-1 antibodies (PD1ab) pembrolizumab and nivolumab in 2014 
(2–4). Combined ICI with CTLA4ab and PD1ab for melanoma 
was introduced with enormous success, but was also accompanied 
by significant immune-related adverse events (irAEs) (5, 6). PD1ab 
treatment is currently approved for treatment of several other 
advanced malignancies including non-small-cell lung cancer 
(NSCLC), urothelial cancer, renal cell carcinoma (RCC), squamous 
cell carcinoma of head and neck (SCCHN), gastric carcinoma, 
hepatocellular carcinoma, and classical Hodgkin lymphoma (7–12). 
The anti-PD-L1 antibodies (PD-L1ab) atezolizumab (urothelial 
carcinoma and NSCLC), durvalumab (urothelial carcinoma), 
and avelumab [Merkel-cell carcinoma (MCC) and urothelial 
carcinoma] have also recently been approved by the FDA (13–18). 
In 2017 the FDA also announced a biomarker-based approval for 
pembrolizumab for patients with unresectable or metastatic solid 
tumors, and for colorectal carcinoma (CRC) with high microsatel-
lite instability or mismatch repair deficiency (dMMR) (19).

Despite this enormous success, ICI does not achieve long-last-
ing responses for all patients. Response varies between different 
entities, and between different patients. For melanoma, PD1ab 
monotherapy can achieve a response of 26–32% (2, 4) and the 
combination of PD1ab and CTLA4ab achieves a response as high 
as 60% (5). Some subsets of patients achieve durable responses 
with PD1ab monotherapy and do not require combined ICI, and 
could therefore be protected from the higher risk of irAEs.

There remains the medical need to find reliable biomarkers 
that could help to identify both, the patients who would benefit 
from ICI and the primary resistant patients. Biomarkers are also 
needed to help decide the type of first-line treatment, e.g., whether 
BRAF-mutant melanoma should be treated by use of targeted or 
immunotherapy, therapy sequencing, and/or by a combination of 
treatments. Here, we review biomarkers in the field of ICI therapy 
for metastatic melanoma and other malignancies. We have not 
performed a review of pre-analytic, analytic, and clinical valida-
tion techniques for biomarkers because these have been reviewed 
elsewhere (20, 21).

CLiNiCAL BiOMARKeRS

Tumor Burden
Tumor burden and metastatic site, e.g., liver or brain metastases, 
significantly affect patient prognosis, particularly in terms of 
overall survival (OS), as described in the TNM classification (22). 
Because the prognostic effect of tumor burden and metastatic 
site is well known, they are used to stratify clinical trials and are 
the object of sub-group analyses. Several authors have found an 
association between metastatic site and incidence of response, 
progression-free survival (PFS), and OS for PD1ab treatment 

of melanoma (23–26) (Table 1). Response to PD1ab therapy is 
better for lung and skin metastases than for metastases in other 
organs, particularly those in the liver. Response for melanoma 
brain metastases is lower compared with response for extracra-
nial sites, particularly for PD-1ab monotherapy (27). This could 
be because T  cell infiltrate in cerebral metastases is less dense 
compared with other anatomic sites (28). For combined ICI with 
ipilimumab and nivolumab, response for brain metastases that 
were asymptomatic was similar to response for extracranial sites 
(27, 29). Peripheral blood biomarkers which correlate with tumor 
burden, such as serum lactate dehydrogenase (LDH), circulating 
tumor cells (CTCs), and circulating tumor DNA (ctDNA), are 
of significance for biomarker investigations, as described below.

Clinical Condition (Performance Status)
A good clinical condition expressed by the ECOG (Eastern 
Cooperative Oncology Group) performance status (ECOG PS 0)  
is associated with prolonged OS for patients receiving PD1ab 
treatment, as well as for patients receiving other melanoma treat-
ments such as BRAF inhibitors (30, 70). For other entities such as 
NSCLC (71), association between performance status and OS is 
also well known. Because of its prognostic character, performance 
status is frequently used as a biomarker in enrichment designs of 
clinical trials, i.e., only biomarker-positive patients are included, 
in this case only patients with good performance status. Because 
patients with poorer performance are not included and are there-
fore unavailable for further analysis, enrichment design prevents 
information from being gathered on the prognostic versus predic-
tive value of performance status (20). Significance of other patient 
characteristics for ICI response, such as sex and age, has only been 
found in single studies with PD1ab for melanoma (24).

immune-Related Adverse events
Immune-Related Adverse Events are side effects caused by the 
activated immune system and are, therefore, a possible sign of 
successful immune checkpoint blockage. Several retrospective 
analyses have reported an association between CTLA4ab-induced 
irAE and a more favorable clinical outcome (Table  1). From a 
cohort of 86 patients, occurrence of irAE ≥ grade 2 CTC-AE was 
associated with improved response, PFS, and OS (31). In contrast, 
other studies focusing on irAE of any grade could not find this 
association for large ipilimumab-treated cohorts (37, 38). The 
development of autoimmune hypophysitis was found to be 
associated with prolonged OS (33). It has been observed in retro-
spective analyses of several groups receiving PD1ab therapy that 
incidence of irAEs is associated with a more favorable outcome. 
In a large cohort of 576 PD1ab-treated patients, response but not 
PFS was associated with irAE manifestation of any grade (32). 
For certain adverse events, vitiligo was found to be associated 
with response (34) and, similar to exanthema, with longer OS 
(35). Arthralgia of any grade was associated with response and 
significantly longer PFS (36). Here, median onset of arthralgia 
was 100 days after start of treatment and was caused by either 
arthritis or reactivated osteoarthritis in pre-damaged joints. It is 
worth noting that all these analyses were performed retrospec-
tively and that there is a risk of guarantee-time bias, i.e., patients 
with early progression are less likely to develop irAEs because of 
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TABLe 1 | Clinical, blood, and stool biomarkers for clinical outcome under checkpoint blockage for metastatic melanoma patients.

Biomarker Number of 
patients

Treatment Results Reference

Clinical Biomarkers

Metastatic sites n = 177–593 Pembrolizumab, nivolumab Liver metastases associated with lower  
response rate and shorter PFS

(26)
(24)
(25)

n = 177–257 Pembrolizumab Soft-tissue and/or lung metastases associated  
with longer OS

(23)

ECOG performance 
status

n = 50 Nivolumab ECOG PS ≥ 1 associated with shorter OS (30)

Immune-related 
adverse events (irAEs)

n = 86 Ipilimumab, nivolumab irAEs associated with response (31)
(32)

n = 154 Ipilimumab Hypophysitis associated with longer OS (33)

n = 65–118 Pembrolizumab, nivolumab Vitiligo associated with response and longer OS (34)
(35)

n = 196 Pembrolizumab, nivolumab Arthralgia associated with response and longer OS (36)

n = 298–833 Ipilimumab No association of irAEs with response or survival (37)
(38)

Blood Biomarkers

LDH n = 50–257 Ipilimumab, nivolumab, 
pembrolizumab, 
ipilimumab + nivolumab, or 
pembrolizumab

Elevated LDH associated with shorter OS (39)
(40)
(41)
(31)
(30)
(42)
(23)
(43)
(44)

CRP n = 95–196 Ipilimumab CRP within normal limits associated with longer OS (43)
(45)

n = 50 Nivolumab CRP not significant for OS in multivariable analysis (30)

Neutrophils n = 50–720 Ipilimumab Elevated neutrophils associated with shorter OS (40)
(30)
(46)

Lymphocytes n = 50–257 Ipilimumab, pembrolizumab, 
nivolumab

Absolute lymphocyte counts (LC) ≥1,000/ml, high  
relative LC or increasing LC with treatment associated  
with longer OS

(45)
(23)
(30)

(41, 47)

NLR n = 58–720 Ipilimumab, nivolumab Baseline NLR ≥ 3–4 associated with shorter OS (46)
(48)
(49)

n = 90 Nivolumab Baseline NLR ≥ 2.2 associated with non-response (50)

Eosinophils n = 59 Ipilimumab Increase in eosinophil count (week 3) associated with response (51)

n = 177–209 Ipilimumab, pembrolizumab High eosinophils associated with longer OS (41)
(23)

Monocytes, 
mo-MDSCs

n = 20–209 Ipilimumab, nivolumab, 
pembrolizumab

Elevated mo-MDSCs/monocytes associated with  
non-response and shorter PFS/OS

(51)
(41)
(52)
(49)
(53)

T cell subsets n = 95–209 Ipilimumab High Treg count associated with longer OS (45)
(41)

n = 67–82 Ipilimumab Relative numbers of CD4+ and CD8+ T cells correlated  
with response and longer OS

(47)
(54)

n = 37–190 Ipilimumab Higher PD-L1 expression on peripheral T cells correlated with  
non-response, shorter PFS and OS

(55)

n = 67 Nivolumab, pembrolizumab NK cell subsets associated with response to PD1ab (54)

(Continued)
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Biomarker Number of 
patients

Treatment Results Reference

Human leukocyte 
antigen class I 
genotype (HLA-I)

n = 1535 (mainly 
melanoma, 
NSCLC)

Ipilimumab ± nivolumab, nivolumab, 
pembrolizumab

Maximum heterozygosity at HLA-I loci correlated with  
longer OS, melanoma only: HLA-B44 supertype associated  
with longer OS, HLA-B62, or somatic loss of heterozygosity  
at HLA-I associated with shorter OS

(56)

T cell receptor (TCR) 
repertoire

n = 12 Ipilimumab TCR repertoire richness prior to therapy correlated with clinical benefit (57)

sCTLA4 n = 14 Ipilimumab sCTLA4 higher in responders, associated with longer OS (58)

sPD-L1 n = 251 Ipilimumab (±bevazizumab or 
sargramostim), pembrolizumab

High pretreatment levels associated with disease  
progression

(59)

sULBP-1, sULBP-2 n = 194 (ICI)
n = 65 (other 
treatments)

Ipilimumab ± nivolumab or 
pembrolizumab, nivolumab

sULBP-1 and 2 associated with disease control and  
longer OS in ICI, but not in other treatments

(44)

sCD25 n = 27 Ipilimumab High baseline sCD25 associated with shorter OS (60)

CXCL11 n = 48–247 Ipilimumab or gp100 peptide vaccine Pre-treatment elevated serum CXCL11 level associated with  
shorter OS

(61)

Cytokine levels n = 35 Nivolumab Serum IFN-γ, IL-6, and IL-10 levels higher for responders (62)

Protein signature 
(multimarker assay)

n = 119–170 Ipilimumab ± nivolumab, nivolumab, 
nivolumab ± vaccine, pembrolizumab

Baseline protein signature of 209 proteins discovered by use  
of MALDI–TOF and computational algorithms correlated with OS

(63)

CTC count n = 7 (ICI)
n = 42 (other 
treatments)

Ipilimumab, chemotherapy, targeted 
therapy

CTC count correlated with OS

CTC (droplet digital 
PCR)

n = 49 Ipilimumab, nivolumab, 
pembrolizumab

Decrease in CTC within the first 7 weeks  
of ICI was linked to longer PFS and OS

(64)

Plasma ct-DNA: BRAF 
V600E/K, NRAS 
Q61K/R

n = 19 (ICI)
n = 29 (targeted 
therapy)

Ipilimumab, nivolumab, 
pembrolizumab, targeted therapy

Pre-treatment ctDNA <10 copies/ml associated with response  
and longer PFS, decrease in ctDNA levels in responders of  
targeted therapy but not immunotherapy

(65)

Stool Biomarkers

Gut microbiome n = 26 Ipilimumab Faecalibacterium and other Firmucutes associated  
with improved response, higher representation of  
Bacteroidetes related to poor response

(66)

n = 89 PD1ab, not specified Enrichment of Ruminococcaceae and Clostridiales  
found in responders, Bacteriodales in non-responders;  
Bacteroidales associated with shorter PFS

(67)

n = 39 Ipilimumab + nivolumab, 
pembrolizumab

Enrichment of Bacteroides caccae in responders (68)

n = 39 PD1ab, not specified Relative abundance of Bifidobacterium longum, Collinsella  
aerofaciens, and Enterococcus faecium in responders

(69)

CRP, C-reactive protein; CTLA4ab, anti-CTLA-4 antibody; LDH, lactate dehydrogenase; MALDI–TOF, matrix-assisted laser desorption/ionization–time-of-flight; mo-MDSCs, 
monocytic myeloid-derived suppressor cells; NLR, neutrophil-to-lymphocyte ratio; PD1ab, anti-PD-1 antibody; PFS, progression-free survival; OS, overall survival; TNF-α, tumor 
necrosis factor-alpha; CTC, circulating tumor cells; ctDNA, circulating tumor DNA; sCTLA4, soluble CTLA4; sPD-L1, soluble PD-L1; sCD25, soluble CD25.

TABLe 1 | Continued
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a shorter treatment period. This bias can be controlled to some 
degree by use of landmark analysis, which was used in the above-
mentioned reports.

BLOOD BiOMARKeRS

Blood-based biomarkers have several preferential characteristics 
and are, therefore, the focus of biomarker research. First, they are 
easily accessible, which enables analysis at several time-points. 
Second, they might be independent from intra and inter-tumor 
heterogeneity. Third, they might reflect multiple sites of interest, 
e.g., tumor cells, tumor microenvironment, and the patient’s 
immune system.

Serum Biomarkers Correlating  
with Tumor Load
Lactate dehydrogenase (LDH) is a house-keeping enzyme which 
is released by rapidly growing tumors. Serum LDH therefore 
correlates with tumor burden. For melanoma, the prognostic 
significance of this biomarker is expressed by its inclusion in the 
American Joint Committee on Cancer classification (72). Serum 
LDH levels correlate with patients’ OS in various treatment 
regimens (73), including ICI (Table 1) (23, 30, 31, 39–45). Nearly 
all studies have found no correlation between baseline LDH and 
response. Only a dynamic change in LDH from baseline to week 
12 was found to be associated with response (31, 45). Hence, 
despite the prognostic value of LDH, patients with elevated serum 
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LDH can respond to ICI; LDH elevation does not, therefore, lead 
to an exclusion of patients from ICI treatment. Patients with very 
high levels of more than twice the upper limit of normal, however, 
did not benefit from either CTLA-4ab or PD1ab monotherapy 
(23, 31, 39). Importantly, even though targeted treatments by 
use of BRAF/MEK inhibitors are known to lead to fast tumor 
responses in highly advanced patients with BRAF-V600-mutated 
melanoma, patients with normal LDH still achieve the better 
clinical outcome from treatment (74). Hence, the best treatment 
sequencing of targeted and immunotherapy for patients with 
BRAF-mutated melanoma and normal LDH is not clear.

Another serum biomarker which correlates with tumor bur-
den is the acute-phase protein C-reactive protein (CRP). It is a 
prognostic marker for melanoma, and elevated concentrations 
are linked to worse PFS and OS (75). CRP also significantly affects 
prognosis for other malignancies such as renal, gastrointestinal, 
lung, pancreas, hepatocellular, and bladder cancer (76). For 
ICI, only retrospective analyses are available. A normal CRP 
level at the start of treatment was associated with longer OS for 
ipilimumab-treated melanoma patients (43). Decreasing CRP 
levels from baseline to week 12 of CTLA4ab therapy were, as for 
LDH, associated with longer PFS and OS (45). In multivariate 
analysis of a small study of PD1ab-treated melanoma patients, 
baseline CRP levels were no independent biomarkers for OS (30). 
For PD1ab treatment of NSCLC, in contrast, elevated baseline 
CRP levels were shown to be associated with shorter PFS (77).

Differential Blood Count Biomarkers
Immune checkpoint inhibition works via activation of T lympho-
cytes. Hence, the number of lymphocytes and other immune cells 
circulating might affect its efficacy. Several retrospective analyses 
have focused on this question. The role of neutrophils, which can 
display heterogeneous phenotypes and diverse functionality, is 
also important (78). Increased levels of neutrophils have been 
found in the peripheral blood of cancer patients; they might 
possibly be induced by cytokines such as granulocyte-colony 
stimulating factor (G-CSF), although no definite cause for neutro-
philia in malignancies has been clearly shown (78). Pretreatment 
elevation of neutrophil count has been found to correlate with 
worse OS in ICI treatment of melanoma (Table  1). Increasing 
lymphocyte counts, in contrast, correlated with prolonged OS 
in ICI-treated patients (Table 1). The neutrophil-to-lymphocyte 
ratio (NLR) has been more frequently reported to be of prog-
nostic, and potentially predictive, value by several authors using 
various cutoffs (NLR > 2–5). For ipilimumab-treated melanoma 
patients, high baseline NLR was associated with shorter PFS and 
OS (46, 48). For PD1ab treatment, high baseline NLR was linked 
to non-response (50) and to worse OS for melanoma (49, 79) 
and for several other types of cancer being investigated in phase 
I studies with PD1ab/PD-L1ab treatment (79). For example, 
NLR was associated with lower incidence of response, poor PFS, 
and OS for NSCLC (71, 80) and for RCC (81). It is worth noting 
that an association was also found between NLR and prognosis 
for melanoma patients treated by use of BRAF inhibitors (82). 
Overall, NLR certainly has prognostic value but is probably not 
treatment specific and no predictive ability has been observed so 
far. It has, however, also been shown that eosinophils correlate 

with clinical outcome in ICI treatment of melanoma. A high 
pre-ICI absolute or relative eosinophil count was associated with 
prolonged OS (23, 41). Dynamically, for melanoma patients 
treated by use of ipilimumab, eosinophil counts that increased 
with treatment correlated with response to ipilimumab (51).

Myeloid-derived suppressor cells (MDSCs) are important in 
melanoma and other malignancies. MDSCs have immunosup-
pressive potential, particularly by inhibiting activated T cells, and 
can be divided into two subgroups: granulocytic and monocytic 
myeloid-derived suppressor cell (mo-MDSC) (78). The number 
of mo-MDSC in the peripheral blood in particular has been cor-
related with prognosis for melanoma patients (51). In CTLA4ab 
treatment, the number of mo-MDSC has been found to negatively 
affect incidence of response and survival (41, 47, 51). In addition, 
mo-MDSC was negatively correlated with OS for CTLA4ab-
pretreated melanoma patients receiving PD1ab (52) (Table  1). 
The development of cytometry by time-of-flight (CyTOF) has 
enabled in-depth analysis of peripheral blood immune cells. 
CyTOF can measure up to 50 proteins per cell. Use of CyTOF 
for ICI patients has shown that high incidence of classical mono-
cytes (CD14+CD16−HLA-DRhi) are associated with response and 
improved PFS in PD1ab therapy for melanoma (53).

It is worth mentioning that all these potential markers have 
been found by retrospective exploratory analyses. They potentially 
have prognostic features but their predictive potential remains 
unclear. Furthermore, the above-mentioned publications used 
several different cutoffs. Prospective studies are needed to inves-
tigate a possible predictive value of these biomarkers.

Biomarkers on Peripheral T Cells
T cells are the effector cells of ICI treatment. Therefore, in addi-
tion to the pure cell number of several subsets of T cells in the 
peripheral blood, a more detailed analysis might be beneficial. 
Retrospective examination of peripheral blood T  cell subsets 
in ipilimumab-treated melanoma patients revealed that higher 
pre-treatment CD4+/CD25+/FoxP3+ Tregs was associated with 
favorable survival (41, 45) (Table  1). Tregs express high levels 
of CTLA-4 and might, therefore, be one of the main targets of 
ipilimumab. It was shown that more melanoma-reactive CD8+ 
cytotoxic T cells in the peripheral blood were detected in patients 
after treatment than before treatment (83). Preexisting immune 
responses were only infrequently boosted.

Most studies have focused on PD-L1 expression on tumor 
cells and macrophages in the tumor microenvironment, whereas 
PD-L1-expression on peripheral T  cells has been studied to a 
lesser extent. High PD-L1 expression on peripheral T cells (CD4+ 
and CD8+) has been shown to be associated with worse PFS and 
OS for CTLA4ab treatment of melanoma (55). For an NSCLC 
cohort treated mainly by chemotherapy, high PD-1/PD-L1/
PD-L2 expression on peripheral blood T cells was associated 
with shorter OS (84). PD-L1 expression on peripheral T  cells 
might, therefore, be a mechanism for tumor immune escape. 
Expression of co-stimulatory molecules on peripheral T cells was 
also studied. Detectable levels of CD137+CD8+ cytotoxic T cells 
in the peripheral blood were found in patients with relapse-free 
status after adjuvant combined ICI, but this was not investigated 
in the therapeutic setting (55). CyTOF analysis revealed that 
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high pre-treatment incidence of memory T cells was a potential 
marker for response to CTLA4ab, whereas higher incidence of 
distinct NK cell subsets was found to be associated with response 
to PD1ab treatment for melanoma (54).

Tumor antigen presentation by human leukocyte antigen class I  
(HLA-I) molecules is a prerequisite for cancer cell attack by cyto-
toxic T cells. Maximum heterozygosity at HLA-I loci (A, B, C) 
opposed to homozygosity for at least one HLA locus was shown 
to be associated with longer OS after ICI for mainly NSCLC and 
melanoma (56). Furthermore, HLA-B44 supertype was linked to 
prolonged OS, whereas the HLA-B62 supertype or somatic loss 
of heterozygosity at HLA-I were associated with worse OS for 
melanoma (56). Although assessed in test and validation cohorts, 
these biomarkers have also not been prospectively tested for 
their potential predictive versus prognostic value. Nevertheless, 
this investigation indicates that diversity in antigen presentation 
might improve tumor defense. Tumor cell antigens presented on 
MHC molecules are recognized by T cells via the T cell recep-
tor (TCR). The TCR is, therefore, of great interest in ICI. TCR 
diversity and clonality can be investigated by use of sequencing 
methods. Most investigations focus on TCR sequencing in tumor 
tissue specimens (see “Tissue Biomarkers”). TCR sequencing 
data in the peripheral blood are limited. In ipilimumab-treated 
melanoma patients, patients with a positive clinical outcome 
had a higher degree of TCR repertoire richness prior to therapy 
(57). In patients with urothelial carcinoma, TCR sequencing in 
peripheral blood was done before and after atezolizumab admin-
istration. Here, a pretreatment TCR clonality below the median 
was associated with improved PFS and OS (85). Furthermore, a 
long-lasting clinical benefit was found in patients with a more 
substantial expansion of tumor-associated TCR clones after three 
weeks (85). T cells carrying the γδ-TCR-subtype—as opposed to 
the more common αβ-subtype—play a distinct role in anti-tumor 
immunology. A study found that higher incidence of Vδ2+ cells 
(versus Vδ1+ cells) was linked to longer OS in melanoma patients, 
and suggested that Vδ2+ cells potentially have tumor-killing 
capability (86). However, this has not yet been investigated for ICI.

In summary, T cells as the effector cells of ICI are the focus 
of biomarker research for melanoma and other malignancies. 
Some approaches are promising, but no biomarker has yet been 
evaluated in a prospective clinical setting. Their predictive ability 
therefore remains to be determined.

Soluble Serum Biomarkers
Soluble serum biomarkers that might correlate with clinical 
benefit of ICI treatment include immune regulatory molecules 
such as cytokines or soluble checkpoint receptors and binding 
partners. Biomarker potential in ICI treatment of melanoma 
(Table  1) and other malignancies has been found for several 
soluble serum factors.

Soluble CTLA-4 (sCTLA4), which is mainly secreted by 
regulatory T cells (Tregs), has inhibitory effects on T cell immune 
responses (87). An association has been found between higher 
sCTLA4 levels and both response and prolonged OS for a small 
cohort of ipilimumab-treated melanoma patients; this was not 
found for patients who did not receive ipilimumab (58). In view 
of its inhibitory function on T cells, neutralization by CTLA4ab 

therapy might be responsible for this finding. Higher levels of 
soluble PD-L1 (sPD-L1) can be found in tumor patients com-
pared with healthy individuals (88, 89). Its physiological role 
has not yet been identified (89). It holds some prognostic value 
because high pre-treatment concentrations are associated with 
shorter OS for NSCLC (88), and for hepatocellular carcinoma 
(90), and it is linked to disease progression in ICI for melanoma 
(59). sPD-L1 is, however, likely to be only prognostic and not 
predictive for melanoma, because assessments pre- and during 
early ICI did not reveal significant associations with response or 
OS (59). In addition to sPD-L1, a soluble form of PD-1 (sPD-1) 
also exists (89) which is currently being investigated in a clinical 
trial (NCT03197636).

Soluble ligands of the transmembrane receptor NKG2D 
(sULBP-1, sULBP-2), which affect induction or reactivation of 
T  cell responses, were associated with OS for ICI-treated but 
not for BRAF inhibitor-treated melanoma patients (44). They 
are interesting biomarkers with treatment-specific potential. 
Further data are, however, needed to confirm the significance 
of these markers. In addition, soluble CD25 (sCD25), the 
alpha unit of the IL-2 receptor, was found to be a biomarker 
in ipilimumab therapy. The interleukin (IL)-2/IL-2 receptor 
pathway is essential for the antitumor activity of CTLA4ab (91). 
High pre-treatment serum levels of sCD25 were shown to be 
associated with shorter OS for CTLA4ab-treated patients (60). 
A possible explanation for this finding could be direct binding 
of sCD25 to IL-2, which would amplify Tregs and inhibit tumor 
immune response.

It has been shown that other serum factors including vas-
cular epithelial growth factor and chemokines such as C-X-C 
chemokine motif ligand (CXCL)8 are of prognostic significance 
for PFS and OS of melanoma of different stages, regardless of treat-
ment (92). For CTLA4ab therapy, elevated pre-treatment levels of 
CXCL11 were associated with poor OS (61). The gene expression 
of CXCL11 is induced by interferon-(IFN)-γ, and CXCL11 binds 
to its chemokine receptor CXCR3, which is mainly expressed on 
activated T cells. CXCR3 is highly important for the migration of 
cytotoxic T cells, and its tissue expression correlates with poorer 
prognosis for several malignancies (93). Elevated CXCL11 in 
blood has been linked to poorer outcome for ipilimumab-treated 
melanoma (61). For PD1ab treatment, serum IFN-γ, IL-6 and 
IL-10 levels were significantly higher for responders than for non-
responders (62).

In contrast to single-biomarker searches, serum-based multi- 
marker assays are of current and future interest. One group 
developed a test based on 119 patients with pre-PD1ab therapy 
for metastatic melanoma using matrix-assisted laser desorp-
tion/ionization-time of flight (MALDI–TOF) mass spectrom-
etry, which was validated in four independent cohorts (63). 
Computational algorithms were used for data analysis, resulting 
in a protein signature of 209 proteins that appears to differentiate 
patients with three-year OS of over 50% from patients with three-
year OS of less than 20%. Further analysis revealed that acute 
phase proteins, complement, and wound healing pathways were 
associated with poor outcome (63). Because this test has also not 
been prospectively evaluated yet, distinction of prognostic versus 
predictive ability is warranted.
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Liquid Biopsy
Liquid biopsy, including CTCs, ctDNA, and circulating tumor 
RNA (ctRNA) has only been studied in small patient cohorts 
treated by use of ICI (mainly CTLA4ab) for melanoma. An asso-
ciation between treatment response and a decrease in CTCs and 
ctDNA has been found for targeted therapy, but not for ICI (94). 
Methodological improvements offer new opportunities for CTC 
detection, as has been very recently described for microfluidic 
enrichment of melanoma CTCs combined with RNA-based 
droplet digital PCR quantitation (64). That study found that a 
decrease in CTCs within the first seven weeks of ICI was linked to 
prolonged PFS and OS in CTLA4ab or PD1ab-treated melanoma 
patients (64). Another approach to CTCs is characterization of 
subsets of CTCs that express specific markers. The heterogeneity of 
melanoma CTCs and the significance of CTC subsets (e.g., recep-
tor activator of NF-κβ (RANK) expressing CTCs) as biomarkers 
has been found to affect targeted treatment; this was not, however, 
observed for ICI (65). For NSCLC, high expression of carcinoem-
bryonic antigen and telomerase reverse transcriptase was linked 
to non-response to nivolumab (95). For urothelial carcinoma, 
CTCs with high PD-L1 expression were associated with worse OS 
(96), and for chemotherapeutically treated SCCHN, high levels 
of CTCs with PD-L1 expression were linked to poor PFS and OS 
(97). CTCs are being studied as part of a recruiting clinical trial 
on prospective biomarkers for melanoma, and this will hopefully 
shed light on a potential predictive function of CTCs for ICI.

Not only CTCs but also ctDNA has been investigated in PD1ab 
therapy. A proof-of-concept study found that detectable levels of 
ctDNA in week 8 of PD1ab therapy were linked to worse PFS 
and OS for NSCLC, uveal melanoma, and microsatellite-instable 
colorectal cancer (98). Furthermore, an association was found 
between high hypermutated ctDNA levels and response, PFS, and 
OS for diverse malignancies treated by use of ICI (99).

Other Blood Biomarkers
Several other blood biomarkers have been investigated in ICI 
patients; for example, blood-based testing of gene-expression 
profiles of cathepsin D, phopholipase A2 group VII, thioredoxin 
reductase 1, and interleukin 1 receptor-associated kinase 3 were 
found to be associated with OS for CTLA4ab-treated patients 
(100). Ongoing studies on blood biomarkers for ICI treatment 
of melanoma include assessment of different T  cell subsets, 
cytokines, and CTCs (Table  1). The challenge is to select the 
most promising biomarkers, ideally identified by several different 
investigators, and to study them in prospective clinical trials.

STOOL BiOMARKeRS

The effect of gut microbiota on anti-tumor response has recently 
been observed in both murine and human studies for several 
cancers, including melanoma, NSCLC, and RCC. Unsurprisingly, 
microorganisms are prevalent in primary CRC, but distant 
metastases are also colonized with Fusobacterium and its asso-
ciated microbiome, including Bacteroides, Selenomonas, and 
Prevotella species (101). Gut flora composition can stimulate or 
inhibit immune response. Immunostimulatory effects of Bacte-
roidales, particularly Bacteroides fragilis, have been observed 

for CTLA4ab therapy in mice (102). Similarly, Bifidobacterium 
improved anti-tumor responses for PD-1/PD-L1 blockade in a 
murine melanoma model (103). In contrast, ICI treatment itself 
can affect the population of gut microbiota (102). Baseline gut 
microbiota have been investigated in small CTLA4ab-treated 
melanoma cohorts (Table 1). Enrichment with Faecalibacterium 
and other Firmucutes was associated with improved response and 
with development of colitis, whereas a higher representation of 
Bacteroidetes was related to poorer response to CTLA4ab therapy 
(66). For melanoma patients receiving PD1ab therapy, enrichment 
of Ruminococcaceae and Clostridiales was found in responders 
whereas Bacteriodales were enriched in non-responders (67). 
Shortened PFS was observed for patients with high abundance of 
Bacteroidales, which is in agreement with another publication on 
melanoma patients treated with CTLA4ab (66). Another analysis 
found enrichment of Bacteroides caccae in all ICI responders, 
and specifically Faecalibacterium prausnitzii, Bacteroides thetaio
taomicron, and Holdemania filiformis if treated with ipilimumab 
plus nivolumab combination therapy. Dorea formicogenerans 
was enriched in pembrolizumab responders (68). Other authors 
found relative abundance of Bifidobacterium longum, Collinsella 
aerofaciens, and Enterococcus faecium in PD1ab responders with 
melanoma (69). An imbalance in gut microbiota correlating with 
impaired immune cell activity was observed for non-responders. 
Treatment by use of antibiotics before or shortly after ICI was 
associated with poorer response and worse OS for patients with 
RCC and NSCLC; in this analysis, a higher percentage of non-
responders (69%) had a particularly low level of Akkermansia 
muciniphila compared with responders (34%) (104). It is worth 
nothing that in a mouse model, fecal transplants of responders 
into germ-free mice restored the anti-tumor effect of PD-1/
PD-L1 blockade (67, 69, 104).

In summary, gut microbiota affect anti-tumor immune 
response. However, there is only partial overlap between the 
potentially relevant microorganisms (Table  1). It is unclear if 
this is because of methodological reasons, or if it depends on the 
individual tumor entity, or the geographical region and associ-
ated dietary habits of the investigated patients. Further prospec-
tive studies are needed to evaluate the prognostic or predictive 
effect of gut microbiota on ICI outcome (currently ongoing: 
NCT02960282, NCT03370861). A study on fecal microbiota 
transplantation for metastatic melanoma patients who failed ICI 
is also being conducted (NCT03353402).

TiSSUe BiOMARKeRS

PD-L1 expression
In the initial phase I study of nivolumab for patients with solid 
tumors, an association between PD-L1 expression and probabil-
ity of response was observed for NSCLC, melanoma, and RCC 
(105, 106) (Table  2). Because clinical significance was greatest 
for NSCLC, this led to further PD1ab studies using enrich-
ment designs with different antibodies and expression cutoffs 
(107–109). Because patients with PD-L1 negative (or PD-L1 
expression below cutoff) value cannot be followed in clinical 
trials of enriched design, it is not possible to distinguish between 
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TABLe 2 | Tissue and imaging biomarkers for clinical outcome under checkpoint blockage for metastatic melanoma patients.

Biomarker Number of 
patients

Treatment Results Reference

Tissue Biomarkers

PD-L1 expression n = 41–43 
(melanoma, 
NSCLC, renal cell 
carcinoma, and 
others)

Nivolumab, atezolizumab PD-L1 expression on tumor or TILs associated with response (105)
(106)
(113)

n = 945 (stratified 
for PD-L1 
expression)

Ipilimumab, nivolumab, ipilimumab 
plus nivolumab

Patients with PD-L1 negative tumors had longer PFS and  
OS under combined ICI compared to nivolumab monotherapy

(5)
(114)

Tumor-infiltrating 
lymphocytes (TILs)

n = 82 Ipilimumab High baseline FoxP3 and IDO expression and increase in TILs from  
week 0 to week 3 associated with disease control

(115)

n = 20 Nivolumab, pembrolizumab Partially exhausted (PD-1highCTLA-4high) tumor-infiltrating  
CD8+ T cells correlated with response and longer PFS

(116)

n = 16–46 Pembrolizumab Cytotoxic T cells at tumor margins associated with response,  
higher clonal expansion of TCR in responders

(117)

n = 32–33 Nivolumab, pembrolizumab, 
atezolizumab

TCR clonality not associated with outcome (118, 119)

Mutational load, 
neoantigen load

n = 38–110 Ipilimumab, tremelimumab, 
nivolumab, pembrolizumab

High mutational and neoantigen load associated with  
clinical benefit (response, DCR > 6 months, PFS, OS)

(85, 120)
(121)
(122)
(123)
(124)

n = 68 Nivolumab Mutational and neoantigen load decreased with treatment in responders (125)

Single mutations n = 229 IL-2, CTLA4ab, PD1ab, PD-L1ab, 
not specified

NRAS mutation correlated with disease control and longer PFS (126)

n = 32–33 Nivolumab, pembrolizumab, 
atezolizumab

NF-1 mutation associated with mutational load and response,  
NRAS-mutations not associated with clinical outcome

(118, 119)

n = 38 Nivolumab, pembrolizumab Tumors from responders were enriched for BRCA2 mutations (122)

Histological 
subtype

n = 60 
(desmoplastic 
melanoma)

Nivolumab or 
pembrolizumab ± ipilimumab, 
PD-L1ab, not specified

Desmoplastic melanoma showed higher response rates as  
reported in the literature (probably because of high mutational burden)

(127)

MHC-I/II 
expression

n = 23–30 Nivolumab, pembrolizumab, 
atezolizumab

MHC-II positivity on tumor cells associated with response, PFS, and OS (118, 119)

Gene expression n = 21–45 Ipilimumab High IFN-γ expression and of IFN-γ-inducible genes  
(e.g., CXCL9, CXCL10, and CXCL11) correlated  
with longer PFS, OS

(128)
(129)

n = 43 (melanoma 
only)

Atezolizumab Expression of baseline T helper type 1, CTLA4,  
and IFN-inducible genes (e.g., IDO1, CXCL9) as well as  
the absence of CX3CL1 associated with response

(113)

imaging Biomarkers

Tumor burden 
measured by CT 
(RECIST1.1)

n = 593 Pembrolizumab Lower baseline tumor burden (RECIST 1.1) associated with longer OS (26)

FDG-PET/CT n = 22 Ipilimumab FDG-PET/CT (EORTC criteria) at week 5 predicts  
disease progression while response could not be identified

(130)

n = 20 Ipilimumab (n = 16), nivolumab 
(n = 1), PD-L1ab BMS-936559 
(n = 3)

FDG-PET/CT at week 3–4 predicted best response at ≥4 months  
[using RECIST 1.1, immune-related response criteria, EORTC criteria,  
and PET response criteria in solid tumors (PERCIST)]

(131)

n = 41 Ipilimumab Cutoff of four newly emerged FDG-avid lesions on PET/CT  
after 12 weeks indicates treatment failure, SUV changes did not  
correlate with clinical outcome

(132)

FDG-PET/MRI 
(PERCIST)

n = 10 PD1ab, not specified Metabolic response at week 2 might indicate response at 3 months (133)

CT, computerized tomography; CTLA4ab, anti-CTLA-4 antibody; FDG, 18F-fluoro-deoxy-glucose; MRI, magnetic resonance imaging; PET, positron emission tomography; PD1ab, 
anti-PD-1 antibody; PFS, progression-free survival; OS, overall survival; SUV, standard uptake value; DCR, disease control rate; TCR, T cell receptor.
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prognostic and predictive value (20). It is worth mentioning 
that in a retrospective analysis of metastatic melanoma patients, 
PD-L1 expression was linked to improved OS irrespective of treat-
ment type; this raises the possibility of a prognostic rather than 
a predictive value for ICI (28). Throughout several clinical trials 
for NSCLC and urothelial cancer, no association was observed 
between PD-L1 expression and ICI therapy outcome (8, 110, 111). 
There was one exception: for urothelial carcinoma, a composite 
biomarker of either ≥25% positive tumor cells or ≥25% positive 
immune cells indicated tumor response to durvalumab, and is 
a pre-requisite for treatment according to FDA-approval (15). 
PD-L1 positivity was also associated with higher probability of 
response in a subgroup analysis of PD-L1ab therapy for MCC 
(14). In addition, PD-L1 expression on tumor and immune cells 
was linked to higher incidence of response for SCCHN (112). 
There is growing evidence that response is associated more with 
PD-L1 expression on tumor-infiltrating immune cells than it is 
with tumor cell PD-L1 expression (113).

PD-L1 expression on tumor cells was used to stratify the 
design of the Checkmate-067 trial investigating the combination 
of ipilimumab plus nivolumab compared with nivolumab and 
ipilimumab monotherapies (5). Although not designed for this 
purpose, this study revealed that patients with tumors expressing 
PD-L1 had similar PFS and OS compared with PD1ab mono-
therapy and the combination of CTLA4ab plus PD1ab (5, 114). 
Response to combined ICI was still higher, however, compared 
with response to PD1ab monotherapy. The study was not designed 
to compare the two nivolumab-containing treatment arms, but it 
shows possible limitations of PD-L1 as a biomarker for treatment 
decisions for melanoma.

General problems associated with PD-L1 as a biomarker are: 
use of different immunohistochemical (IHC) assays, different cut-
offs, intra-tumor heterogeneity, and dynamic changes of PD-L1 
expression. In summary, there are conflicting data in diverse 
tumor entities. It is worth noting that treatment responses can be  
found in PD-L1-negative tumors.

Tumor-infiltrating Lymphocytes (TiL)
The presence of TILs has prognostic potential for different tumor 
entities regardless of tumor stage (134, 135). For patients with 
metastatic melanoma, TILs were associated with a better outcome 
for primary melanoma and metastatic disease, irrespective of treat-
ment type (28, 136). A prospective biomarker study of ipilimumab-
treated patients with melanoma found an association between 
early increase in TILs and disease control (115) (Table 2). A more 
detailed assessment of the T cell infiltrate at baseline revealed an 
association between high baseline FoxP3+ Tregs and indoleamine-
2,3-dioxygenase (IDO) expression and favorable outcome (115). 
For PD1ab-treated melanoma patients, no association was found 
between baseline TILs and response to PD1ab (106). Abundance of 
partially exhausted (PD-1highCTLA-4high) tumor-infiltrating CD8+ 
T cells correlated with response and PFS in PD1ab therapy (116). 
Cytotoxic T cells at tumor margins were also linked to response to 
PD1abs (117). Preliminary investigations on TCR clonality of TILs 
in melanoma metastases revealed higher clonal expansion of TCR 
for PD1ab-responders compared with non-responders (117). This 
finding was not, however, confirmed by other authors (119).

Interferon-γ is one of the cytokines secreted by activated 
T cells and is known to upregulate PD-L1 expression. This might 
be one reason why PD-L1 expression could be co-localized with 
TIL infiltrates in melanoma metastases (117, 137). In a retro-
spective analysis, pretreatment tumor samples from NSCLC and 
melanoma patients treated with PD1ab were evaluated for IFN-γ 
expression (129). A significantly longer PFS and OS were observed 
for patients with high IFN-γ expression. High pre-treatment 
expression of IFN-inducible genes (e.g., IDO1, CXCL9, CXCL10, 
and CXCL11 among others) was associated with response and 
prolonged OS for PD-L1ab treatment of melanoma, but this 
was less pronounced for NSCLC or RCC (113, 128). Primary 
mutations in IFN-γ signaling pathways (e.g., JAK1 and JAK2 
mutations) have been described for several tumor entities. For 
cutaneous melanomas, JAK1/2 mutations were detected before 
treatment in 21% of tissue specimens (138). Interestingly, patients 
with resistance to ICI were found to harbor JAK mutations with 
consecutive loss of IFN-γ pathways (139, 140).

The following challenges apply for all potential tissue biomark-
ers described above: possible dependency on biopsy site, the spe-
cific time of the biopsy, and intratumor-heterogeneity. It should 
be noted that, when considering multiple potential biomarkers, 
large multivariable analyses are required to exclude a significant 
overlap of markers (138). Moreover, future models might include 
transcriptome-derived stromal and immune cell scores exceeding 
a pure TIL assessment (141).

Mutational Analysis
The first notion that mutational changes might affect tumor 
response came with the observation that melanoma patients with a 
high mutation rate benefitted more from ipilimumab treatment 
than patients with a low one, resulting in longer OS (120). In 
agreement with this, tumors with a naturally high mutation rate 
because of exogenous cancerogens, such as UV light, smoking, 
and alcohol (melanoma, lung cancer, SCCHN, and bladder 
cancer), belong to the entities that respond best to ICI treatment 
(123, 142–145). A small biomarker-stratified trial was performed 
for non-colorectal CRC and mismatch-repair deficient cancers. 
Stratification according to mismatch repair deficiency and 
mismatch-repair proficiency revealed a 40% response for patients 
with mismatch-repair deficiency (MSI high, dMMR), whereas 
mismatch-repair proficient patients did not respond at all (146). 
Whereas mismatch-repair deficiency can be found in gastro-
intestinal and genitourinary tumors (147, 148), it is of minor 
significance for melanoma. Colli et al. suggested a cutoff of 192 
nonsynonymous mutations for a potential clinical benefit of ICI 
(149). Here, a high mutational load seems to result in prolonged 
OS in particular, whereas no correlation with response to PD1ab 
was observed (122). This is in agreement with the observation that 
melanoma patients treated with PD1ab survive longer even when 
not responding to the treatment (150). This was found to change, 
however, for ipilimumab treatment prior to PD1ab therapy; in 
contrast to ipilimumab-naïve patients, no association between 
tumor mutational burden and response/OS was observed (125). 
Most likely, the difference is not because of the number of muta-
tions, but because of the increasing chance of tumor neoepitopes 
which might be easier recognized by the immune system. Clonal 
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neoantigens in particular might significantly affect ICI outcome 
(120, 123).

A considerable difficulty of using mutational load as a 
biomarker is its practical implementation in clinical routine. In 
addition to the high costs incurred by whole exome sequencing, 
most neoantigens are probably patient-specific and not recur-
rent (121). Specific types of mutations might be more frequent, 
e.g., the frameshift insertion and deletion count was found to be 
associated with ICI response for melanoma (124). Furthermore, 
several groups have proposed fitness models to describe neoan-
tigen qualities that could be possibly employed as biomarkers 
in the future (151, 152). It is not clear, however, that neoantigen 
burden will add significant value to mutational burden testing, 
as shown in the examples of urothelial carcinoma and mela-
noma (85, 153).

Tumor antigen presentation is essential for the immune 
defense of cancer, and mutations affecting pathways important 
for antigen presentation, e.g., beta-2-microglobuline (B2M) loss, 
might result in ICI resistance (139). B2M mutations are more 
frequent for melanoma, bladder, gastric, and lung cancer in 
particular, with 27–50% found for these cancers in The Cancer 
Genome Atlas dataset compared with 1.8% across all tumor types 
(138). The MHC-II-expression itself (HLA-DR+) was found to 
be associated with PD1ab/PD-L1ab response in melanoma (118).

It would be easy to use biomarkers for mutations that are 
routinely assessed in clinical care. BRAF-V600 mutations, which 
are found in 40–50% of melanomas, are not associated with ICI 
outcome (154–157). A subgroup survival analysis of combined 
ipilimumab plus nivolumab versus PD1ab monotherapy showed 
a trend toward longer OS for combined ICI treatment of BRAF-
mutant patients, but this needs to be addressed further (114). In 
a retrospective analysis from the pre-ICI era, NRAS mutations, 
which are seen in up to 20% of melanomas, were found to be 
associated with worse OS (158). After introduction of ICI, a retro-
spective study investigating patients treated by immunotherapy, 
including IL-2, CTLA4ab, PD1ab, and PD-L1ab revealed greater 
disease control and longer PFS for NRAS-mutant melanoma 
(126). This result was not, however, found for a smaller cohort 
of patients with PD1ab/PD-L1ab therapy (119). The NF-1 muta-
tion, which is associated with UV damage and high mutational 
load, was linked to higher incidence of response and prolonged 
survival for PD1ab-treated patients (119). A more favorable 
response to PD1ab therapy was observed for desmoplastic mela-
nomas which are characterized by a high mutational load and 
frequent NF-1 mutations (127); it should be mentioned that this 
observation was also made from retrospective assessment. For 
NSCLC, single-gene mutation analysis showed that the presence 
of an EGFR-mutation seems to be a negative predictor for PD1ab 
response (159). NGS data, however, revealed a lower mutational 
burden for EGFR-mutant NSCLC, which could be one reason for 
this finding (160).

Objectives for the future include exploration and validation 
of a panel of genetic biomarkers detected by next-generation 
sequencing. Definition of cutoffs is a current challenge because 
absolute values depend on the depth of sequencing. Furthermore, 
gene translocations/fusions and other variants will not be detected 
by use of targeted sequencing techniques. Development of 

multi-marker assays is more complex and specific computational 
algorithms must be used for validation (20).

iMAGiNG BiOMARKeRS

Anatomic imaging
The use of imaging enables non-invasive assessment of tumor 
dimensions and can also provide biologic tumor data. The cur-
rent standard assessment procedure for metastatic melanoma 
and other advanced malignancies is computerized tomography 
(CT) with iodine contrast dye, evaluated according to response 
evaluation criteria in solid tumors (RECIST) 1.1 (161). It has been 
shown that the size of baseline tumor lesions is associated with OS 
(26, 162). This is probably of prognostic value because it corre-
lates with tumor load. However, RECIST 1.1 might be insufficient 
to evaluate response to ICI therapy, in particular cases of initial 
tumor progression or occurrence of new lesions during ICI. To 
overcome this problem, immune-related response criteria (irRC 
and irRECIST) have been introduced as alternative response 
criteria (163). Pure anatomic imaging is, however, unlikely to be 
sufficient to predict tumor response to ICI. New imaging bio-
markers for metabolic and immune imaging are discussed below.

Metabolic imaging
In addition to anatomic imaging, metabolic imaging by use of 
18F-fluoro-deoxy-glucose-positron emission tomography (FDG-
PET) can add clinically meaningful data when imaging malig-
nancies. Two different response criteria for FDG-PET imaging 
are currently used in clinical routine: European Organisation for 
Research and Treatment of Cancer (EORTC) criteria and positron 
emission tomography response criteria in solid tumors (PERCIST) 
(164, 165). It has been shown that FDG-PET combined with CT 
is of clinical value for assessment of ICI responses in melanoma 
(130–132) (Table 2). The assumption for metabolic imaging is that 
metabolic changes in tumors occur prior to anatomic changes, 
which might enable prediction of response to ICI earlier during 
the course of treatment. This can be prevented by the failure to 
discriminate between inflammation and tumor metabolism (166). 
For ipilimumab, one clinical trial showed that FDG-PET/CT 
5 weeks after treatment initiation could predict disease progres-
sion to CTLA4ab; patients responding to treatment could not 
be identified at this time (130). In another trial it was possible 
to predict best response by use of PERCIST and EORTC criteria 
(131). To evaluate ICI response, a new PET-CT classification, the 
PET response evaluation criteria for immunotherapy criteria, was 
developed to reflect the fact that single new lesions do not define 
disease progression. The absolute number of new lesions was, 
however, more important than changes in standardized uptake 
values (SUV) (132). During PD1ab therapy for melanoma, use of 
FDG-PET/magnetic resonance imaging (MRI) as early as 2 weeks 
after the start of treatment might identify patients with complete 
response at the 3-month time-point (133). For FDG-PET/CT 
for NSCLC, maximum SUV at 4 weeks after commencement of 
PD1ab therapy was associated with PFS and OS (167). However, 
these are case series and small prospective studies. Larger prospec-
tive trials are needed to investigate these findings further.
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18F-fluorothymidine-PET (FLT-PET) uses a thymidine analog 
that accumulates in proliferating tissues, including malignant 
and immune cells (168). Positive findings were published for e.g., 
differentiation of cerebral radionecrosis from glioma progression 
(169), and correlation of mean SUV with OS for resectable pan-
creatic carcinoma (170). In contrast, no association was found 
between early changes in FLT uptake after the first cycle of chem-
otherapy for CRC and the response evaluated from subsequent 
CT scans (171). Its value as a biomarker for ICI in melanoma 
has only been reported in one case of FLT-PET/MRI; this pre-
cludes general conclusions (172). Further clinical evaluation of 
FLT-PET in ICI is, therefore, warranted. O-(2-[18F]fluoroethyl)-
l-tyrosine (FET-)PET can be used to specifically image primary 
brain tumors and metastases to the brain which can be differenti-
ated from healthy, inflamed, and radionecrotic tissue (173, 174). 
FET-uptake correlates with ki-67 expression and could be a 
potential biomarker for early response assessment (175). For 
melanoma, a case report showed that pseudo-progression of 
melanoma brain metastases could be detected by use of FET-
PET (176) but more data are needed to assess the value of FET- 
PET in ICI.

Modern MRI techniques, including dynamic contrast-
enhanced MRI, are also available for high resolution imaging 
of tumor perfusion or cell-membrane permeability (177). This 
technique could be particularly useful for assessment of specific 
metastatic sites, e.g., hepatic metastasis (178). Another potential 
application could be MRI-based immune-cell tracking and 
assessment of drug delivery (179).

With the exception of FDG-PET/CT, all the methods described 
above have been studied in only a few patients, and rarely in the 
setting of ICI. Results of ongoing studies will reveal a potential 
prognostic or predictive value of PET-biomarkers.

immuno-imaging
Several immuno-PET tracers, namely monoclonal antibodies, 
scaffold proteins, or peptides have been evaluated in preclinical 
tumor models. Potential targets are, for example, CD8+ cytotoxic 
T  cells, PD-1, and PD-L1. Immuno-PET tracers have been 
studied in preclinical models. A 89Zr-labeled PEGylated single-
domain anti-CD8 antibody was used for longitudinal evaluation 
of CTLA4ab treatment in the B16-melanoma mouse model. 
A homogeneous distribution of the anti-CD8 PET signal was 
observed for responding animals, whereas a heterogeneous sig-
nal was associated with lower response and faster tumor growth 
(180). Another group studied a 89Zr-desferrioxamine-labeled 
anti-CD8 cys-diabody in PD1ab treatment of Balb/c mice with 
CRC. They found a higher SUV in responding animals com-
pared with non-responding ones. They also found that uptake 
for responders tended to be intra-tumoral, whereas uptake for 
non-responders was in the margins of the tumor (181); this is in 
agreement with the role of intra-tumoral CD8+ cytotoxic T cells 
in PD1ab response.

Another T  cell imaging approach is via visualization 
of PD-1. The feasibility of this method has been proven in 
murine studies. Natarajan et al. developed the anti-PD-1 trac-
ers 89Zr-keytruda and 64Cu-keytruda; these were evaluated in a 
humanized NOD-scid mouse model, and uptake in tumors and 

lymphoid tissue was observed for human melanoma tumors 
(182). Other groups developed radiotracers which target 
PD-L1 expressed on tumor cells and on immune cells of the 
tumor microenvironment (183–185). The feasibility of PD-L1 
imaging was shown by use of 64Cu-atezolizumab in mice with 
tumors constitutively expressing PD-L1, and in two breast 
cancer mouse models (183). Investigation of irradiated versus 
non-irradiated tumors in a HPV  +  SCHNN and a B16F10 
melanoma mouse models by use of an 89Zr-labeled anti-PD-L1 
monoclonal antibody revealed PD-L1 upregulation in irradi-
ated tumors specifically (184). In a patient-derived xenograft 
model of NSCLC, the 89Zr-C4-PD-L1 antibody revealed PD-L1 
changes after chemotherapy (185).

These immuno-PET tracers have been investigated in animal 
models, which can certainly improve understanding of response 
or non-response mechanisms to ICI treatment. Studies in humans 
are under way. A possible predictive ability of immuno-PET in 
the setting of ICI, however, needs to be explored in the future 
(NCT03313323, NCT02760225).

CONCLUSiON

Several factors might affect response to ICI treatment, including 
mutational load, tumor microenvironment, and stool microbi-
ome. Upfront exclusion of metastatic melanoma patients from 
ICI therapy on the basis of biomarkers is not currently possible. 
It also remains unclear which patients will need combined ICI 
and which patients will benefit from use of PD1ab only. Although 
there are several potential biomarkers, their predictive versus 
prognostic abilities have not yet been validated by prospective 
clinical trials. In particular, the best sequence of treatment to 
follow, e.g., targeted versus immunotherapy for melanoma, can-
not be answered on the basis of the biomarker data currently 
available.

Peripheral blood immune-cell analysis, e.g., by use of CyTOF, 
enables investigation of multiple markers, and will hopefully 
reveal predictive biomarkers in future. A multi-marker assay is 
more likely than a single biomarker. Future challenges include 
the development and validation of multi-marker assays, which 
will require detailed pre-analytics, computation algorithms, 
and, most importantly, well-designed clinical trials with large 
numbers of patients.
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