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A B S T R A C T   

Spinal cord injury (SCI) is a disturbance of peripheral and central nerve conduction that causes disability in 
sensory and motor function. Currently, there is no effective treatment for SCI. Mitophagy plays a vital role in 
mitochondrial quality control during various physiological and pathological processes. The study aimed to 
elucidate the role of mitophagy and identify potential mitophagy-related hub genes in SCI pathophysiology. Two 
datasets (GSE15878 and GSE138637) were analyzed. Firstly, the differentially expressed genes (DEGs) were 
identified and mitophagy-related genes were obtained from GeneCards, then the intersection between SCI and 
mitophagy-related genes was determined. Next, we performed gene set enrichment analysis (GSEA), weighted 
gene co-expression network analysis (WGCNA), protein-protein interaction network (PPI network), least absolute 
shrinkage and selection operator (LASSO), and cluster analysis to identify and define the hub genes in SCI. 
Finally, the link between hub genes and infiltrating immune cells was investigated and the potential tran-
scriptional regulation/small molecular compounds to target hub genes were predicted. In total, SKP1 and BAP1 
were identified as hub genes of mitophagy-related DEGs during SCI development and regulatory T cells (Tregs)/ 
resting NK cells/activated mast cells may play an essential role in the progression of SCI. LINC00324 and 
SNHG16 may regulate SKP1 and BAP1, respectively, through miRNAs. Eleven and eight transcriptional factors 
(TFs) regulate SKP1 and BAP1, respectively, and six small molecular compounds target BAP1. Then, the mRNA 
expression levels of BAP1 and SKP1 were detected in the injured sites of spinal cord of SD rats at 6 h and 72 h 
after injury using RT-qPCR, and found that the level were decreased. Therefore, the pathways of mitophagy are 
downregulated during the pathophysiology of SCI, and SKP1 and BAP1 could be accessible targets for diagnosing 
and treating SCI.   

1. Introduction 

Spinal cord injury (SCI) caused a total or partial loss of sensory and 
motor function below the affected region [1]. Approximately 250–500 
million individuals suffer worldwide each year, and SCI is a heavy 
burden for affected patients and their families and generates high health 
care costs for society [2,3]. The pathophysiology of SCI includes both 
primary and secondary injury [4]. Primary injury is an immediate injury 
caused by a mechanical contusion or extrusion. Secondary injuries 

include tissue edema, inflammatory reaction, necrosis, oxidative stress 
(OS), mitochondrial dysfunction, and programmed cell death (PCD), 
leading to tissue damage and inhibition of nerve tissue regeneration in 
the injury area [5]. Mitophagy has recently attracted increasing atten-
tion as a major hurdle for neural regeneration in SCI [6,7]; however, the 
molecular mechanism remains unclear. Further studies are required to 
elucidate the underlying molecular mechanisms. 

Mitochondrial autophagy, also termed mitophagy, is the process of 
eliminating damaged/superfluous mitochondria [8] and plays an 
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essential role in maintaining mitochondrial homeostasis and neuronal 
cell survival [9]. A previous study found that maltol, a natural anti-
oxidative compound, enhances mitophagy and promotes the recovery of 
mitochondrial function, which improves locomotor function after SCI 
[10]. Meng et al. found that rosiglitazone reduced mitophagy and 
ameliorated the impairment of motor functions in rats with SCI [11]. 
Mitophagy has excellent potential in the treatment of SCI. Therefore, 
further research is required to illustrate the mechanisms of mitophagy in 
SCI. 

In this study, we used GSE15878 and GSE138637 datasets to conduct 
differential gene expression analyses. Then, the datasets from the Gene 
Expression Omnibus (GEO) and GeneCards were used to identify 
differentially expressed genes (DEGs) related to SCI mitophagy. Addi-
tionally, gene ontology (GO) functional annotation analysis, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
analysis, and gene set enrichment analysis (GSEA) were performed. 
Next, key genes of mitophagy in SCI were identified by weighted gene 
co-expression network analysis (WGCNA) and least absolute shrinkage 
and selection operator (LASSO). Transcriptional regulation and possible 
therapeutic targets were screened by combined bioinformatics analysis 
and machine-learning techniques. Then, the SCI model of SD rats was 
building and the mRNA expression level of BAP1 and SKP1 were 
detected at 6 h and 72 h after injury. The results showed that the BAP1 
and SKP1 was decreased at the detection time. We aimed to elucidate the 
relationship between critical genes and immune cells, transcriptional 
factors, and drugs to uncover the molecular mechanisms of mitophagy 
after SCI. 

2. Materials & methods 

2.1. Data acquisition and DGEs analysis 

The gene expression dataset GSE15878 [12] was downloaded from 
GEO [13] and included 16 SCI samples and 16 normal spinal cord 
samples. GSE138637 was obtained from GEO and contained four SCI 
samples and four sham controls. 

The limma package [14] in R was applied to obtain different genes 
according to the grouped information to compare the gene expression 
levels in the SCI and sham groups. DEGs for each comparison were 
defined by setting a cutoff adj P < 0.05 and absolute value of logFC ≥1. 

The mitophagy-related gene list was downloaded from the Gene-
Cards database [15]. With the keyword “mitophage,” 1903 genes were 
acquired as mitophagy-related genes. The intersection of DEGs from the 
GEO database and mitophagy-related genes was used to obtain the 
mitophagy-related genes in SCI. A Venn diagram was generated using 
the Venn diagram tool. The protein-protein interactions (PPI) analysis 
was executed using the Search Tool for the Retrieval of Interacting 
Genes (STRING) database (STRING v11.0)[14] (https://string-db.org/) 
and visualized using Cytoscape (version 3.6.1). 

2.2. GO and KEGG enrichment analyses of mitophagy-related genes in 
SCI 

GO enrichment analysis [16], including cell composition, biological 
processes, and molecular functions, is used for large-scale functional 
enrichment research. The Kyoto Encyclopedia of Genes and Genomes 
(KEGG)[17] is a extensively used database that stores large amounts of 
data on genomes, biological pathways, diseases, chemical substances, 
and drugs. The R package ‘clusterProfiler’[18] was used to perform GO 
and KEGG enrichment analyses of mitophagy-related genes in SCI. Sta-
tistical significance was set at P < 0.05. 

2.3. Gene set enrichment analysis 

To uncover the biological differences between the injured and 
normal spinal cords, the R package ‘clusterProfiler’ was used to carry out 
GSEA on the gene expression matrix. Gene set enrichment analysis 
(GSEA)[19], a computational method that determines whether a 
pre-defined set of genes demonstrates statistically significant, concor-
dant differences between two biological states, was performed using the 
gene expression data. The “c2.all.v7.5.2.entrez.gmt” was downloaded 
from MSigDB database [20] and selected as a reference gene set. GSEA 
was performed to identify significantly enriched gene sets across 
GSE15878. A false discovery rate (FDR) < 0.25 and p < 0.05 was 
considered significantly enriched. 

2.4. Modules of Co-expressed genes were identified using the WGCNA 

A weighted gene co-expression network analysis (WGCNA)[21] was 
executed to describe the co-expression patterns across all samples in an 
unbiased way and to cluster genes with a similar expression pattern into 
modules to identify candidate biomarkers or therapeutic targets ac-
cording to correlations between intra-gene sets and gene-phenotype 
data. WGCNA was carried out using an R package “WGCNA” to find 
modules of highly correlated genes. With a minimum module size of 50 
genes, cut height set to 40, softpower set to the best soft-thresholding of 
4, a minimum height for merging modules of 0.4, and the minimum 
distance set to 0.2. 

2.5. PPI network construction 

The PPI network was constructed by correlating individual proteins, 
which take part in all the processes throughout life, such as the trans-
mission of biological signals/regulation of gene expression/energy 
metabolism/regulation of the cell cycle. The STRING [14] a database of 
known and predicted PPI, was used to build a PPI network for 
SCI-related DEGs and differentially expressed prognostic genes. 

Cytoscape (version 3.6.1)[22], an open-source bioinformatics soft-
ware, was performed to visualize the PPI network. The top ten hub genes 
of maximum clade credibility (MCC) in the PPI network were obtained 
using the cytoHubba plugin [23]. The GOSemSim [24] package in R was 
used to compute the functional correlation between the hub genes. 

2.6. LASSO regression model to construct SCI diagnostic model and 
screen disease characteristic genes 

The LASSO regression characteristics include screening variables and 
adjusting complexity while fitting a generalized linear model. Through 
regularization, a shrinkage penalty was introduced to limit the co-
efficients. The regularization process, which uses the sum of the absolute 
values of all feature weights, improves the interpretability of the model 
parameters to some extent. LASSO regularization was executed using the 
“glmnet” package in R [25,26]. In the process of LASSO regularization, 
the best model was selected to construct an SCI diagnosis model, and the 
genes in the model were identified as SCI characteristic genes. The 
models were validated using ROC curve analysis, performed using the 

Fig. 1. Flow chart. The flow chart of the data collection and analysis.  
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pROC package in R [27]. Box plots were used to display the differences 
in characteristic genes between the SCI and normal spinal cord groups. 

2.7. Constructing mitophagy-related genes signature in SCI 

Consensus clustering, a resampling-based algorithm [28], was used 
to identify each member and its subgroup number and validate the 
plausibility of clustering. Consensus clustering was performed based on 
the mitophagy-related genes previously screened from the GSE15878 
and MSigDB databases, and the best cluster was selected using the 
ConsensusClusterPlus package [29] in R. Different mitophagy patterns 
were identified according to the results. These genes were identified as 

hub genes associated with mitophagy. 

2.8. Immune infiltration analysis 

CIBERSORT(https://cibersort.stanford.edu/) is a deconvolution al-
gorithm that quantifies immunological characteristics based on gene 
expression signatures using linear support vector regression [30]. The 
infiltration levels of immune cells were analyzed between injured spinal 
cord tissue and normal control tissues using the CIBERSORT algorithm 
based on RNA-Seq data. A differentially enriched composition of infil-
trating immune cells was identified in the GSE15878 dataset. Pearson’s 
correlation coefficients were calculated to examine the relationship 

Fig. 2. Identify differently expressed genes. A and C, Volcano plots visualized the fold change and the Adjusted P-value of all genes between the sham and SCI groups 
in GSE15878 and GSE138637. The X-axis represents fold change, whereas the y-axis represents Adjust P-value, yellow plots were upregulated genes, and blue plots 
were downregulated genes. B and D, Heatmaps showing DEGs between the sham and SCI groups in GSE15878 and GSE138637, the x-axis represents patient ID, 
whereas the y-axis represents DEGs. E, Venn diagram indicating the 70 mitophagy-related genes in spinal cord injury identified in GSE15878 (blue circle)/ 
GSE138637 (blue circle) and mitophagy-related genes (gray circle); F, PPI network 70 mitophagy-related genes in spinal cord injury. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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between the expression profiles of mitophagy-related genes and immune 
cells. Furthermore, the study assessed the correlation between 
mitophagy-related genes and the level of immune infiltration. 

2.9. Construction of lncRNAs-miRNAs-mRNAs regulation network 

MiRNAs and lncRNA (long non-coding RNA) are important in regu-
lating transcriptional and post-transcriptional gene expression. The 
miRTarBase database (https://mirtarbase.cuhk.edu.cn/), which collects 
miRNA-target relationships (MTI, microRNA-target interactions) sup-
ported by experimental evidence [31], includes more than 8500 
experimentally supported articles on miRNA-target interactions. The 
TarBase database is a miRNA-target gene database supported by 
experimental evidence [32]. The miRTarBase and TarBase databases 
were used to predict the interacting miRNAs of the hub genes, and the 
intersection was determined. 

StarBase [33] was employed to predict miRNA-interacting lncRNAs. 
The interaction was constructed and visualized using Cytoscape, and it 
was showed with a Sankey diagram. 

2.10. Construction of lncRNAs-miRNAs-mRNAs regulation network 

NetworkAnalyst, an online visualization platform for gene expres-
sion and meta-analysis database [34], which can perform alignment/-
quantification/different gene expression and enrichment/protein 
interaction analysis, can also search for transcriptional factor regulatory 
networks. Transcriptional factors bound to the human homologs of 
mitophagy-related hub genes were predicted and visualized using the 
NetworkAnalyst (https://www.NetworkAnalyst.ca/) database. Addi-
tionally, small-molecule compounds or potential drugs that interact with 

the mitophagy-related hub genes were predicted using the Drug-Gene 
Interaction Database (DGIdb) (version 3.0.2, https://www.dgidb.org) 
and visualized using Cytoscape software Drug-Gene Interaction Network 
[35]. 

2.11. Validation experiments 

2.11.1. Establishment of SCI in rats 
15 Sprague-Dawley rats, aged 6–7 weeks, were purchased from 

Beijing Vital River Laboratory Animal Technology Co., Ltd. (Beijing, 
China, SCXK(E)2022–30030) and were randomly divided into the 
following three groups: sham group, 6 h after SCI and 72 h after SCI. The 
proceed of contusion SCI model was as followed: After anesthesia by 
isoflurane, rat was fixed and the laminectomy was performed at the T9- 
T10 level to expose the spinal cord beneath the dura mater. The Allen 
methods were used to perform the spinal cord contusion on the back 
surface of the spinal cord by using 10 g × 50 mm [36]. The lower limb 
constructions and the tail swing was used as the indicator of successful 
building of the SCI model. The rats in sham group just perform the 
laminectomy without weight drop injury. Then the incision was sutured. 
Bladders of all rats that underwent SCI were emptied manually thrice a 
day. After stripping blood vessels and spinal meninges, the spinal cord 
tissue was obtained. 

2.11.2. RNA extraction and quantitative real-time polymerase chain 
reaction (qRT-PCR) 

To determine the abundance of BAP1 and SKP1 mRNA, total RNA 
from the injured spinal cord was extracted using TRIzol and cDNA were 
synthesized by reverse transcription using a First Strand cDNA synthesis 
kit (Japan Takara). The expression levels of mRNA were semi-quantified 

Fig. 3. GO and KEGG enrichment analysis. A–C: GO enrichment analysis (BP, CC, and MF) of 70 mitophagy-related genes in spinal cord injury; D: KEGG pathway 
enrichment analysis of 70 mitophagy-related genes in spinal cord injury. Abbreviations: BP, biological process; CC, cellular component; MF, molecular function. 
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Fig. 4. GSEA analysis. A: GSEA analysis in the GSE15878 data, the x-axis represents the gene ratio, while the y-axis represents the GO terms, and the mountain map 
visually illustrates the number of genes in each GO term. B–D: GSEA analysis showing the results of the analysis of the neuronal system, autophagy, and mito-
chondrial calcium ion transport pathways. 

Fig. 5. Identification of co-expression modules in DEGs by WGCNA. A: No outlier samples were found by cut-off height; B, C: Determination of the optimal soft power 
threshold; D: Dendrogram obtained by hierarchical clustering of genes according to their topological overlap is shown at the top. E: The correlation between 
modularity genes and spinal cord injury. 
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using the real-time polymerase chain reaction by the SYBR Green Master 
mix and calculated by the 2 –ΔΔCt method with normalized to the 
expression levels of β-actin. Primers used are listed as follows: β-actin, 
forward: 5′-TGT CAC CAA CTG GGA CGA TA-3′, β-actin, reverse: 5′-GGG 
GTG TTG AAG GTC TCA AA-3’; SKP1, forward:5′-ATT AAG GGG AAA 
ACG CCT GAG GAG-3’; SKP1, reverse: 5′-ACT TCT CTT CAC ACC ACT 
GGT TCT C-3’; BAP1, forward:5′-CCA GCC AGC AGC AAG TCT CC-3’; 
BAP1, reverse: 5′-CAC GAA CCA GCC ACC TCC TC-3’. 

2.11.3. Ethical statement 
Experiments were performed under a project license (No. k2023-52- 

01) granted by institutional ethics board of the Third Affiliated Hospital 
of Xinxiang Medical University, in compliance with the Third Affiliated 
Hospital of Xinxiang Medical University guidelines for the care and use 
of animals. 

2.11.4. Statistical analysis 
All statistical analyses were conducted using R (https://www.r-pro 

ject.org/, version 4.0.2). To compare continuous variables between 
the two groups, the Student’s t-test (normal distribution) or Mann- 
Whitney test (non-normal distribution) was used to compare differ-
ences. All tests were 2-sided with P < 0.05 indicating statistical 
significance. 

3. Results 

A flow chart illustrating the study process is presented in Fig. 1. 

3.1. Analysis of differential gene expression 

The DEGs between injured and normal spinal cord tissues were 
analyzed using the limma package in R and are shown by volcano plots. 
There were 4190 DGEs and 1315 DGEs in GSE15878 and GSE138637, 
including 1879 upregulated genes and 2311 downregulated genes in 
GSE15878 (Fig. 2A) and 633 upregulated genes and 682 downregulated 
genes in GSE138637 (Fig. 2C), respectively, which differentiated the 
injured and normal spinal cord tissues (Fig. 2B and D). A total of 70 
genes overlapped between DGEs in GSE15878/GSE138637 and 
mitophagy-related genes (Fig. 2E). PPI analysis revealed interactions 
between these genes (Fig. 2F). 

3.2. Functional enrichment analysis 

In the biological process (BP) category, the DEGs are involved in the 
regulation of neuron death, neuron death, response to a metal ion, 
regulation of the neuronal apoptotic process, autophagy of mitochon-
dria, and mitochondrial disassembly (Fig. 3A). In the cellular component 
(CC) category, the DEGs are involved in focal adhesion, membrane 
microdomain, cytoplasmic vesicle lumen, cell-cell junction, mitochon-
drial outer membrane, and outer membrane (Fig. 3B). In the molecular 
function (MF) category, the DEGs were involved in the structural con-
stituents of cytoskeleton, S100 protein binding, structural constituent of 
synapse, chaperone binding, protein C-terminus binding, cell adhesion 
molecule binding, and protein kinase regulator activity (Fig. 3C). In the 
KEGG pathway enrichment analysis, the DEGs were enriched in the 
AGE-RAGE signaling pathway in diabetic complications, proteoglycans 
in cancer, HIF-1 signaling pathway, apoptosis, Th17 cell differentiation, 
and the TNF signaling pathway (Fig. 3D). 

Fig. 6. Protein-protein interaction network. A: The blue circles represent mitophagy-related genes, and the yellow circles represent the Darkred module genes 
analyzed by WGCNA. Take the intersection to obtain the genes related to mitophagy and spinal cord injury. B: The PPI network of spinal cord injury-related 
mitophagy genes. C: Top 20 genes in maximum correlation criterion (MCC) screened by cytoHubba. D: Heatmap of correlation coefficients of Hub genes. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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3.3. GSEA enrichment analysis 

GSEA enrichment pathways (adj P-value<0.05) were mainly 
involved in the neuronal system, neuroactive ligand-receptor interac-
tion, phospholipid metabolism, autophagy, electron transport chain 
OXPHOS system in mitochondria, mitochondrial calcium ion transport, 
and recruitment of mitotic centrosome proteins and complexes 
(Fig. 4A–D). 

3.4. Identification of Co-expression modules in DEGs by WGCNA 

The co-expression modules were identified using WGCNA between 
the SCI and control groups. No outlier samples were found when the cut 

height was set during WGCNA (Fig. 5A). Using the scatter plot, the 
optimal threshold was set to 4 in the follow-up study (Fig. 5B and C). Co- 
expression genes in the two groups were clustered in the MEdarkred, 
MEskyblue, and MEturquoise modules (Fig. 5D). The correlations be-
tween modules and SCI were identified based on the gene expression 
patterns and grouped information. The MEdarkred module, positively 
correlated with SCI and p < 0.05, was selected in the follow-up study 
(Fig. 5E). 

3.5. Protein-protein network analysis 

By overlapping genes in the MEdarkred module and mitophagy- 
related genes (Fig. 6A), the genes associated with SCI were identified. 

Fig. 7. Construction and validation of LASSO regression diagnostic model. A: Obtaining the best model and the simplest model of LASSO regression; B: The rela-
tionship between the selected features and the absolute value of the coefficient; C: The validation of the model by the Train group and the Test group; D: The spinal 
cord injury group and the normal spinal cord group, characteristics Gene expression is different and the difference is statistically significant; E and F: the mRNA 
expression level of BAP1 and SKP1 at 6 h and 72 h after SCI in SD rats（n = 5, ***, P < 0.001; *, P < 0.05; ns, P > 0.05）. 
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The PPI network was then constructed and visualized using Cytoscape 
(Fig. 6B). The top 20 hub genes selected from the PPI network using the 
MCC algorithm of the cytoHubba plugin were Psma3, Pmpcb, Ndufv1, 
Adrm1, Cul1, Psmd12, Ndufs2, Uqcrc2, Uchl5, Psmd14, Psmd6, Psmc6, 
Psmd10, SKP1, BAP1, Usp14, Psmc5, Cyc1, Psma2, and Psmc2 (Fig. 6C). 
Pearson correlation coefficients were calculated between the 20 hub 
genes and were displayed on a colored heat map (Fig. 6D). 

3.6. Constructing diagnostic model and identifying signature genes by 
LASSO regression 

LASSO regression was employed to construct a prognostic model by 
randomly dividing GSE15878 into the training group (used to construct 
the model) and the test group (used to verify the model) according to 2:1 
to identify the signature genes of SCI. During model building, as λ 
increased, the enrolled characteristic parameters decreased, and the 
absolute value of the coefficient increased (Fig. 7A and B). We created a 
prognostic-related risk model that included two genes, SKP1 and BAP1. 
Then, the prognostic model was validated in the training and test groups 
by analyzing the ROC curves. In the ROC curve analysis, the area under 
the curve (AUC) values in the training and the test groups were 1 and 
0.964, respectively (Fig. 7C). Signature genes were analyzed in the SCI 
and sham groups and visualized using a box plot (Fig. 7D). The mRNA 
expression level of BAP1and SKP1 were decreased at 6 h and 72 h after 
injury in the SCI model of SD rats (Fig. 7E and F), however there in no 
significant difference of SKP1 at 72 h between sham and SCI groups. 

3.7. Two distinct mitophagy patterns identified by signature genes 

The consensus clustering was used for clustering analysis based on 
two mitophagy-related genes with the “Consensus Cluster Plus” package 
in R software. Two clusters were identified through consensus clustering 
with the optimal total cluster number set to k = 2 (Fig. 8A), and the 
relative change in area under the CDF curve was obtained when k 
ranged from 2 to 12 (Fig. 8B), the delta area (Fig. 8C), and the tracking 
plot (Fig. 8D) were acquired. 

3.8. Immune infiltration analysis 

To evaluate the degree of immune cell infiltration in the SCI and 
sham groups, the CIBERSORT algorithm was carried out to quantify the 
degree of infiltration of 22 types of immune cells in GSE15878 (Fig. 9A). 
A total of 13 types of immune cells showed significant differences in 
expression between SCI and sham tissues in GSE15878 (Fig. 9B), 
including B cells, naïve memory B cells, resting memory CD4+ T cells, 
plasma cells, follicular helper T cells, gamma delta T cells, regulatory T 
cells (Tregs), resting NK cells, activated NK cells, resting and activated 
mast cells, eosinophils and neutrophils. The correlation between two 
mitophagy-related genes (SKP1 and BAP1) and 22 types of immune cells 
was analyzed. SKP1 was significantly correlated with RNA abundance of 
activated mast cells and BAP1 with RNA abundance of regulatory T cells 
(Tregs), activated mast cells, and resting NK cells in GSE15878 (P <
0.05) (Fig. 9C). 

Fig. 8. Consistent cluster analysis of eigengenes in spinal cord injury patients. A: Consistent clustering plot when k = 2; B: Relative change of area under the CDF 
curve from k = 2 to 9; C: Cumulative distribution function of consistent clustering; D: tracking plot. 
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3.9. Constructing hub-mRNA, hub-miRNA, hub-LncRNA interaction 
network 

A lncRNA-miRNA-mRNA interaction network was constructed, 
which included two mitophagy-related genes, BAP1 and SKP1. The 
miRTarBase and TarBase databases were used to predict miRNAs 
interacting with mitophagy-related genes, and there were eight groups 
of interactions in the intersection set (Fig. 10A). The lncRNAs interact-
ing with miRNAs were predicted using the StarBase database, and a 
Sankey diagram (Fig. 10B) and network diagram (Fig. 10C) of the 
lncRNA-miRNA-mRNA network were constructed. 

3.10. Hub-TF, hub-drugs regulatory network 

The NetworkAnalyst database was employed to construct the mRNA- 
TF network of mitophagy-related hub genes (Fig. 11A and B). In addi-
tion, six small-molecule drugs were found to modulate BAP1 by 
exploring the Drug-Gene Interaction Database (DGIdb) (Fig. 11C). 

4. Discussion 

SCI disrupts communication between supraspinal centers and spinal 
circuits, frequently resulting in permanent functional deficits [37]. 
There are no effective therapeutic approaches for SCI, as the patho-
physiologic mechanisms are still not fully elucidated. Current research 

shows that mitophagy plays an essential role in SCI development. 
However, the hub genes and their regulation remain unclear. In this 
study, we aimed to uncover the hub genes of mitophagy related to SCI 
for pharmacological intervention, which will improve therapeutic op-
tions for SCI. 

Based on GEO datasets, GSE15878 and GSE138637 were included in 
this study. Based on GeneCards datasets, 1903 mitophagy-related genes 
were acquired. Seventy mitophagy-related genes have been identified in 
SCI. Functional enrichment and KEGG pathway analyses of the DEGs 
were carried put. We found a potential association between neural 
function and death (e.g., response to metal ions, neuronal death, regu-
lation of neuronal cell death, and apoptosis). Next, the top six pathways 
were screened according to the P-value. The HIF-1 pathway promotes 
functional restoration after SCI [38] as confirmed by other studies [39, 
40]. 

GSEA results showed that autophagy-related pathways, such as 
autophagy and mitochondrial calcium ion transport, were down-
regulated in SCI. Autophagy promotes neuronal cell survival through 
apoptosis by releasing energy substrates via degradation of cellular 
constituents [41,42]. Mitophagic activity is likely required to eliminate 
ROS accumulation and inhibit pyroptosis after SCI [43]. Impairment of 
autophagy is a disadvantage in the recovery of neuronal function. The 
results showed that neuronal cell dysfunction aggravated SCI and pro-
moted neuronal cell death. 

The signature genes SKP1 and BAP1were identified and validated in 

Fig. 9. Immune infiltration analysis. A: Differences in the enrichment abundance of 22 immune cells in the GSE15878 dataset. B: Differences in the enrichment 
abundance of 22 types of immune cells in the GSE15878 dataset, blue represents normal tissue, red represents spinal cord injury tissue, the X-axis represents 22 types 
of immune cells, and the Y- axis represents immune cell infiltration abundance. C: Correlation heat map of 22 immune cells and their correlation with hub-mRNA. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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this study. SKP1, a part of the E3 ubiquitin ligase complex that leads to 
protein degradation, plays an important role in maintaining genome and 
chromosome stability [44,45]. It is downregulated in the brains of pa-
tients with sporadic Parkinson’s disease (PD) and plays a neuro-
protective role in the adult brain [46]. In our study, we found that SKP1 
was downregulated in SCI. BRCA1-associated protein 1 (BAP1) is a 
ubiquitin C-terminal hydrolase domain-containing deubiquitinase with 
tumor-suppressor activity [47,48]. Intact BAP1 catalytic activity could 
increase aerobic glycolysis and lactate secretion and reduce mitochon-
drial respiration and ATP production [49]. Glycosylation of BAP1 con-
trols the self-renewal of hematopoietic stem cells and hematopoiesis 
[50]. A recent study showed that BAP1 is essential for commitment to 
ectoderm, mesoderm, and neural crest lineages during embryonic 
development [51]. The expression of BAP1 is also downregulated in SCI. 
In the SCI model of SD rat, the mRNA expression level of BAP1 was 
reduced compared with sham group at 6 h and 72 h after injury and 
SKP1 was reduced at 6 h, but there was no significant difference at 72 h 
compared with sham group. However, the role of SKP1 and BAP1 in SCI 
development of SCI needs further research. 

The immune response plays an important role in maintaining spinal 
cord homeostasis. Owing to the dysregulated vegetative innervation of 
the lymphatic and hypothalamic–pituitary–adrenal (HPA) axes, SCI is 
associated with immune depression syndrome [52,53]. Studies have 
found that BAP1 is critical for T cell development at several stages [54] 
and maintaining hematopoietic stem cells and B lymphopoiesis. Mice 
lacking BAP1 in bone marrow mesenchymal stromal cells show aberrant 
differentiation of hematopoietic stem and progenitor cells, impaired B 
lymphoid differentiation, and expansion of myeloid lineages [55]. In our 

study, we found that regulatory T cells (Tregs) and resting NK cells were 
upregulated, which may be associated with chronic inflammation. 
Activated mast cells are positively regulated in SCI, and further research 
is required to uncover the potential mechanisms. 

The transcriptional regulation and potential target compounds of 
SKP1 and BAP1 were investigated as signature genes. We predicted that 
lncRNA LINC00324 and small nucleolar RNA host gene 16 (SNHG16) 
regulate BAP1 and SKP1 through miRNAs. LINC00324 is an autophagy- 
related long non-coding RNA that can be used as a liquid biopsy marker 
for esophageal squamous cell carcinoma [56]. In patients with inter-
vertebral disk degeneration (IDD), LINC00324 is upregulated and 
correlated with IDD development [57]. SNHG16 levels were lower in 
acute ischemic stroke patients than in controls, negatively correlated 
with inflammatory cytokines (TNF-α, IL-6) and adhesion molecule 
ICAM-1, and positively correlated with IL-10 [58]. It was found that 
over-expressed SNHG16 enhanced cell proliferation and inhibited 
apoptosis in oxygen-glucose deprivation- and reoxygenation-induced 
cells and hydrogen peroxide-induced cell injury [59–61]. Our study is 
the first to predict the roles of LINC00324 and SNHG16 in the devel-
opment of SCI. Second, we found that there are 11 and 8 TFs regulating 
the hub genes SKP1 and BAP1, respectively, using the NetworkAnalyst 
database. Finally, based on the DGIdb database, we found that histone 
deacetylase inhibitors, such as vorinostat [62], panobinostat [63,64], 
mTOR pathway inhibitor everolimus [65], apitolisib [66,67], tyrosine 
kinase inhibitor sunitinib [68] and poly (ADP-ribose) polymerase in-
hibitor olaparib [69] may target the BAP1 gene and promote neural 
recovery after SCI. 

Our study has several limitations. Firstly, the data in this study were 
obtained from public sources, which have limitations in terms of sta-
tistical imperfection and limited samples; and the two datasets were 
derived from different strains of rats, so there are some genetics and 
physiological differences, which may lead to skewed interpretations. 
Secondly, also we validated the two hub genes SKP1and BAP1, there are 
also need further studies to evaluate the key pathways and transcrip-
tional regulation and potential target compounds of hub genes involved 
in SCI development. Thirdly, further research is required to confirm the 
therapeutic effects of small-molecule compounds in SCI. Therefore, 
confirmatory experiments were conducted to validate the regulation of 
transformation during SCI, and the therapeutic effect was evaluated. 

5. Conclusions 

In this study, mitophagy-related hub genes SKP1 and BAP1 were 
predicted by bioinformatics and validated by qPCR, then regulatory 
relationships about non-coding RNAs/TFs/compounds were predicted. 
Our present study paves the way for future studying the functional role 
of SKP1 and BAP1 in SCI. 
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