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nonlinear implementations of acoustic diodes are inherently nonreciprocal and have received 
continuous attention from the beginning of the research boom for acoustic diodes. However, all the 
reported nonlinear schemes usually have the shortcomings such as low transmission ratio, action 
threshold, lack of stability and cumbersome setups. in the present design, we take advantage of 
extraordinarily large contact acoustic nonlinearity which is several orders of magnitude stronger than 
material nonlinearity. it is theoretically found that the spectra of the transmitted wave depend on 
the contact time. it is proven experimentally that the contact nonlinearity can be tamed by adjusting 
the driving amplitude, the static stress and the elastic constants of the materials. in order to build 
a compact acoustic diode, a sub-wavelength filter with a sandwich structure is designed. The total 
length of the acoustic diode is only three eighths of the incident wavelength. the amplitude-dependent 
behavior of the device exhibits similarities with electronic diodes. A more than 50% transmission ratio is 
obtained. A robust, stable, compact, highly efficient and solid-state acoustic diode is realized.

Reciprocity is a fundamental property of the acoustic wave, which means the acoustic wave inherently travels 
symmetrically in space. Devices of one-way transport for acoustic wave which are called as acoustic diodes, iso-
lators or rectifiers are of great importance in acoustic engineering1.

Recent years have witnessed a lot of researches addressing on design of a variety of one-way transport acoustic 
devices. Among them, a rather number of designs are making use of asymmetric scatters2,3, mode conversion in 
wave guides4,5, angular-dependent band gap in phononic crystal6–13, or abnormal reflection and refraction of met-
amaterials14–18. Strictly speaking, most of these designs don’t break the reciprocity when all modes and all ports 
are considered together. However, obviously these schemes may still be useful in some scenarios such as noise 
insulation etc. There are also some designs that take advantage of active elements19,20. Due to the powerful ability 
of the combination of actuators or transducers with the electronic circuit, these designs do break the reciprocity 
and have excellent performance of one-way transport, but the introduction of extra elements make them so dif-
ferent to their passive counterparts and limit the range of their applications.

Theoretically, there are two classes of non-conventional topologies that can be adopted to break the reci-
procity and realize one-way transport of acoustic waves. 1) The first class of topologies applies extrinsic stimuli 
to modulate the properties of the host medium in space, time or both of them21–24. For examples, R. Fleury 
et al. introduced uni-rotational fluid circulations into an acoustic circulator21. H. Nassar et al. modulated the 
elastic moduli and mass density in time and space in a wavelike fashion24. These approaches have the advantage 
of invariant frequency. However, external stimuli may introduce noise and absorption losses. Like the active 
designs, auxiliary devices and consumption of extra energy are needed. 2) The second class of topologies involves 
taking advantage of intrinsic properties of the media such as structural chirality25–27, dissipation17,28 and nonlin-
earity29–35. For example, C. He et al. elegantly realized the inversion of acoustic energy bands at a double Dirac 
cone, and experimentally demonstrated an acoustic topological insulator and robust one-way sound transport24. 
Due to the two-dimensional acoustic beam of the edge mode, such isolators may have difficulty in manipulating 
three-dimensional acoustic beams. On the other hand, it is very difficult to excite the edge mode efficiently. Of 
course, these devices may be suitable for on-chip phononic circuits.

A nonlinear system is inherently nonreciprocal. Several nonlinear schemes have been suggested and imple-
mented29–35. For example, Liang et al. realized one-way acoustic propagation by using a superlattice as a filter 
coupled with bubble suspension water as a frequency converter29,30. N. Boechler et al. exploited bifurcations 
and chaos in a granular crystal for tunable rectification31. Thibaut Devaux et al. investigated an acoustic rectifier 
composed of a phononic crystal as a filter and a nonlinear granular material as a harmonic generator32. F. Li et 
al. realized granular acoustic switches and logic elements33. However, all the reported nonlinear systems usually 
have the shortcomings such as low transmission ratio (the ratio between the transmitted wave amplitude to that 
of the incident wave), action threshold, lack of stability and cumbersome setups. C. Liu et al. presented a the-
oretical proposal of nonlinear phononic crystal so as to build a frequency-preserved acoustic diode with high 
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forward-power-transmission rate (the ratio of the acoustic flux of the transmitted wave to that of the incident 
wave)34. However, it is difficult to be materialized.

For a nonlinear acoustic diode, it is usually composed of two parts: a part of nonlinear material and a 
super lattice. The nonlinear material functions as a frequency converter which can generate super-harmonics, 
sub-harmonics, difference frequency waves or sum frequency waves. The super lattice acts as a filter which blocks 
the fundamental wave but lets the frequency-shifted wave pass. When the acoustic wave comes from the side of 
the super lattice, it will be blocked, and no wave can pass the device. When it impinges on the nonlinear material 
first, frequency-shifted waves occur and pass through the super lattice. The transmission ratio is mainly deter-
mined by the conversion efficiency of the nonlinear part. Congyi Fu et al. used two masses connected by a bilinear 
spring with asymmetric tension and compression stiffness as the converter36. However, their design is suitable 
for insulation of vibration, but not for control of wide acoustic beam. It is well known that anomalously high 
nonlinearity has been found in solids with defects, such as cracks, grains or delaminations, which are referred to 
as contact acoustic nonlinearity (CAN). The effective nonlinear coefficients can be very high, and they are several 
orders of magnitude larger than material nonlinearity. Strong second harmonics can be observed. The nonlinear 
schemes made of granular material essentially take advantage of the CAN effect between grains. Itay Grinberg 
et al. proposed two nonlinear schemes with vibro-impact elements theoretically37. In fact, a solid-solid contact 
interface is the simplest vibro-impact element. However, the contact acoustic nonlinear phenomena are consid-
ered to be elusive, uncontrollable, and unpredictable. For CAN, the elastic properties of materials on both sides 
of the interface, the evenness of the contact surfaces, static stress and the driving level are all influential factors. If 
the contact acoustic phenomena are controllable, the contact interface itself can acts as the frequency converter. 
Thus, the space occupied by the nonlinear material in the aforementioned nonlinear schemes is no longer needed, 
and a compact, stable, highly efficient, solid-state acoustic diode becomes possible. Because of the low attenuation 
factor in solids, high transmission ratio is also expected.

What determines the spectra of the transmitted wave? How to get the strongest second harmonic? Referring to 
the work of I. Y. Solodov et al.38, the effect of the contact time on the spectra of the transmitted wave is analyzed. 
In their CAN-phenomenological model, strain is used to describe the driving mechanism at the interface. In fact, 
it is the ‘displacement’, not the ‘strain’ of one side that drives the other side to move, so the displacement is used in 
the following analysis. The displacement of the driving surface is udriving = Adrivingcos(ω0t). During each cycle, the 
two sides will contact for a period of time τ. The contact time depends on the vibration amplitude of the driving 
surface and the DC component of the vibration uDC of the driven surface. This modified CAN-phenomenological 
model is shown in Fig. 1. T is the period of the vibration of the driving surface. The impact the driven side 
received can be expressed as the sinusoidal wave udriving multiplied by a square wave p(t). The spectrum of the 
transmitted wave is a convolution of the spectra of udriving and p(t). The corresponding frequency spectra of udriving 
and p(t) are F1 and F2 respectively.

ω = 



 ∗U m F u t F p t( ) ( ) [ ( )] (1)excited 0 1 driving 2

F1 and F2 are well known,

ω π δ ω ω δ ω ω= = + + − .F F cos t[ ( )] 2 (1/2 ( ) 1/2 ( )) (2a)1 0 0 0

∑ω πτ ω ω τ δ ω ω= = = − − .=−∞
∞F F p t p n T jn T Sinc n n( ( )) ( ) 2 / exp( /4) ( /2) ( ) (2b)n2 0 0 0 0

By combining them in convolution sum,

Figure 1. CAN-phenomenological model: the driving vibration and the excited vibration at the interface. The 
blue line is the square wave p(t). The green line is the displacement of the driving surface udriving. The red line is 
the displacement of the driven surface uexcited.
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∑ω πτ πτ π= − −=−∞
∞U m T Sinc n T exp j n( ) / ( / ) ( ( 1) /2)excited n0

δ ω ω δ ω ω− − − − + .m n m n( ( ( 1) ) ( ( 1) )) (3)0 0 0 0

where m and n are integer numbers from −∞ to ∞. δ(mω0 − nω0) is the unit pulse function. ω0 is the round fre-
quency of the vibration of the driving surface. The spectra of the transmitted waves are calculated with the above 
equation and shown in Fig. 2, where Δτ = τ/T.

The spectra of the nonlinear vibrations (Eq. 3) are shown in Fig. 2. It demonstrates some unusual CAN fea-
tures. It contains several super harmonics. In Fig. 2(a), Δτ = 0.5 is the symmetry center. The fundamental com-
ponent is anti-symmetric. Other components including the DC and super harmonics are symmetric. For a Δτ 
and its counterpart 1 − Δτ, the spectra contain similar components of super harmonics. With the increasing of 
Δτ, the fundamental wave increases monotonically, but the DC component and the super harmonics have peaks 
and dips. The higher the order is, the more the peaks and dips there are. Between Δτ = 0.11 and Δτ = 0.89, as 
for the amplitude, the second harmonic is no less than 20% of the incident fundamental wave. At Δτ = 0.25 and 
Δτ = 0.75, the second harmonic is about 30% of the incident fundamental wave. In fact, the DC component is 
the average vibration equilibrium displacement. However, at the peak of the DC component around Δτ = 0.5, 
because there is a rather long period of time when the super harmonics and the fundamental wave are out of 
phase, there is a dip for the super harmonics. In Fig. 2(b), the transmission rate (the square value of the normal-
ized amplitude of the fundamental or each of its harmonics) is shown. The amplitudes of harmonics are always 
modulated by the Sinc function envelope as shown in Fig. 2(c). This seriously affects the dynamic behavior of the 
CAN spectrum. As Δτ decreases from 1 to 0, it is accompanied by the correspondent “compression” of the enve-
lope function. The above spectral features are summarized in an unusual (rectified sine) waveform distortion due 
to the CAN. The contact time is determined by the driving amplitude, the initial stress and the elastic constants 
of the materials on both sides of the interface. So, through adjusting these three parameters, a strong second 
harmonic is obtainable.

Figure 2. Relation of the spectra of the transmitted waves with the contact time. (a) The normalized 
displacement amplitudes of each frequency component of the transmitted wave vs. the contact time. (b) The 
transmission rate of each frequency component of the transmitted wave vs. the contact time. (c) The spectra of 
the transmitted wave for several contact times Δτ = 0.01, 0.28, 0.5, 0.75 and 0.99.
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The constants of the elasticity of both sides influence the contact time very much. Large nonlinearity can be 
readily observed on an interface between a hard and a soft material. However, for a soft material such as silicone 
rubber, given an initial static stress, there will be a large initial static strain. Therefore, it’s hard for the two sides 
to separate. That’s why rubber is often used as a sealing material. In fact, if there is no static stress, a long sepa-
ration time is possible and large CAN occurs. However, the mismatch of impedance between a hard and a soft 
material leads to large reflection and a little transmission at the interface. Moreover, adhesion between a soft and 
hard material is stronger than that between two hard materials, which means it is more difficult for the two sides 
to separate. So, an interface between a hard and a soft material is not chosen to build the acoustic diode. It’s also 
imaginable that if both sides are of the same material, it is difficult for them to separate. So, as a compromise of 
conversion efficiency, transmission ratio and stability, two different but similar materials are desirable. In the 
experiments, 6061 and 5052 duralumin are chosen to build the diode. The longitudinal wave velocities of them 
are 6413 m/s and 5882 m/s respectively. The densities of them are 2732 kg/m3 and 2596 kg/m3 respectively.

The initial static compression stress T0 which leads to initial strains on both sides of the interface keeps the 
two surfaces in touch for a longer time in each cycle. In the following, an experiment is carried out to investigate 
the influences of the initial static stress and the driving level on the spectra of the transmitted wave. The experi-
mental setup is shown in Fig. 3. It consists of a transmitter, a round 2 mm thick 5052-duralumin sheet, a 2 cm long 
6061-duralumin cylinder, a receiver and a push and pull dynamometer. The sandwich structure shown in Fig. 3 
is for the following acoustic diode experiment. In this experiment, only a 2 cm long 6061-duralumin cylinder is 
used. To save space, only one figure is shown for the two experiments. The receiver is fixed on the top surface of 
the 6061-duralumin cylinder. It is a home-made piezoelectric composite transducer. The transducer operates 
as a capacitive transducer at frequency of tens of kilohertz which is far away from the center frequency 2 MHz. 
Though its response at tens of kilohertz is small but flat with the frequency. The transmitter is a piezoelectric 
transducer from Suzhou Hairui Electronics Technology Company. The surface of the transmitter is coarse, so 
the sheet is bonded perfectly to the transmitter to get a smooth surface. The sheet is in direct contact with the 
cylinder. The cylinder is bonded perfectly to the receiver. Sodium salicylate is used in the bonding process. The 
dynamometer presses on the top of the cylinder. The aluminum sheet is very thin, so its influence on wave trans-
mission can be ignored. The spectrum distribution of the transmitted wave is measured with external force of 0 N, 
4.1 N and 9 N. The frequency of the incident wave is 20 KHz. Of course, the aluminum cylinder’s weight of 2.63 N 
also plays a role. The driving level increases from 0 to 30 V. The results are shown in Fig. 4.

The external force makes the interface more tightly coupled, with more acoustic flux passing through the 
interface. In this respect, it is similar to adhesion. The fundamental wave under 9 N is the strongest. The funda-
mental wave under no external force is the weakest. The harmonics in fact depend on both the external force and 
the driving level. For a weak driving level, the interface cannot be separated and there are no super harmonics. 
For a strong driving level, both the acoustic flux passing through the interface and the reflected acoustic flux 

Figure 3. (a) The photograph of the experimental setup for contact nonlinear acoustic diode. (b) Schematic of 
the experimental setup for contact nonlinear acoustic diode.
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become strong and the interface begins to clap and kiss, and super harmonics occur. If the compression stress 
is big enough, the two surfaces will not separate, and no harmonic is generated. The transmitted wave will be 
the fundamental wave only. After the driving voltage surpasses a certain threshold, super harmonics appear. In 
Fig. 4, the threshold values are 0.51 V, 1.01 V and 2.02 for 0 N, 4.1 N and 9 N respectively. With the driving level’s 
increasing, Δτ decreases from 1 and the separation time increases. However, in Fig. 4(a) for 0 N, the transmitted 
fundamental wave has a dip around 23.9 V which is different to the results in Fig. 2(a,b). Following is our expla-
nation about the phenomena. Driven by the transducer, the duralumin cylinder will bounce up, and fall down 
freely due to the gravity. The time of the up and down movement depends on the initial upward velocity of the 
duralumin resulted from the impact of the transducer. The strength of the impact is proportional to the driving 
voltage. When the driving voltage increases to a certain value, the duralumin cylinder will move up and down 
steadily for the same period as the incident acoustic wave. At the same time, the transmitted fundamental wave 
decreases to its minimum. With the driving voltage increasing further, the period of the up and down movement 
become longer than that of the incident wave. Thus, the amplitude of the up and down movement decreases, and 
the transmitted fundamental component increases again. In Fig. 4(a), an anti-resonant dip around 23.9 V can be 
found for the fundamental component. The amplitudes of the high order harmonics depend on the contact time 
and the driving voltage, and they are not subject to the same dissipation as the fundamental component. However, 
this phenomenon is sensitive to external conditions. When there is an initial static compression stress, the dura-
lumin cylinder cannot move up and down freely and such dip can hardly be observed. In most cases, results like 
Fig. 4(b) for 4.1 N are observed. If the driving amplitude continues to increase to a rather large value, the transmit-
ted wave reaches to a saturation state where its amplitude increases very slowly or even decreases a little. This can 
be interpreted as that the stronger the driving level, the bigger the DC component of the transmitted wave which 
means a shorter contact time and a weaker transmitted acoustic flux. With the driving level increasing further, 
the sub-harmonics will appear. In the end, fraction and chaos will occur. In the experiment, the nonlinearity of 
the transducer and signal-amplifier will become obvious when the driving voltage reaches 30 V. The initial static 
compression stress can contribute to the stability of the system and delay the occurrence of sub-harmonics and 
chaos. The experiment proves that a strong output of the second harmonic can be obtained by adjusting the initial 
compression stress and the driving amplitude. Here, it should be noted that the system is nonlinear. Therefore, 
the relation between stress and strain is a complex hysteresis curve. Even in one cycle, the historical state of stress 
action is different at each time, and it is impossible to expect a definite corresponding strain response for the 
stress. Especially, when the system works at such a high frequency, it is impossible to investigate the hysteresis 
effect of the system, and it is feasible and meaningful to investigate the overall input-output characteristics of the 
system.

Figure 4. Spectra of the transmitted wave with the driving voltage under external force (a) 0 N, (b) 4.1 N and 
(c) 9 N.
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In order to realize an acoustic diode, an efficient and compact filter is also needed. A sub-wavelength filter 
with a sandwich structure is designed. It is simply composed of three parts: a 6061-duralumin cylinder, a PMMA 
(polymethyl methacrylate) cylinder and another 6061-duralumin cylinder. The three parts are bonded together 
with epoxy resin. The thickness of each part is one eighth of the wavelength of the fundamental wave at 20 kHz. 
The total length of the filter is only 3 eighths of the wavelength of the incident wave. Due to using the contact non-
linear acoustic effect, no extra space for nonlinear material is needed and this size is just the total size of the acous-
tic diode. The longitudinal wave velocity and the density of the PMMA are 2763 m/s and 1187 kg/m3 respectively. 
The thicknesses of the PMMA and duralumin cylinder are 17.3 mm and 40 mm respectively. The total length of 
the acoustic diode is 97.3 mm. The relationship of transmission ratio of displacement with frequency is analyzed 
by transmission line theory39 and shown in Fig. 5.

There is a resonance at 40 KHz. The insertion loss at 20 KHz is 6.7 dB. So, it can depress the fundamental wave 
and let the second harmonic pass. The frequency range where the transmission ratio is over 0 dB is the pass band. 
The frequency range where the transmission ratio is below 0 dB is the stop band. It can be found that the pass 
bandwidth around 40 KHz is about 8 KHz and the stop bandwidth is about 20 KHz. So, this filter can be consid-
ered as a wide band filter. Though the following experiment on the acoustic diode is done at a single frequency 
because of the narrow band transmitter, the acoustic diode should have a rather wide working band. The center 
of the stop band is around 25 KHz.

Following is about the experiment on the acoustic diode. The experiment setup can be referred to Fig. 3. 
There is no external force in the experiment. Figure 6 illustrates the experimental results of the acoustic diode. 
The amplitude-dependent behavior of the proposed device exhibits similarities with electronic diodes as shown 
in Fig. 6(b). The negative voltage is used to describe the backward transmission. It can be observed that the back-
ward transmission is almost completely stopped. When the driving level is small, −2V to 0 V, no transmission can 
be observed. Even at a high driving level, such as −30V, the transmitted wave is only ignorable 2.6 mV which can 
still be reduced further with more precise manufacturing and optimization of the components of the filter. On 
the contrast, the forward transmission is very strong. The forward transmission is around 10000 times stronger 
than the backward transmission. In Fig. 6(b), the total transmitted acoustic flux (the sum of the square values of 
the amplitudes of the fundamental and its harmonics) is plotted against the driving voltage. Due to the perfect 
prohibition effect on the incident fundamental wave for backward transmission, not only the second harmonic 
but the full wave acoustic flux can be considered as effective forward transmission. The forward transmission 
increases with the driving voltage until about 20 V. Then, it becomes saturation. The self-weight of the filter which 
is about 11.5 N unavoidably exerts pressure on the contact interface. According to the results of Fig. 4, in the 
situation of so big an external force, for the forward transmission, a strong transmitted fundamental wave, weak 
super-harmonics and high CAN threshold are expected. However, due to the strong rejection effect of the filter 
which means high input impedance, or a high potential barrier for the incident fundamental wave, it strongly 
reflected at the contact interface, and strong contact acoustic nonlinearity occurs with a lower threshold value of 
1.57 V as shown in Fig. 6(a). The harmonics are much stronger than those for a common contact interface in the 
former experiment. When the working threshold of the acoustic diode is considered, the value is zero as shown 
in Fig. 6(b). The second harmonic reaches its climax when the driving level is about 15 V. Corresponding to the 
climax, the contact time Δτ = 0.75 and the transmitted acoustic energy flux is about 54% of the incident wave 
can be gotten from Fig. 2(b,c). With the increasing of the contact time, the transmitted acoustic flux will increase 
too. Contrary to the backward transmission, the depression effect for the transmitted wave of rich harmonic 
components is greatly weakened. For the second harmonic, there is even amplification due to the resonance. 
Theoretically, for a continuous wave of the frequency at the rejection band center, the forward wave and the 
reflected wave in the filter are always out of phase and they cancel each other. So, the backward transmission is 
almost completely prohibited. However, in the case of forward transmission, since there is a separation time in 
each cycle of the incident wave in addition to the above-mentioned rich harmonics which means a complex wave-
form, the phase relation of the waveform and its reflection is almost random. So, the forward wave can hardly be 
reduced. The filter acts like a fish trap. The waves that enter the filter propagate forwards with little reduction. Due 

Figure 5. The transmission ratio of displacement with frequency.
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to the similarity of the duralumin 6061 and 5052, the contact surfaces keep in touch for a long time each cycle 
and the gravity force of the filter, adhesion or a proper external force will make the contact time even longer. As a 
result, most incident acoustic flux enters the filter and leads to a strong forward transmission. A more than 50%, 
perhaps up to 80% transmission ratio is realizable according to the simulation results in Fig. 2(b). It is impossible 
for the previous nonlinear acoustic diodes to obtain so large a transmission value. Moreover, if the driving level is 
rather high, the CAN will lead to fractions and chaos. Nevertheless, due to the efficient rejection effect of the filter 
for a backward transmission, even at the state of fractions and chaos, the device can still function as an acoustic 
diode. This device does relay on frequency conversion, and therefore, results in signal distortion when transmit-
ting through it in the forward direction. Though this may limit its application to some specific areas, there is no 
doubt that a robust, stable, compact, highly efficient and solid-state acoustic diode has been realized.
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