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Abstract: Disturbance in the balance between fibrin formation and fibrinolysis can lead to either
bleeding or thrombosis; however, our current routine coagulation assays are not sensitive to altered
fibrinolysis. The clot formation and lysis assay is a dynamic plasma-based analysis that assesses
the patient’s capacity for fibrin formation and fibrinolysis by adding an activator of coagulation as
well as fibrinolysis to plasma and measuring ex vivo fibrin clot formation and breakdown over time.
This assay provides detailed information on the fibrinolytic activity but is currently used for research
only, as the assay is prone to inter-laboratory variation and as it demands experienced laboratory
technicians as well as specialized personnel to validate and interpret the results. Here, we describe a
protocol for the clot formation and lysis assay used at our research laboratory.
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1. Introduction

Fibrinolysis is the ongoing physiological process of fibrin clot breakdown and is normally tightly
regulated to keep the balance between fibrin formation and breakdown (Figure 1) [1]. This balance
secures hemostasis in the case of vessel wall damage while preventing excess fibrin formation and
obstruction of blood supply to end organs. Upon activation of the coagulation system, circulating
fibrinogen is converted to fibrin, and the fibrin clot is further stabilized via fibrin cross-linking
by coagulation factor (F) XIIIa. Plasmin is the main fibrinolytic protease and circulates in the
blood in its zymogen form plasminogen. The cross-linked fibrin provides a binding surface for
plasminogen, which is then converted into plasmin by tissue-type or urokinase-type plasminogen
activator (tPA/uPA), of which tPA is the most abundant. Fibrinolysis is regulated by the anti-fibrinolytic
proteins α2-antiplasmin, plasminogen activator inhibitor (PAI)-1 and -2, and thrombin-activatable
fibrinolysis inhibitor (TAFI) [2–4]. Finally, the structure of the fibrin clot itself influences fibrinolysis,
as denser fibrin clots with smaller pores have been found less susceptible to lysis, probably because
binding of plasminogen and tPA to fibrin is impeded by smaller pore size [5,6].

Methods Protoc. 2020, 3, 67; doi:10.3390/mps3040067 www.mdpi.com/journal/mps

http://www.mdpi.com/journal/mps
http://www.mdpi.com
https://orcid.org/0000-0002-2978-5185
http://dx.doi.org/10.3390/mps3040067
http://www.mdpi.com/journal/mps
https://www.mdpi.com/2409-9279/3/4/67?type=check_update&version=2


Methods Protoc. 2020, 3, 67 2 of 12

Methods Protoc. 2020, 3, x FOR PEER REVIEW 2 of 13 

 

 
Figure 1. Overview of the fibrinolytic process. α2-AP, α2-antiplasmin; F, coagulation factor; PAI, 
plasminogen activator inhibitor; PL, phospholipids; TAFI, thrombin-activatable fibrinolysis inhibitor; 
TF, tissue factor; tPA, tissue plasminogen activator. 

Altered fibrinolysis occurs in a range of clinical settings. Hyperfibrinolysis can lead to severely 
increased bleeding tendency [7], while hypofibrinolysis is associated with an increased thrombosis 
risk [8]. However, current routine coagulation assays, such as the activated partial thromboplastin 
time (aPTT) and prothrombin time (PT), are not sensitive to fibrinolysis. High circulating fibrin 
degradation products indicate increased fibrin turnover but will usually reflect increased procoagulant 
activity and fibrin formation more than hyperfibrinolysis. Thus, more sensitive and specific biomarkers 
to assess fibrinolytic capacity are necessary for research and the clinical laboratory. 

The plasma-based clot formation and lysis assay allow for a detailed assessment of fibrin  
formation and breakdown capacity. Several different versions of the assay have been  
published [9–15]. The common principle is that citrated, platelet-poor plasma (PPP) is mixed with an 
activator of coagulation, usually recombinant tissue factor (TF) or thrombin, as well as phospholipids 
and calcium to induce fibrin formation. Simultaneously, tPA or another plasminogen activator is 
added to induce clot lysis. The assay employs a turbidimetric principle, as the fibrin network is first 
formed and then lysed in the well, turbidity increases and subsequently decreases. Absorbance is 
registered continuously over a specified time period (e.g., 1.5 h), resulting in the formation of the  
clot-lysis curve (Figure 2), from which the following parameters can be derived: time to initial fibrin 
formation (lag phase), maximum absorbance (peak fibrin concentration in well), integral or area 
under curve (net fibrin formation), and time from peak to 50% lysis of the clot (50% lysis time). 

 
Figure 2. The clot-lysis curve and derived parameters. 

Figure 1. Overview of the fibrinolytic process. α2-AP, α2-antiplasmin; F, coagulation factor; PAI,
plasminogen activator inhibitor; PL, phospholipids; TAFI, thrombin-activatable fibrinolysis inhibitor;
TF, tissue factor; tPA, tissue plasminogen activator.

Altered fibrinolysis occurs in a range of clinical settings. Hyperfibrinolysis can lead to severely
increased bleeding tendency [7], while hypofibrinolysis is associated with an increased thrombosis
risk [8]. However, current routine coagulation assays, such as the activated partial thromboplastin time
(aPTT) and prothrombin time (PT), are not sensitive to fibrinolysis. High circulating fibrin degradation
products indicate increased fibrin turnover but will usually reflect increased procoagulant activity and
fibrin formation more than hyperfibrinolysis. Thus, more sensitive and specific biomarkers to assess
fibrinolytic capacity are necessary for research and the clinical laboratory.

The plasma-based clot formation and lysis assay allow for a detailed assessment of fibrin
formation and breakdown capacity. Several different versions of the assay have been published [9–15].
The common principle is that citrated, platelet-poor plasma (PPP) is mixed with an activator of
coagulation, usually recombinant tissue factor (TF) or thrombin, as well as phospholipids and calcium
to induce fibrin formation. Simultaneously, tPA or another plasminogen activator is added to induce
clot lysis. The assay employs a turbidimetric principle, as the fibrin network is first formed and
then lysed in the well, turbidity increases and subsequently decreases. Absorbance is registered
continuously over a specified time period (e.g., 1.5 h), resulting in the formation of the clot-lysis
curve (Figure 2), from which the following parameters can be derived: time to initial fibrin formation
(lag phase), maximum absorbance (peak fibrin concentration in well), integral or area under curve
(net fibrin formation), and time from peak to 50% lysis of the clot (50% lysis time).
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2. Materials 
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Denmark. Ref.no.: B4212-40) 

• Human recombinant tPA, lyophilized, 100 µg (Calbiochem®, Sigma-Aldrich, Merck, Darmstadt, 
Germany. Cat. no.: 612200) 

• Phospholipids 500 µM (Rossix, Mölndal, Sweden. Ref.no.: PL604T) 
• HEPES buffer, 20 mM, NaCl 150 mM, pH 7.4 (Ampliqon, Odense, Denmark) 
• HEPES, 20 mM, NaCl 150 mM, CaCl2 200 mM, pH 7.4 (Ampliqon, Odense, Denmark) 
• Bovine serum albumin (BSA), lyophilized (>98%) (Sigma-Aldrich, Merck, Darmstadt, Germany. 

Cat. no.: A70-30-100a) 
• Controls: Pooled normal plasma (PrecisionBiologic, CryocheckTM, Haemochrom Diagnostica, 

Frederiksberg, Denmark. Cat.no.: CCN-10) 
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The clot-lysis curve shape and reference values for derived parameters vary considerably
with the type and final concentrations of coagulation activators, tPA and Ca2+ (see Section 4).
The present protocol describes the experimental design and reference values used at the Thrombosis
and Haemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark.

2. Materials

2.1. Patient Preparation

Blood sampling and preparation of PPP, see Sections 6.1–6.3.
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3.1. Reconstitution of Reagents and Preparation of Buffers 

• Reconstitute TF in 4 mL distilled water, aliquot, and store at −80 °C until use. 

PAUSE STEP After preparation, PPP can be stored at −80 ◦C for 12 months.

2.2. Reagents

• Human recombinant TF (Dade® Innovin®, Siemens Healthcare, Diagnostics Aps, Ballerup,
Denmark. Ref.no.: B4212-40)

• Human recombinant tPA, lyophilized, 100 µg (Calbiochem®, Sigma-Aldrich, Merck, Darmstadt,
Germany. Cat. no.: 612200)

• Phospholipids 500 µM (Rossix, Mölndal, Sweden. Ref.no.: PL604T)
• HEPES buffer, 20 mM, NaCl 150 mM, pH 7.4 (Ampliqon, Odense, Denmark)
• HEPES, 20 mM, NaCl 150 mM, CaCl2 200 mM, pH 7.4 (Ampliqon, Odense, Denmark)
• Bovine serum albumin (BSA), lyophilized (>98%) (Sigma-Aldrich, Merck, Darmstadt, Germany.

Cat. no.: A70-30-100a)
• Controls: Pooled normal plasma (PrecisionBiologic, CryocheckTM, Haemochrom Diagnostica,

Frederiksberg, Denmark. Cat.no.: CCN-10)
• Demineralized water (resistivity 18.2 MΩ× cm at 25 ◦C) to dissolve TF and tPA and flush dispensers

Solutions to be added in the well:

• 10 µL HEPES buffer (see Section 3.1)
• 10 µL phospholipid 60 µM solution (see Section 6.5), Target final concentration in well = 4 µM
• 20 µL TF B 1:665 solution (see Section 6.5), Target final dilution in well = 1:5000
• 70 µL PPP (see Section 2.1)
• 20 µL tPA 870 ng/mL solution (see Section 6.5), Target final concentration in well = 116 ng/mL
• 20 µL HEPES-Ca (see Section 3.1), Target Ca2+ concentration in well = 26.7 mM
• Total volume in well = 150 µL

2.3. Equipment

• 96-well plate (Nunc ImmunoPlate, Thermo Fisher Scientific, Roskilde, Denmark. Cat. no.: 442404)
• 5 mL and 10 mL tubes for preparation of reagents
• Victor Reader X4 (Perkin Elmer, Waltham, MA, USA)
• Two automatic 1-channel dispensers (PerkinElmer, Waltham, MA, USA)
• Software: 2030 WorkOut and WorkOut 2.5 (Perkin Elmer, Waltham, MA, USA)

OPTIONAL: Automatic dispensers and software. See Section 6.6.

3. Procedure

3.1. Reconstitution of Reagents and Preparation of Buffers

• Reconstitute TF in 4 mL distilled water, aliquot, and store at −80 ◦C until use.
• Reconstitute tPA in 1 mL distilled water. Mix gently, aliquot, and store at −80 ◦C until use.
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• Prepare 1% w/v BSA in HEPES, aliquot in 4 mL portions, and store at −20 ◦C until use.
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3.1. Reconstitution of Reagents and Preparation of Buffers 

• Reconstitute TF in 4 mL distilled water, aliquot, and store at −80 °C until use. 
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3.2. Preparation of Victor Protocol

Setup of protocol in WorkOut, see Section 6.7.

3.3. Preparation for Analysis (30 min)

1. Turn on Victor reader and computer. Open software “PerkinElmer”. Start heating to 37 ◦C.
Start WorkOut; choose the appropriate protocol name.

2. Make a note of plate layout with ID numbers; plasma samples in duplicate. Controls should be
positioned at B1, B2, G11, and G12.

3. Collect plasma samples, controls, and TF in −80 ◦C freezer.
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5. Collect HEPES and HEPES-Ca from the cooler.
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1. Flush dispensers with distilled water.
2. Flush dispensers with air.
3. Flush dispenser 1 with tPA 870 ng/mL solution.
4. Flush dispenser 2 with HEPES-Ca.

3.4. Analysis (80 min)

1. On the computer screen, press “Start measurements”:

• Dispenser 1 will now add 20 µL tPA to each well.
• Dispenser 2 will subsequently add 20 µL HEPES-Ca to each well. This activates coagulation.
• The plate will be shaken for 10 s.
• Reading will begin.

2. Reading (absorbance at 405 nm, 1 read/min for 80 min). See Section 6.6.
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13. Prepare plate: 

1. Add 40 µL “PLTFH” to each well on plate. 
2. Add 70 µL of plasma sample or control to each well according to plate layout. 
3. Place plate in reader. 

14. Prepare tPA 870 ng/mL solution (tubes: “tPA A”, “tPA”) as detailed in Section 6.5. 

 CRITICAL STEP Keep tPA at −80 °C until immediately before use, thaw at room 
temperature for 5 min. Do not vortex; shake gently. 

15. Prepare dispensers: 

1. Flush dispensers with distilled water. 
2. Flush dispensers with air. 
3. Flush dispenser 1 with tPA 870 ng/mL solution. 
4. Flush dispenser 2 with HEPES-Ca. 

3.4. Analysis (80 min) 

CRITICAL STEP After use, clean/flush both dispensers with a pipette and then flush both
dispensers five times with distilled water to avoid clotting of the system.

3.5. Data Export

Create pictures of graphs for visual assessment and export raw data to Excel. See Section 6.8.

3.6. Results Validation

1. Inspect all graphs of duplicates visually. The same reproducible duplicate and almost full lysis
should be present; if not, exclude samples from analysis (perform re-run). Check baseline
correction and crossing point to assure that baseline and lag phase are calculated correctly.
See Figures 2 and 3 (top).
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2. In Excel: inspect all individual samples for peak and integral. We accept a coefficient of variation
(CV) of 15% for all parameters.

Unexpected results and potential explanations:
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• High CV% between duplicates
• Clotted sample. Inspect samples visually.
• Pipetting error.
• Flat curve (no derived parameters can be calculated), see Figure 3.
• Single sample, controls normal: Patient-related—see Table 1; clotted sample; pipetting error.
• Controls/entire plate: Faulty activation of coagulation: check TF reagent, HEPES-Ca.
• No or partial lysis only (integral and 50% lysis time cannot be calculated), see Figure 3.
• Single sample, controls normal: Patient-related—see Table 1.
• Controls/entire plate: Faulty activation of fibrinolysis: problems with tPA reagent; automatic

pipetting error.

Table 1. Interpretation of clot-lysis results.

Parameter Reference Interval [15] Represents Interpretation

Peak absorbance (AU) 0.18–0.74 Maximum fibrin concentration
reached in well

↑: Increased procoagulant activity;
high plasma fibrinogen

↓: Decreased procoagulant activity, may
be due to low plasma levels of

coagulation factors or fibrinogen

Integral (AU * s) 219–1051
Net fibrin formation

Balance between fibrin
formation and breakdown

↑: Increased procoagulant activity;
decreased endogenous anticoagulant

activity; decreased fibrinolytic capacity
↓: Decreased procoagulant activity or

clot stability, may be due to low
circulating coagulation factors,

fibrinogen or factor XIII; increased
fibrinolytic activity

50% lysis time (s) 309–1565
Time from maximum fibrin

concentration is reached until
50% of the clot is lysed 1

↑: Decreased fibrinolytic capacity, may
be due to low circulating plasminogen,

high PAI-1 and/or TAFI [16] or
anti-fibrinolytic treatment

↓: Increased fibrinolytic activity may be
due to high plasma levels of tPA or uPA

Abbreviations: AU, absorbance units; PAI-1, plasminogen activator inhibitor 1; TAFI, thrombin-activatable
fibrinolysis inhibitor; tPA/uPA; tissue/urokinase plasminogen activator. 1 Some authors calculate 50% lysis time as
the time from the point where 50% of maximum fibrin formation is reached to the point where 50% of the clot is
lysed [17].

4. Expected Results and Interpretation

Table 1 shows definitions and interpretations of the parameters derived from the clot-lysis curve,
with our local reference intervals.

The rate of fibrin formation and lysis, and hence the reference intervals for derived parameters,
are very much dependent on the type and concentrations of activators used. Our group investigated
clot-lysis using thrombin vs. TF as an activator in a cohort of 538 coronary artery disease patients [18].
Activation with TF resulted in higher net fibrin formation than thrombin, with higher maximum fibrin
formation, higher integral, and longer lysis time (Table 2).

Table 2. Clot-lysis parameters with tissue factor vs. thrombin.

Parameter Thrombin 0.03 U/mL Tissue Factor 1:5000

Peak absorbance (AU) 0.32 (0.26–0.40) 0.68 (0.59–0.75)
Integral (AU × s) 408 (289–585) 1381 (1083–1733)
50% lysis time (s) 726 (570–912) 1483 (1154–1828)

N = 538. Median with interquartile range. Final concentration of tissue plasminogen activator (tPA) in well = 83 ng/mL.

The assay is also sensitive to tPA concentration, as higher final tPA concentration increases net
lysis, leading to decreased integral and shorter lysis times (Table 3).



Methods Protoc. 2020, 3, 67 7 of 12

Table 3. Clot-lysis parameters with tissue plasminogen activator (tPA) 83 ng/mL vs. 116 ng/mL.

Parameter tPA 83 ng/mL tPA 116 ng/mL

Peak absorbance (AU) 0.69 (0.61–0.76) 0.68 (0.58–0.75)
Integral (AU × s) 1410 (1111–1748) 826 (665–1025)
50% lysis time (s) 1509 (1166–1830) 802 (653–1027)

N = 417. Median with interquartile range.

This makes comparison difficult between laboratories. However, the variability of the assay also
provides the opportunity to adjust the assay according to the specific research question or to investigate
the effect of other factors on fibrinolysis by performing additional experiments.

It should be noted that considerable inter-laboratory variation has also been described even with
the same protocol and reference plasma, which indicates that the clot-lysis assay is sensitive to even
minor differences in equipment, reagents, and manual skills [19]. Therefore, thorough validation,
including the establishment of local reference intervals, is necessary to implement the assay successfully
in the research laboratory.

Altered fibrin formation and fibrinolytic capacity assessed by the clot-lysis assay has been
described in a range of clinical conditions (Table 4). These findings highlight the contribution of the
fibrinolytic system in the development of these conditions and for related adverse outcomes.

Table 4. The clot-lysis assay in clinical conditions.

Condition Findings

Cardiovascular disease

ACS: ↑ lysis time ACS patients vs. healthy controls [20]; ↑ lysis time at ACS associated
with ↑ 1-year mortality [21]

Stable CAD: ↑ lysis time in CAD patients with previous MI [22]; ↑ integral but not lysis time
associated with subsequent poor cardiovascular outcome [23]

Ischaemic stroke ↑ lysis time in stroke patients at onset vs. healthy controls [24]; ↑ lysis time at onset associated
with poor 3-month neurological function [25]

Venous thrombosis

↑ lysis time in DVT and PE patients compared with healthy controls [26,27]; in PE, ↑ lysis time
associated with ↑ 12-month mortality [28]

↓ lysis time in patients with PE vs. patients with DVT alone [29]
↑ lysis time may predict VTE recurrence [30], though other studies found no association [16,31]

Diabetes mellitus ↑ integral and lysis time in CAD patients with type 2 diabetes vs. non-diabetic patients [32]

Hepatic dysfunction

Stable cirrhosis: uncertain; may vary according to etiology. ASH: ↓ lysis time;
NASH: ↑ lysis time [33,34]

ACLF: variable lysis times, influenced by concurrent factors [35]
ALF: ↑↑ lysis time/lysis resistance

Sepsis

↑ lysis time in sepsis vs. healthy controls [36] and in septic vs. non-septic ACLF patients [35];
↑ lysis time associated with lower platelet count but not survival [36]

↑ integral in sepsis vs. healthy controls; flat or lysis resistant clot-lysis curves associated with
↑ DIC and SOFA score *

Abbreviations: ACLF, cute-on-chronic liver failure; ACS, acute coronary syndrome; ALF, Acute liver failure; CAD,
coronary artery disease; DIC, disseminated intravascular coagulation; DVT, deep vein thrombosis; MI, myocardial
infarction; PE, pulmonary embolism SOFA, Sequential Organ Failure Assessment; VTE, venous thromboembolism *
Larsen et al., unpublished data.

5. Summary and Conclusions

To summarize, we here provide a protocol for the fibrin clot formation and lysis assay as
performed at the Thrombosis and Haemostasis Research Unit, Aarhus University Hospital, Denmark.
Altered fibrinolysis may contribute to increased bleeding or thrombosis risk in a range of clinical
conditions, and detailed assessment of plasmatic fibrinolytic capacity may support both research and
clinical practice. Currently, inter-protocol and inter-laboratory variation, as well as differences in
data analysis and reporting, challenge comparison between laboratories. Furthermore, the assay is
labor-intensive, as only manual or semi-automated versions of the assay currently exist, and a high
degree of skill is required to obtain acceptable precision and reproducibility. All these factors impede
the implementation of the assay in clinical use. However, the clot formation and lysis assay provide a
valuable research tool to characterize fibrinolytic capacity.
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6. Notes

6.1. Patient Preparation

The presence of anticoagulant or antifibrinolytic drugs in the blood will influence the result.

6.2. Blood Sampling

Blood should be drawn from an antecubital vein using a 19 or 21 gauge needle with smooth
venipuncture and minimal stasis in order to minimize endothelial and platelet activation and subsequent
tPA and PAI-1 release. The use of a butterfly cannula is acceptable. Sodium citrate anticoagulated
tubes (3.2%) should be used. Correct filling of the tube, to the mark pre-specified by the manufacturer
is important to ensure the correct ratio of blood to anticoagulant. The first 1 mL should be discarded or
used for other analyses to avoid spuriously high amounts of endothelial- or subendothelial-derived
TF, tPA, and PAI-1 in the sample following the venipuncture and vessel wall. The remaining tubes
should be gently inverted five times to ensure adequate mixing of blood and anticoagulant. If there are
signs of clotting in the tube, it should be discarded. Visibly haemolysed samples are not suitable for
analysis due to increased plasma calcium and adenosine diphosphate, which activates coagulation
and platelets. Pronounced icterus and lipaemia may influence absorbance or turbidity; however,
as baseline correction is performed automatically, samples with mild to moderate icterus or lipaemia
are acceptable.

6.3. Preparation of PPP

Centrifugation should be performed at 3000× g for 25 min at room temperature within 1 hour after
blood sampling. Plasma should be aliquoted into secondary tubes and frozen at −80 ◦C immediately
after aliquoting and within 2 h of blood sampling at the latest. Avoid storage under cool conditions,
as this may activate coagulation. After correct preparation, PPP should be stored at −80 ◦C before
analysis. Repeated freeze-thawing affects the analysis in our experience and should be avoided.
We have not tested the duration of stability at −80 ◦C, but based on the stability of other coagulation
parameters, we expect acceptable stability for a minimum of one year.

6.4. Reagents

We have experienced considerable lot-to-lot variation for both TF and tPA, as well as significant
intra-lot variation between individual ampullas. In our experience, reconstituted TF and tPA are
stable at −80 ◦C for a limited amount of time and should be stored for a maximum of six months.
Thus, collected plasma samples within the same project should always be analyzed in batch using TF
and tPA from the same reconstituted ampulla.

6.5. Preparation of Reagents Immediately Prior to Analysis

(A) Prepare a 60 µM solution of phospholipids in one step:

• Add 150 µL phospholipids 500 µM + 1100 µL HEPES buffer to the 5 mL tube marked “PL”.
Add lid and vortex spin.

• (150 + 1100)/150 = 1:8.33 dilution. 500 µM/8.33 = 60 µM.
• In well: 10 µL 60 µM phospholipids. (10 + 140)/10 = 1:15 dilution.
• Final concentration in well: 60 µM/15 = 60 µM/15 = 4 µM.

(B) Prepare a 1:665 dilution of TF in two steps:

• TF “A”: Add 10 µL TF + 1320 µL HEPES buffer to the 5 mL tube marked “TF A”. Add lid and
vortex spin.

• (10 + 1320)/10 = 1:133 dilution
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• TF: Add 600 µL TF “A” + 2400 µL HEPES buffer to the separate 5 mL tube marked “TF”. Add lid
and vortex spin.

• (600 + 2400)/600 = 1:5 dilution.
• 1:(133 × 5) = 1:655 dilution.
• In well: 20 µL 1:665 TF. (20 + 130)/20 = 1:7.5 dilution.
• Final dilution in well: 1:(665 × 7.5) = 1:4987 = 1:5000.

(C) Prepare a 870 ng/mL tPA solution in two steps:

• tPA “A”: Add 40 µL tPA 100 µg/mL + 160 µL HEPES with 1% BSA to the 5 mL tube marked
“tPA A”. Shake gently to mix.

• (40 + 160)/40 = 1:5 dilution.
• tPA: Add 150 µL tPA “A” + 3300 µL HEPES-BSA to the separate 5 mL tube marked “tPA”.

Shake gently to mix.
• (150 + 3300)/150 = 1:23 dilution.
• 100 µg/mL/(5 × 23) = 0.879.6 µg/mL = 870 ng/mL.
• In well: 20 µL 870 ng/mL tPA. (20 + 130)/20 = 1:7.5 dilution.
• Final concentration in well: 870 ng/mL/7.5 = 115.9 ng/mL = 116 ng/mL.

(D) Prepare a mix of phospholipids, TF and HEPES:

• Add 1200 µL HEPES, 1200 µL “PL” and 2400 µL “TF” to the 5 mL tube labelled “PLTFH”. Add lid
and vortex spin.

6.6. Use of Software and Automatic Dispensers

Use of the WorkOut software and automatic dispensers greatly improves precision and timing
and facilitates data analysis. If automatic dispensers are not an option at the laboratory, HEPES-Ca
must be added manually to the plate; however, this inevitably leads to a delay between the activation
of coagulation and reading. In this case, it is important to use a stopwatch during the final step of
HEPES-Ca addition, noting the delay between HEPES-Ca addition and reading for each row. The time
from HEPES-Ca addition to reading starts (after plate shaking is completed) should then be added
to the final results. In our current software protocol, the delay from dispensation to reading starts is
automatically added to the raw data and taken into account in the calculation of lag time.

If the WorkOut software is not an option for you, alternative free software can be used for
generating a visual representation of curves and calculating derived parameters. e.g., the Shiny App
Tool [37].

6.7. Setup of the Protocol in Workout

• Slow kinetics. Absorbance 405 nm (0.1 s).
• Measure each plate 80 times. Delay between readings: 0 s.
• Plate: Flat bottomed. Generic and 12 size plate. Measure the height standard (min 8 mm).
• Temperature: 37 ◦C.
• Dispenser 1: 20 µL.
• Dispenser 2: 20 µL.
• Shaking: Slow, 10 s.
• Reading: Measurement mode: by plate.
• Baseline correction: mean from 0 to 500 s; consider to redefine from run to run.
• Crossing point (baseline corrected): 0.015 absorbance units.
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6.8. Data Export

• To create pictures: in the WorkOut protocol, click on well; click “Analysis”, right-click on picture
“copy as image”. Open in MS Paint; save as .jpg.

• To export raw data:
• From Perkin Elmer 2030 Manager, choose “Explore protocols and results”.
• Find the folder where you stored the protocol and open folder.
• The results files are on the right side of this window. Open the wanted file.
• The file opens. After the Print button, you can see the Export button = two beams. Press this

button. Save the file as .mht. Afterward, open in Excel and save as .xls.
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