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The role of 5-methylcytosine-related long noncoding RNAs (m5C-IncRNAs) in bladder cancer (BLCA) remains unclear. Here, we
aim to study the prognostic value, gene expression characteristics, and correlation between the m5C-IncRNA risk model and the
tumor microenvironment, immune infiltration, and tumor mutations in BLCA. After collecting BLCA patient RNA sequence
transcriptome data, clinical information and mutation data from the Cancer Genome Atlas (TCGA) database, 17 m5C-related
IncRNAs independently correlated with OS were obtained by Lasso and multivariate Cox regression analysis, and a risk model
was constructed. Univariate Cox, multivariate Cox regression analysis, and the C-index curve proved that the risk model was a
significant independent prognostic indicator for patients with BLCA. ESTIMATE and CIBERSORT indicated that the higher
the number of immune cells and stromal cells in TME, the higher the prognostic risk. We found that in the low-risk group,
the expression levels of immune cells that predicted a good prognosis were higher, including plasma cells, regulatory T cells,
and CD 8 T cells. There is a negative correlation between TMB and risk score. The TMB of the low-risk group is significantly
higher than that of the high-risk group. In conclusion, the m5C-related risk model is crucial to predict the prognosis of

patients with BLCA.

1. Introduction

Bladder cancer (BLCA), one of the ten most common cancer
types worldwide, is a growing public health concern [1].
Approximately 3.0% of all new cancer diagnoses and 2.1%
of all cancer deaths are due to urinary BLCA, imposing a sig-
nificant burden on the society [2]. BLCA is a common type
of malignant tumor in the urinary system, and the mortality
rate of patients with BLCA above T2 increases [3, 4]. Until
now, the main treatments for BLCA are radical cystectomy
and chemotherapy, which will change patients’ lifestyle [5,
6]. As research continues, molecular targeted therapy and
immunotherapy are increasingly showing the advantages of
precise treatment [7]. Despite the high recurrence rate of
BLCA, the discovery and application of biomarkers can help
make the best treatment decisions, which will have a positive
impact on improving the prognosis of BLCA [8].

Methylation is one of the common methods for RNA
posttranscription modification. It participates in the regula-
tion of various RNA biological processes in cells, including
alternative splicing [9], maintaining RNA stability [10] and
normal structure [11], protein translation [12], and RNA-
protein interactions [13]. Posttranscriptional modifications
are installed or removed by enzymatic reactions at specific
sites by methyltransferases (writers) and demethyltrans-
ferases (erasers), and methylated binding proteins (readers)
can read the modified information and act as delivery mes-
sengers for the execution of downstream functions [14].
RNA methylations include N1-methyladenosine (mlA),
N6-methyladenosine (m6A), and 5-methylcytosine (m5C),
among which m5C that is a methyl group attaches to the
fifth atom of the cytosine ring which is catalyzed by RNA
methyltransferase [15], which is closely related to the activa-
tion of protooncogenes. A study has shown that the m5C
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F1GURE 1: Flowchart for constructing and evaluating prognostic risk model.

methyltransferase NSUN2 and the recognition protein
YBX1 are highly expressed in BLCA tissues, keeping the pro-
tooncogene HDGF at stable high expression, hence the poor
prognosis of the patients, indicating that m5C methylation
mediated by NSUN2 plays a facilitating role in promoting
tumor occurrence and progression in BLCA [16]. In cutane-
ous squamous cell carcinoma, the reduced rate of protein
synthesis may be caused by the low expression of NSUN2,
which results in certain stem cell characteristics of tumor
initiating cells [17]. In liver cancer, modified m5C
H19IncRNA can promote tumor occurrence and develop-
ment by recruiting the G3BP1 oncoprotein [18]. In nonsmall
cell lung cancer cells, knocking down YBXI increases the
sensitivity of cells to cisplatin by inhibiting autophagy [19].
In breast cancer, TET2 knockout results in an increase in
m5C of most enhancers and a significant reduction in of
H3K4mel and H3K27ac enrichment, which jointly pro-
moted the tumorigenesis of ERa-positive MCF7 breast can-
cer cells [20].

Long noncoding RNAs (IncRNAs) are the main noncod-
ing RNAs with transcripts longer than 200nt, which are
involved in the regulation of RNA methylation and can be
used to evaluate tumor prognosis [21]. IncRNAs are closely
related to the prognosis of patients with BLCA; therefore,
it is crucial to identify RNA methylation-associated
IncRNAs with a definitive prognostic value [22]. In addition,
IncRNAs also regulate the tumor microenvironment (TME),
influence tumor growth, and metastasis [23, 24]. Previous
studies have demonstrated the widespread presence of mod-
ified cytosines throughout coding and noncoding sequences
in a transcriptome, suggesting a broader role of this modifi-
cation in the posttranscriptional control of cellular RNA

function [25]. Unfortunately, there are few published data
on the regulation of m5C-related IncRNAs in BLCA.

In this study, the expression profiles of 14,056 IncRNAs
and 31 m5C genes were abstracted from The Cancer
Genome Atlas (TCGA) dataset. We identified m5C-
associated IncRNAs through Pearson’s correlation analysis.
Using univariate Cox regression, Lasso analysis, and multi-
variate Cox regression, a prognosis-related risk model was
constructed to predict the prognostic characteristics of
patients with BLCA. The tumor microenvironment, immune
infiltration, and tumor mutations of patient group based on
the risk model were studied to provide a theoretical research
basis for discovering BLCA biomarkers and immunotherapy
targets. The workflow for the construction of 5mC-IncRNA
clusters and subsequent analysis is shown in Figure 1.

2. Materials and Methods

2.1. Data Acquisition and m5C-Related IncRNAs
Identification in BLCA. RNA sequence transcriptome data,
clinical information, and mutation data of BLCA were
downloaded from The Cancer Genome Atlas (TCGA)
(https://portal.gdc.cancer.gov/) database and patients with
missing OS values were excluded. IncRNA annotation file
of Genome Reference Consortium Human Build 38
(GRCH38) data was acquired from Ensembl database
(https://asia.ensembl.org) to annotate genome names and
to screen for mRNA and IncRNA. Based on the published
literature, a total of 31 m5C regulators were collected, com-
prising 10 writers (NSUN2, NSUN3, NSUN4, NSUNS5,
NSUN6, NSUN7, DNMT1, DNMT3A, DNMT3B, and
TRDMT1), 4 erasers (TET1, TET2, TET3, and TDG), and
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TaBLE 1: Basic clinical information of 409 cases in patients with
BLCA.

Clinical features The number of patients Percentage (%)

Age
>65 248 60.64
<65 161 39.36
Gender
Male 303 74.08
Female 106 25.92
Grade
Low 21 5.13
High 385 94.13
Unknown 3 0.73
Pathological stage
I 2 0.49
II 130 31.78
11 139 33.99
v 136 33.25
Unknown 2 0.49
T stage
TO 1 0.24
T1 3 0.73
T2 120 29.34
T3 194 47.43
T4 59 14.43
Unknown 32 7.82
M stage
MO 194 47.43
M1 11 2.69
Unknown 204 49.88
N stage
NO 237 57.95
N1 47 11.49
N2 76 18.58
Unknown 41 10.02

17 readers (ALYREF, YBX1, RAD52, MBD1, MBD2, MBD3,
MBD4, MECP2, NEIL1, NTHL1, SMUGI1, UHRF1, UHRF2,
UNG, ZBTB33, ZBTB38, and ZBTB4) [26-28]. Pearson’s
correlation analysis was applied to obtain m5C-related
IncRNA by the standard correlation coefficient (|cor|) >
0.3 and p < 0.001.

2.2. Construction and Verification of m5C-Related IncRNA
Risk Model. In order to identify m5C-related IncRNAs with
prognostic value, the entire TCGA set was randomized into
two sets named training and testing. The training set is used
to construct an m5C-related IncRNA risk model and the
testing set and the entire set to validate it. Then, we per-
formed a univariate Cox regression on the basis of the stan-
dard of p<0.01. Lasso analysis and multivariate Cox
regression were applied to establish a risk score. Calculating
coefficients (coef) of m5C-related IncRNAs correlated with

survival through multivariate Cox regression, each expres-
sion and coef of m5C-related IncRNAs were used to develop
a formula: Risk score = coef (IncRNA1 ~ 1) x expr (IncRNA
1 ~n). Subsequently, according to the median risk score,
all patients with BLCA were divided into two subgroups
(low-risk and high-risk groups).

2.3. Independence Prognostic Factor of the m5C-Related
IncRNA Risk Model. Expressions that included the whole
genome, mb5C-related coding genes, and m5C-related
IncRNAs of the risk model were carried out by principal
component analysis (PCA). The Kaplan-Meier (KM) sur-
vival curve was used to compare OS of patients in the low-
risk and high-risk groups. Univariate and multivariate Cox
regression analyses were performed to evaluate whether
prognostic pattern was independent of the other clinical var-
iables (age, gender, grade, and TNM stage), and the receiver
operating characteristic (ROC) curve and concordance index
(C-index) were executed to appraise the prognostic value of
clinicopathological characteristics. In light of independent
prognostic factors, the predictive capacity of the nomogram
was constructed and calibrated to make clinical diagnosis
and treatment decisions in the risk model.

2.4. Function Enrichment Analysis. To further acquaint the
biological pathways of gene sets in low- and high-risk
groups, Gene Set Variation Analysis (GSVA) was applied
to assess the significant gene sets in the BLCA cohort with
[logFC | >0.1 and p value < 0.05.

2.5. Analysis of Immune Cell Characteristics. ESTIMATE was
applied to estimate stromal and immune cells in malignant
tumor tissues based on expression data and calculate the
stromal score and the immune score of each sample [29].
LM22 [30], a gene signature matrix annotation for 22
immune cells, used to quantify the infiltration of immune
cell components, and the CIBERSORT R script were
acquired from the CIBERSORT website (http://cibersort
.stanford.edu/). Subsequently, the relative proportions of 22
immune cells in patients with BLCA were calculated by
100 permutations of the default signature matrix and the
root mean square error for each sample file. Finally, we
screened the differentially infiltrated immune cells across
the low- and high-risk groups and investigated whether
there was a correlation with risk grade.

2.6. Calculation of Tumor Mutation Burden (TMB). Sum-
ming the mutation data, the TMB was evaluated on the basis
of tumor-specific mutated genes. The KM curve was used to
map the survival of patients in the high and low tumor
mutation groups.

2.7. Statistical Analysis. The research was done using the R
package. The Kruskal-Wallis or Wilcoxon test was used for
comparing the differential expression between different
groups. The KM was used to estimate survival and all sur-
vival curves tested by log-rank test. Statistical significance
was established at p < 0.05. Pearson’s correlation coeflicient
was used to determine the correlation between IncRNAs
and immune cells.
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FIGURE 2: Risk model based on cancer-specific m5C-related IncRNAs in BLCA. (a) The LASSO coefficient profile of 443 OS-related
IncRNAs and perpendicular imaginary line were drawn at the value chosen by 10-fold cross-validation. (b) The tuning parameters (log
A) of OS-related IncRNAs were selected to cross-verify the error curve. (c) The Cox regression analysis were used to screen coexpression
networks of the 17 m5C-IncRNAs.

3. Results were downloaded from the TCGA database, including 411

tumor tissues and 19 normal tissues, of which 409 cases con-
3.1. 1775 IncRNAs Were Related to 31 m5C Genes in Patients ~ tained complete clinical information shown in Table 1. A
with BLCA. Transcriptome data of 430 patients with BLCA  total of 14,056 IncRNAs and 31 m5C gene expression levels
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F1GURE 3: The distribution of risk scores and survival status based on the prognostic value of the risk model of 17 m5C-related IncRNAs in

the training set.

were extracted. Then, we defined 1775 IncRNAs related to
each of the 31 m5C genes significantly (|PearsonR |>0.3
and p <0.001) (Table sl).

3.2. 17 m5C-Related IncRNAs Were Used to Construct a Risk
Model. Using univariate Cox regression analysis, the correla-

tion between 443 m5C-related IncRNAs and OS was obvious
in the training set (p < 0.05) (Table s2). In order to discern
the most available forecast markers and prognostic
indicators, 17 m5C-related IncRNAs independently
correlated with OS were obtained from Lasso and
multivariate Cox regression analysis, and a risk model was
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FIGURE 4: The distribution of risk scores and survival status based on the prognostic value of the risk model of 17 m5C-related IncRNAs in

the testing set.

constructed to predict clinical results (Figures 2(a)-2(c)).
Based on the risk score formula and the median risk value,
the training set samples were categorized into low- and
high-risk groups. The KM survival curves showed that
patients in the low-risk group had longer OS than in the
high-risk group (p <0.001), as well as the distribution of

risk grades, the corresponding survival status, and the
relative expression levels of the 17 m5C-related IncRNAs
suggested that the high risk index was accompanied by
high mortality(Figure 3). To inspect the prognostic
capacity of this risk model, the risk scores of the patients
in the testing set and the entire set were calculated by
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F1GURE 5: The distribution of risk scores and survival status based on the prognostic value of the risk model of 17 m5C-related IncRNAs in

the entire set.

means of the uniform formula. Figures 4 and 5
demonstrated that there is no significance of survival rate
among the training set, the testing set, and the entire set.
The OS of BLCA patients with higher risk scores was
shorter than that of those with lower scores. Then, we
verified that there is no difference in clinicopathologic

characteristics among the three sets (Table 2). According
to the subgroups classified by age, gender, and tumor stage,
the OS of the high-risk group continued to be worse
compared to the low-risk group (Figures 6(a)-6(f)).
Additionally, PCA was used to test the different distribu-
tion patterns of m5C between low- and high-risk groups on
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F1GURE 6: Kaplan-Meier curves of OS differences stratified by clinical characteristics between the high- and low-risk groups in the entire set.
(a and b) Kaplan-Meier curve showing that the OS of the low-risk group was higher than that of the high-risk group in patients both <65
and >65 years. (c and d) Kaplan-Meier curve showing that the OS of the low-risk group was higher than that of the high-risk group in male
and female patients. (e and f) Kaplan-Meier curve showing that the OS of the low-risk group was higher than that of the high-risk group in

stage I+1I and stage III+IV.



Disease Markers

All genes
»
150
100 4
50 4
o0
O 04
[=%}
50 J
5 100
4
100 - 50
-50 @4
1
-150 T T T T T -150 0s
—400 -300 —200 -100 0 100 200
PC1
@® Low risk
® High risk
(a) All genes
m5C-related IncRNAs
20
10
0
O -10
L]
-20 e o %0 100
%0 60
=30 70
Q
-20
-40 —— Z40
-50 0 50 100 150
PC1
® Low risk
@ High risk

(c) m5C-related IncRNAs

PC3

PC3

m5C genes

10

10

|
S
v
PC2

@® Low risk
® High risk

(b) m5C genes
Risk IncRNAs

® Lowrisk
@ High risk

(d) Risk IncRNAs

FIGURE 7: Principal component analysis (PCA) between low- and high-risk groups based on the signature of (a) all genes, (b) m5C genes, (c)

mb5C-related IncRNAs, and (d) risk genes.

the entire gene expression profile, the 31 m5C gene expres-
sion profile, the m5C-related IncRNAs expression profile,
and the m5C-related IncRNAs expression profile in the risk
model (Figures 7(a)-7(d)). Patients in the two risk groups
classified by 17 m5C-related IncRNAs were significantly dis-
tributed in different directions, whereas the distribution of
patients grouped in the other 3 methods was relatively scat-
tered, showing that the low- and high-risk groups can be dis-
tinguished by the prognostic signature.

3.3. The Risk Model Was an Independent Prognosis
Compared to the Other Clinical Features. Univariate and
multivariate Cox regression analysis revealed that age
(HR=1.034and 1.028, respectively, 95% CI: 1.018-1.050

and 1.012-1.045, respectively; p < 0.001), pathological stage
(HR =1.760and 1.740, respectively, 95% CI: 1.451-2.136
and 1.426-2.124, respectively; p <0.001), and risk scores
(HR=1.013and 1.013, respectively, 95% CI: 1.008-1.019
and 1.007-1.019, respectively; p < 0.001) were unrelated to
other clinicopathological parameters, including gender and
tumor grade while being independent prognostic factors
(Figures 8(a) and 8(b)). To verify the specificity and sensitiv-
ity of these important prognostic factors, the area under the
ROC curve (AUC) and the conformance index (C-index) of
the risk score were assessed. We found that the AUC of the
risk score was the highest value in all prognostic factors of
this test (AUC=0.734), and at 1, 3, and 5, years it was
0.734, 0.756, and 0.828, respectively (Figures 8(c) and
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stromal score, immune score, and ESTIMATE score.

8(d)). Similarly, the C-index curve proved this outcome
(Figure 8(e)). The above results indicated that the risk model
of 17 m5C-related IncRNAs was a significant independent
prognostic indicator for patients with BLCA. Subsequently,
the nomogram comprising the risk score was fabricated to

be a quantitative tool to predict the incidences of 1-, 3-,
and 5-year OS incidences (Figures 8(f) and 8(g)).

3.4. 110 Enrichment Pathways Were Significantly Different
between the Two Risk Groups. According to the GSVA
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method based on the transcriptome dataset, a total of 174
pathways were obtained, including signaling pathways, met-
abolic pathways, immune-related pathways, cell function-
related pathways, and cancer-related pathways. Then, 110
enrichment pathways with significant differences (Table s3)
were analyzed in the low- and high-risk groups. The
heatmap showed the results of the first 20 GSVA
(Figure 9). Abnormal activation of the Wnt/S-catenin
signaling pathway, gap junction, focal adhesion
transformation, etc., may be characteristics of tumor cells
in patients with high risk of BLCA.

3.5. The High-Risk Group Got a Higher ESTIMATE Score
Compared to the Low-Risk Group. In view of the results of
function enrichment, we conjectured that the tumor micro-
environment (TME) of BLCA is affected by m5C-related
IncRNAs. Then, the ESTIMATE algorithm was used to esti-
mate the purity of tumor tissue in patients with BLCA. Stro-
mal score, immune score, and ESTIMATE score were higher
in the high-risk group (Figure 10(a)), indicating that the
higher the number of immune cells and stromal cells in

the risk groups, the lower the survival probability
(Figure 10(b)).

3.6. Regulatory T Cells, CD8 T Cells, Plasma Cells, and
Activated Dendritic Cells Showed Good Prognosis with a
High Expression. Using the CIBERSORT tool in the two risk
groups, we found that the expression levels of immune cells
were higher in the low-risk group including plasma cells,
regulatory T cells, CD 4 T cells, gamma delta T cells, mono-
cytes, CD 8 T cells, and activated dendritic cells; however,
resting CD4 memory T cells, MO macrophage, M1 macro-
phage, M2 macrophage, and neutrophils had lower expres-
sion levels than in the high-risk group (Figure 11(a)).
Among them, regulatory T cells, CD8 T cells, plasma cells,
and activated dendritic cells predicted a good prognosis in
high proportion (R = —0.24, -0.14,—-0.27, and — 0.15, respec-
tively; p <0.05), while neutrophils, macrophage MO, and
macrophage M2  showed the opposite results
(R=0.22,0.17,and 0.25, respectively; p<0.05)
(Figures 11(b)-11(h)). Simultaneously, the correlation
between 17 m5C-related IncRNAs and immune cells is dis-
played in Figure 12.
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FIGURE 12: Heatmap of correlation between 17 m5C-related IncRNAs and 22 immune cells (*p < 0.05, **p <0.01, and ***p < 0.001).

3.7. The TMB Was Negatively Related to the Risk Score. Ana-
lyzing the mutation data, the top 20 driver genes with high
alteration frequency between the low- and high-risk groups
are shown in Figures 13(a) and 13(b). TP53 and TTN had
higher mutations in tumor samples of BLCA. We also found
that the correlation between TMB and risk score was nega-
tive (Figure 13(c)). The TMB in the low-risk group signifi-
cantly exceeded that in the high-risk group (Figure 13(d)),
as well as the higher the TMB of patients in the risk groups,
the lower the mortality rate (Figures 13(e) and 13(f)).

4. Discussion

BLCA has attracted the public attention due to its high mor-
bidity and mortality. In addition to traditional treatment
methods such as surgery and chemotherapy, more and more
attention has been paid to the precise diagnosis and treat-
ment in recent years. Continuous clarification of the tumor-
igenesis and development mechanism and the discovery and
investigation of therapeutic targets are conducive to the for-
mulation of more precise treatment plans and provide a reli-
able basis for the precise prognosis of BLCA. There are more

than 150 types of RNA modification methods reported,
among which m1A, m6A, m5C, etc., are the most common
and play an important role in the occurrence and develop-
ment of tumors. Guo et al. has found that YTHDF]1 regulates
the translation of eIF3C in an m6A-dependent manner,
enhances protein synthesis, and promotes tumorigenesis of
ovarian cancer cells [31]. The study by Whongsiri et al.
[32] found that m5C was decreased in BLCA tissues, but
the expression of 8-OHdG, H3K9me3, and HP1« increased,
indicating that the bladder tissues of BLCA patients have
overall DNA hypomethylation, increased oxidative stress,
and inhibitory chromatin changes.

The abnormal expression of IncRNA plays an important
role in promoting tumor epithelial-mesenchymal cell trans-
formation, tumor cell proliferation, regulating tumor-
immune microenvironment, etc., to change the process of
tumorigenesis and development. IncRNA RP11-390F4.3 is
induced by hypoxia/HIF-1«a and is essential for hypoxia-
induced EMT and metastasis by activating multiple EMT
regulators [33]. Suppressing the expression of IncRNA-H19
can reduce the invasive behavior of glioma cells [34].
GAS8-AS1 overexpression inhibits GBM cell proliferation
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and invasion by downregulating NEAT1 and achieves the
purpose of inhibiting the proliferation of glioblastoma cells
[35]. SATB2-AS1 binds directly to WDR5 and GADD45A,
cis-activating SATB2 (special AT-rich binding protein 2)
transcription by mediating histone H3 lysine 4 trimethyla-
tion (H3K4me3) deposition and DNA demethylation of
the promoter region of SATB2, thus suppressing tumor
metastasis and affects the microenvironment of colorectal
cancer tumor-immune cells [36]. With the continuous deep-
ening of IncRNA research, there have been more and more
studies on IncRNA methylation modification in recent years.
Li et al. [37] investigated the role and mechanism of m6A
modification of IncRNA KCNQ1 overlapping transcript 1
(KCNQ1OT1) in the progression of laryngeal squamous cell
carcinoma (LSCC), suggesting that ALKBH5-mediated m6A
modification of KCNQIOT1 is triggered by the upregulation
of HOXA9 LSCC development. Liu et al. [38] identified the
differentially expressed IncRNA in gastric cancer and found
that the m6A modification of THAP7-AS1 by METTL3
enhanced its expression, and its high expression was associ-
ated with positive lymph node metastases and a poor prog-
nosis in patients with gastric cancer. Bo et al. [39] found
that ILF3-AS1 increased the level of ILF3 m6A by recruiting
the N6-methyladenosine (m6A) RNA methyltransferase
METL3. Yan et al. [40] observed that FOXC2-AS1 recruits
the RNA methyltransferase NSUN2 to FOXC2 mRNA,
increases its level of m5C, and associates with YBX1, indicat-
ing that FOXC2-AS1 acts as an oncogenic IncRNA by stabi-
lizing FOXC2 mRNA in an m5C-dependent manner.
However, there are currently few reports on the study of
mb5C-related IncRNA.

In this study, 430 cases of BLCA tissue data were
extracted by TCGA. After univariate Cox and multivariate
Cox analysis, 17 m5C-related IncRNAs independently
related to OS were screened and a risk model was established
for m5C-related IncRNAs. The 4 analysis, univariate Cox,
multivariate Cox, C-index, and ROC curve, confirmed the
risk model with good prognostic and predictive values that
could be independent of other clinical characteristics. At
the same time, nomograms for quantitatively predicting
the prognosis of patients at 1, 3, and 5 years were also drawn.
Of the 174 pathways included in the GSVA analysis, 110
were significantly different in the high-risk and low-risk
groups. We believe that the abnormal activation of the
Wnt/f-catenin signaling pathway, the transformation of
focal adhesions, and gap junctions may be the characteristics
of tumor cells in the high-risk group of BLCA and may affect
the tumor microenvironment. It has been confirmed that
Wnt/f-catenin signaling and TCF1 are highly activated
and expressed in undifferentiated CD8+ T and memory
CD8+ T cells and that TCF1 is negatively regulated when
naive CD8+ T cells differentiate into effector CD8+ T cells
[41]. FAK has catalytic activity in cancer cells, and its cellu-
lar localization regulates the transcription of chemokines,
and these chemokines promote a favorable tumor microen-
vironment by inhibiting destructive host immunity. FAK
activity in TME cells may also increase angiogenesis and vas-
cular permeability [42]. After the ESTIMATE score, the
high-risk group showed a poor prognosis with a higher
score. The CIBERSORT score showed that the expression
levels of regulatory T cells, CD8 T cells, plasma cells, and
activated dendritic cells in immune cells were negatively
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TaBLE 2: Detail of clinical characteristics in different sets.

Covariates Entire set ~ Testing set Train set P value

Age 0.7456
<65 159 (39.45%) 81 (40.5%) 78 (38.42%)
>65 244 (60.55%) 119 (59.5%) 125 (61.58%)

Gender 0.3189
Female 105 (26.05%) 57 (28.5%) 48 (23.65%)
Male 298 (73.95%) 143 (71.5%) 155 (76.35%)

Grade 0.2809
High 380 (94.29%) 190 (95%) 190 (93.6%)
Low 20 (4.96%) 7 (3.5%) 13 (6.4%)
Unknown 3 (0.74%) 3 (1.5%) 0 (0%)

Stage 0.5538
Stage I 2 (0.5%) 1 (0.5%) 1(0.49%)
Stage II 128 (31.76%) 60 (30%) 68 (33.5%)
Stage III 138 (34.24%) 75(37.5%)  63(31.03%)
Stage IV 133 (33%) 62 (31%) 71 (34.98%)
Unknown 2 (0.5%) 2 (1%) 0 (0%)

T stage 0.2605
TO 1 (0.25%) 0 (0%) 1 (0.49%)
T1 3 (0.74%) 1 (0.5%) 2 (0.99%)
T2 118 (29.28%) 56 (28%) 62 (30.54%)
T3 191 (47.39%) 92 (46%) 99 (48.77%)
T4 58 (14.39%) 36 (18%) 22 (10.84%)
Unknown 32 (7.94%) 15 (7.5%) 17 (8.37%)

M stage 0.9733
Mo 193 (47.89%) 95 (47.5%) 98 (48.28%)
M1 11 (2.73%) 6 (3%) 5 (2.46%)
Unknown 199 (49.38%) 99 (49.5%) 100 (49.26%)

N stage 0.1891
NoO 234 (58.06%) 125 (62.5%) 109 (53.69%)
N1 46 (11.41%) 22 (11%) 24 (11.82%)
N2 75 (18.61%) 36 (18%) 39 (19.21%)
N3 7 (1.74%) 1 (0.5%) 6 (2.96%)
Unknown 41 (10.17%) 16 (8%) 25 (12.32%)

correlated with the prognostic results. Neutrophils, MO mac-
rophages, and M2 macrophages were negatively correlated
with the prognosis. The prognosis was positively correlated.
By analyzing the mutation data of BLCA patients, TMB was
negatively correlated with the mortality of BLCA patients.
17 m5C-related IncRNAs were used to construct risk
models. Among them, there are some related studies on
PCAT7, LINCO01018, and HDAC4-AS1 in tumorigenesis
and development. PCAT7 has been shown to induce malig-
nant progression, metastasis, and poor prognosis of breast
cancer [43], prostate cancer [44], nonsmall cell lung cancer
[45], and nasopharyngeal carcinoma [46]. And LINC01018
shows tumor suppressor effect in acute myeloid leukemia
[47] and hepatocellular carcinoma [48]. HDAC4-AS1 regu-
lates HIF-1a under hypoxic conditions to inhibit the tran-
scriptional activity of HDAC4 [49], thereby helping to

Disease Markers

reduce the toxicity of chemotherapeutics and inhibit tumor
growth [50].

5. Conclusion

Our study provided clues for prognostic prediction in
patients with BLCA, which may help furtherly elucidate
the process of m5C-regulated IncRNAs. Moreover, the risk
model for BLCA was translated into a nomogram, providing
a quantitative and convenient prognostic prediction tool for
clinicians, which possibly improves the ability to individual-
ize treatment for patients with BLCA.
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