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Purpose: To investigate the correlation between choroidal thickness and myopia
progression using a deep learning method.

Methods: Two data sets, data set A and data set B, comprising of 123 optical coherence
tomography (OCT) volumes, were collected to establish the model and verify its clinical
utility. The proposed mask region-based convolutional neural network (R-CNN) model,
trained with the pretrained weights from the Common Objects in Context database as
well as the manually labeled OCT images from data set A, was used to automatically
segment the choroid. To verify its clinical utility, the mask R-CNNmodel was tested with
data set B, and the choroidal thickness estimated by themodel was also used to explore
its relationship with myopia.

Results: Compared with the result of manual segmentation in data set B, the error of
the automatic choroidal inner and outer boundary segmentation was 6.72 ± 2.12 and
13.75± 7.57 μm, respectively. Themeandice coefficient between the region segmented
by automatic and manual methods was 93.87% ± 2.89%. The mean difference in
choroidal thickness over the Early Treatment Diabetic Retinopathy Study zone between
the two methods was 10.52 μm. Additionally, the choroidal thickness estimated using
the proposed model was thinner in high-myopic eyes, and axial length was the most
significant predictor.

Conclusions: The mask R-CNN model has excellent performance in choroidal segmen-
tation and quantification. In addition, the choroid of highmyopia is significantly thinner
than that of nonhigh myopia.

Translational Relevance: This work lays the foundations for mask R-CNN models that
could aid in the evaluation ofmore intricate changes occurring in chorioretinal diseases.

Introduction

High myopia is one of the leading causes of low
vision worldwide. Its prevalence is 2.4% in the United
States,1 4.2% in Taiwan,2 and 8.2% in Japan.3 Its
progression is associatedwith progressive elongation of
the eyeball, resulting in a variety of secondary fundus
changes that may lead to visual impairment, including
retinal detachment, myopic macular schisis, macular
hole, choroidal neovascularization, and zonal areas of
chorioretinal atrophy.4 In highly myopic eyes, the earli-

est changes begin in the choroid, and the thickness of
the choroidmay become one of the determinants in the
pathogenesis of vision loss.5,6

Optical coherence tomography (OCT) using
enhanced depth imaging (EDI) has been used in
many studies to measure choroidal thickness in normal
populations and in eyes with ocular diseases, includ-
ing age-related macular degeneration, polypoidal
choroidal vasculopathy, central serous chorioretinopa-
thy, and myopic maculopathy.7 Unlike the retina,
choroidal structures are not found in distinct, ordered
layers, and they lack contrasting reflective properties.
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The heterogeneous texture of tissues, artifact speckles,
and various noises often cause difficulties in the extrac-
tion of accurate boundaries of the choroid layer in
OCT images. Moreover, the evaluation of the choroid
can be subjective in nature, as it relies on the clinician’s
familiarity with its characteristic patterns. Therefore,
evaluation accuracy might be improved significantly if
manual segmentation is performed by an experienced
ophthalmologist.

Manual segmentation of the choroid from OCT
images is a time-consuming procedure for the clini-
cian. Deep learning methods for choroid segmentation
have been developed in recent years that have shown
promising results. For example, Sui et al.8 proposed a
deep convolutional neural network (CNN) in choroid
segmentation by learning graph-edge weight, and the
results outperformed conventional hand-crafted ones.
Masood et al.9 combined morphologic operations and
CNN to calculate choroidal thickness, which showed
high precision and significantly reduced error rates.
He et al.10 proposed an improved CNN model-based
method that performs well on a small data set, and
the results showed higher robustness and credibility.
In addition, other neural networks, such as a U-shape
convolutional network (U-Net), which is considered
the most widely applicable architecture for medical
image segmentation, has also been developed for OCT
image segmentation.11,12

Numerous deep learning methods have been devel-
oped for choroid segmentation in OCT images.9–11,13
However, few studies have applied the deep learning
model in the clinical setting. Being a major vascular
layer of the eye, the choroid plays an important role
in ocular health. Accurate measurement of choroidal
thickness is an essential step in monitoring disease
onset and progression that lead to choroidal thinning.
In this study, we propose a novel and practical deep
learning model, mask region-based CNN (R-CNN),
to segment the choroid boundary and measure the
choroidal thickness. Furthermore, we aimed to use
another clinical data set to verify its clinical utility in
exploring choroidal changes in myopia progression.

Method

This study was approved by the Institutional
Review Board of Taichung Veterans General Hospi-
tal (CE21201B). The need for informed consent from
study participants was waived. The study protocol
adhered to the tenets of the Declaration of Helsinki.
All collected OCT images underwent deidentification
before further processing.

Data Acquisition

We retrospectively collected OCT images from
patients in the Taichung Veterans General Hospital
from January 2017 to December 2020. OCT images
were obtained using spectral-domain OCT (Spectralis;
Heidelberg Engineering, Heidelberg, Germany) with
EDI methods that provided more a detailed image
of the choroid layer as compared with conven-
tional spectral-domain OCT. We measured the axial
length using an ocular biometry system (IOL Master;
Carl Zeiss Meditec, Oberkochen, Germany). Raw
images were stored in a centralized workstation, and
all collected OCT images underwent deidentification
before additional processing. We collected two data
sets, data set A and data set B, at different times by
different doctors. Data set A was collected by W.-P.
Hsia, and data set B was collected by H.-J. Chen.
Data set A was used to establish the model, and data
set B was used to evaluate the performance of the
model in clinical application. There were no overlap-
ping cases between the two data sets. Eyes in data set
B were further divided into a high-myopia group and
a non–high-myopia group based on their axial length.
In the high-myopia subgroup, axial length was defined
as being longer than 26 mm.14 The eligibility criteria
for data set B were as follows: (1) age range from 40
to 65 years, (2) no ocular pathology other than age-
related cataract, and (3) no diabetesmellitus. The exclu-
sion criteria were as follows: (1) the presence of ocular
diseases that could influence the normal contour of the
retina and choroid layer (i.e., intraretinal fluid, subreti-
nal fluid, large drusens, or tumor), (2) previous vitre-
oretinal surgery (i.e., for retinal detachment, epireti-
nal membrane, macular hole, or vitreous hemorrhage),
(3) concomitant glaucoma, and (4) poor-quality OCT
images.

All eyes were assessed using the spectral-domain
OCT with EDI mode consisting of a raster of 25
horizontal line scans over the Early Treatment Diabetic
Retinopathy Study (EDTRS) area (6000 × 6000 μm
centered on the fovea). Each acquired image measured
480 × 480 pixels (width × height) with a vertical scale
of 4 μm per pixel and a horizontal scale of 11 μm per
pixel, corresponding to an approximate physical area
of 5.3 × 1.9mm.

Choroidal Thickness Definition and Ground
Truth Labeling

We defined choroidal thickness as the axial distance
between the choroid inner boundary (CiB) and
the choroid outer boundary (CoB) (Fig. 1). The
CiB is formed by Bruch’s membrane, which is a
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Figure 1. Physiologic structure of the CiB and the CoB.

thin layer derived in part from the retinal pigment
epithelium and the choriocapillaris. The CoB is the
low-contrast line extending along the choroid–sclera
interface. Ground truth was specified by the ophthal-
mologist at Taichung Veterans General Hospital. The
specialist manually segmented CiB and CoB on the
OCT images. Thus, these manually segmented images
were used as ground truth in the proposed method.
Furthermore, the manually labeled OCT images from
data set A were also used for model training described
subsequently.

Deep Learning Algorithms and Transfer
Learning

As shown in Figure 2, the segmentation of the
choroidwas performed using amaskR-CNN.MaskR-
CNN is a small, flexible generic object instance segmen-
tation framework. It is extended on the basis of faster
R-CNN and provides a more high-quality segmen-
tation result for each target.15 Mask R-CNN has a
two-staged architecture. In the first stage, to determine
the possible location of the choroid, the backbone
network–extracted feature map from the input OCT
and output from the backbonewas passed to the region
proposal network. In the second stage, the fully convo-
lutional network (FCN) extracted a feature from the
fixed-sized feature map and masks for the choroid.

In our proposed model, we used ResNet50 and
feature pyramid networks (FPNs) as the backbone.
ResNet50 is a residual learning framework used to
extract feature from images and solve the problem
of deep network degradation as increasing network
depth.16 However, the features would lose the location
information at up-sampling. The FPN was another
method for extending the backbone network. It
combined high-resolution information of low-level
features and high-semantic information of high-level
features to detect the object of different scales.17 Hence,
mask R-CNN used ResNet50 to generate the features
and added FPN to improve the problem of losing the
location information. The mask R-CNN architecture
and other related details are described in Appendix 1.

Training data are the primary and most important
data that help the machine to learn and make the
prediction. However, annotating the choroid bound-
ary not only is tedious, costly, and time-consuming but
also requires specialty-oriented knowledge and skills.
Therefore, a large number of annotated OCT images

Figure 2. The schematic architecture of mask R-CNN. RPN, region proposal network.
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are not easily accessible. To better grasp the image
features and thereby improve segmentation accuracy,
we performed transfer learning to transfer the weights
from the Common Objects in Context database.18
Transfer learning is a commonly used technique when
developing medical imaging CNN models due to a
small data set.19–21 Although medical image data sets
are different from natural scene image data sets, the
low-level features are universal to most of the image
analysis tasks. As for frozen stages during transfer
learning, the default is to turn off one layer. Its function
is to freeze all the convolutional layers of the pretrained
model. Only the training of our own customized fully
connected layers is necessary to enable the model to
quickly grasp the important features. The transferred
parameters might serve as a powerful set of features,
reducing the need for a large data set, as well as the
training time andmemory cost. In addition to transfer-
ring the weights from the Common Objects in Context
database, we also used all the manually labeled OCT
images from data set A for the model training.

Postprocessing

The implementation of mask R-CNN generates
three branches—classification, bounding box, and
mask—for each instance of an object. In our study,
we removed the classification branches and the bound-
ing box, and the remaining mask branch was used
to obtain the choroidal inner boundary and choroidal
outer boundary. During the automatic segmentation
process, unreasonable dents on the boundaries were
occasionally noted, as shown in Figure 3. To address
this problem, we proposed a method to create a vector
for each side and then used the cross-product of
adjacent sides to test the convexity. The first concave

polygon of the corner would connect to the next x-axis
of the corner, and if an unreasonable dent is detected,
it is redrafted. The proposed postprocessing procedure
was performed to connect the first concave polygon of
a corner with the next x-axis of a corner, thereby filling
the unreasonable dents. The postprocessing procedure
was practical for refining the sketching results using the
proposed segmentation models.

Evaluation Metrics

To test the results, the error calculation matrix
was used to compute the error rate of the choroidal
boundary segmentation on the test data set. The error
was defined as the difference in the absolute distance
between the manual and automatic choroidal bound-
ary segmentations. After calculating the error of upper
and lower borders, the dice similarity coefficient (DSC)
was also created to measure the similarity between the
segmentation results of the proposed method and the
ground truth. The DSC was computed using the test
data set. The coefficient was calculated as follows:

DSC = 2 |A ∩ B|
|A| + |B|

where A and B are the segmented choroidal region and
the manually labeled choroidal region, respectively.

Application of the Proposed Model

To evaluate the mask R-CNN model in the clini-
cal settings, data set B, which was composed of 2325
B-scans from 93 volumes, was collected and analyzed
by manual and automatic methods, respectively, to test
the segment result (Fig. 4). Manual segmentation was
defined as the ground truth. In addition, to investi-

Figure 3. One case with an unreasonable dent in the boundary. (A) Manual segmentation result. (B) Automatic segmentation result with
erroneous kink (arrow) in the boundary before the postprocessing procedure. (C) Automatic segmentation result after the postprocessing
procedure.
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Figure 4. Sketching result of one case. (A) Original image. (B) Manual segmentation result. (C) Automatic segmentation result.

gate the association between choroidal thickness and
myopia progression, we used the results from both
the manual and automatic measurements for further
analysis.

Statistical Analysis

The data obtained were analyzed using SPSS
25 (SPSS, Inc., Chicago, IL, USA). We used the
Kolmogorov–Smirnov test to determine whether the
variable had a normal distribution or not. Descrip-
tive statistics were used to compare various character-
istics between groups. Categorical data were presented
as number and continuous data as means ± standard
deviations. We used Pearson’s χ2 test for comparisons
of qualitative variables. Student’s t-test and theMann–
Whitney U test were used for comparisons of quanti-
tative variables between the two groups. Pearson’s
correlation analysis was used to assess the relation-
ship between the choroidal thickness as estimated by
automatic and manual segmentation and to evaluate
the relationship between axial length and choroidal
thickness. In addition, multiple linear regression, using
the “enter” method, was performed to examine the
influence of demographic (age and sex) and biomet-
ric ocular factors (axial length) on the measurement
of choroidal thickness.22 The Bland–Altman plot was
used to assess the agreement between the automatic
and manual methods.23 A P value of <0.05 was
accepted as the threshold of statistical significance.

Results

Performance of the Proposed Model

The 30 OCT volumes, composed of 750 B-scans
from data set A, were used to establish and test

the error of the proposed model for an automatic
sketching scheme. Threefold cross-validation was used
to estimate the performance of the proposed model.
Twenty-five OCT images were obtained for each
volume. The 30 volumes taken from 30 eyes were
equally divided into three subsets (10 eyes each) in
threefold cross-validation. Each subset served as the
test set for the remaining two subsets pooled together
for training. To assess the model’s performance, the
results of the automatic segmented choroidal outer
boundary from each test set were compared with that
of the manually labeled choroidal outer boundary. The
performance over all test sets was then averaged. The
average error of choroidal inner and outer boundary
segmentation in data set A was 5.89 ± 2.25 μm and
10.96 ± 10.15 μm, respectively.

Proposed Model in Clinical Application

Data set B consisted of 93 volumes taken from 93
eyes with a total of 2325 B-scans and was used to prove
the clinical utility of the proposed model. The mean
patient age was 52.46 ± 4.87 years. Table 1 presents
a baseline character of data set B. There were 51 eyes
classified into the non–high-myopia group and 42 eyes
classified into the high-myopia group. We found no
significant difference between the two subgroups in age
or sex distribution (P = 0.608 and P = 0.472, respec-
tively).

As presented in Table 2, the mean error of the
choroidal inner and outer boundary segmentation in
data set B was 6.72 ± 2.12 μm and 13.75 ± 7.57 μm,
respectively. After calculating the error of boundary
segmentation, the DSC was also created to measure
the similarity of the choroidal segmented regions
between the proposed method and the ground truth.
The mean DSC over 93 volumes in data set B was
93.87% ± 2.89%.
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Table 1. Demographic of Baseline Characteristics of Two Groups Divided by Axial Length

Demographic Feature Non–High-Myopia Group High-Myopia Group P Value

No. of eyes (patients) 51 (47) 42 (34) 0.608
Men 18 17
Women 33 25

Age, y 0.472
Median (IQR) 53 (49–55) 54 (49–56)
Range 41–64 42–64

Axial length, mm <0.001
Mean ± SD 24.32 ± 1.07 27.69 ± 1.17
Range 22.14–25.98 26.05–30.13
IQR, interquartile range.

Table 2. Performance of Proposed Model in Data Set B

Characteristic Total, Mean ± SD
Non–High-Myopia
Group, Mean ± SD

High-Myopia
Group, Mean ± SD P Value

Average CT by automatic segmentation, μm 173.06 ± 57.06 204.83 ± 46.29 134.84 ± 43.83 <0.001
Average CT by manual segmentation, μm 184.00 ± 61.19 218.82 ± 49.32 142.12 ± 45.93 <0.001
Average error for inner choroidal boundary segmentation, μm 6.72 ± 2.12 6.76 ± 2.17 6.69 ± 2.07 0.421
Average error for outer choroidal boundary segmentation, μm 13.75 ± 7.57 15.07 ± 8.38 12.17 ± 6.10 <0.001
Mean DSC between automatic and manual segmented regions, % 93.87 ± 2.89 94.81 ± 1.98 92.74 ± 3.37 <0.001

CT, choroidal thickness.

Figure 5. (A) Scatterplot of choroidal thickness measurement between automatic and manual methods. (B) Bland–Altman plot of
automated choroidal thickness measurements minus manual choroidal thickness measurements over the EDTRS region.

The mean choroidal thickness over the EDTRS
region was 173.06 ± 57.06 μm using the automatic
method, compared with 184.00 ± 61.19 μm using
the manual method, with a mean difference of 10.51
± 8.35 μm. The difference in mean choroidal thick-
ness measurements between the two methods is illus-
trated in the Bland–Altman plot in Figure 5, which
shows only 3.2% (3/93) of themeasurement points were
located outside the 95% limits of agreement (95% limits
of agreement, −26.88 to 5.86 μm).

Determination of Factors Associated with
Choroidal Thickness Measured by Proposed
Model

Choroidal thickness measured by automatic
segmentation using the mask R-CNN model was
significantly thinner in the high-myopia group (mean,
134.84 ± 43.83 μm) as compared with the non–
high-myopia group (mean, 204.83 ± 46.29 μm, P <

0.001). The average choroidal thickness estimated by
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Table 3. Multivariate Linear Regression Analysis to Determine the Factors Related to the Choroidal Thickness
Estimated by the Proposed Model

Unstandardized Coefficients Standardized Coefficients

Predictor Variable B SE β Lower Bound Upper Bound 95% CI for B, P Value

Sex −10.342 7.011 −0.097 −24.273 3.589 0.144
Age −1.613 0.701 −0.151 −3.006 −0.220 0.024
Axial length −20.195 1.696 −0.784 −23.565 −16.826 <0.001

The final regression model had an adjusted R2 = 0.606. CI, confidence interval;
SE, standard error.

automatic segmentation was then used to evaluate
its association with sex, age, and axial length. Table 3
summarizes the results of the multiple linear regression
analysis of the choroidal thickness. In the multivariate
linear regression, the choroidal thickness estimated by
automatic segmentation was associated with age (β
= −0.151, P = 0.024) and axial length (β= −0.784,
P < 0.001). In addition, we also performed corre-
lation analysis between axial length and choroidal
thickness estimated by automatic segmentation, which
showed a strong inverse correlation (r = −0.765,
P < 0.001).

Discussion

Accurate segmentation of the choroid is impor-
tant for exploring choroid-related disease. Deep learn-
ing for fully automated segmentation method can
provide amore suitable approachwith a great prospect.
In our study, we proposed a new automatic choroid
segmentation method based on the mask R-CNN
model and compared the results with manual segmen-
tation, which was defined as the ground truth. The
result showed the mask R-CNN model has a good
prediction rate of the choroidal boundary and the
region segmented by automatic and manual methods
with high similarity. Furthermore, choroidal thickness
estimated by automatic segmentation was associated
with increasing myopia, aging, and elongation of axial
length.

In the computer age, one of the most important
directions for medical research is to build a large
database by collecting clinical data from patients.
Artificial intelligence (AI) is a concept that automat-
ically analyzes existing information, and deep learn-
ing is the method by which AI is practiced. There are
many kinds of network learning methods for medical
image analysis, such as CNN, FCN, andmaskR-CNN.

CNN is one class of a deep neural network and is most
commonly applied for analysis of visual imagery.24
This works by extracting features from the images and
recognizing objects through feature learning. As the
number of layers of the neural network increases, the
features that can be extracted are more complex, which
may consequently consume enormous time and require
a lot of computer resources to work efficiently. Thus,
Long et al.25 proposed the FCN neural network for
image semantic segmentation. This contains convolu-
tion layers and can classify each pixel of the image from
abstract features with a faster process speed. However,
its segmentation is not instance level and is not efficient
enough. Recently, the image segmentation technique
called mask R-CNN has been proposed to solve an
instance segmentation problem and is widely used in
medical image analysis.26

To highlight the potential advantages of the mask
R-CNN model, we compare our model with U-Net,27
another state-of-the-art deep learning method. The
architecture and other relevant details of U-Net are
described in Appendix 2. The details of the compari-
son in boundary error in choroidal segmentation and
dice coefficient over the entire data set B (93 volumes
with a total of 2325 B-scans) are given in Table 4. Our
proposed method showed smaller error in choroidal
boundary segmentation and larger dice coefficient than
the U-Net method, which emphasizes the effectiveness
of the mask R-CNN model.

To date, many deep learning methods have been
developed for choroidal segmentation despite few of
them exploring the clinical utility of the models.8–10
Thinning choroid, a significant structural change
preceding the development of myopia,5,6,28 has been
shown to be related to decreased vision.29 With the aim
of determining the value of deep learning in automatic
segmentation of the choroid and understanding the
association between choroidal thickness and myopia
progression, we divided our study into two phases. In
the first phase, we proposed a model based on a deep
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Table 4. Comparison in Upper Border Error, Lower Border Error, and Dice Coefficient

Method
Upper Border Error,
Mean ± SD, μm

Lower Border Error,
Mean ± SD, μm

Dice Similarity Coefficient,
Mean ± SD, %

Proposed method 6.72 ± 2.12 13.75 ± 7.57 93.87 ± 2.89
U-Net 7.13 ± 10.05 21.84 ± 18.80 92.78 ± 4.16

learning algorithm,maskR-CNN. In the second phase,
we tested the performance of the mask R-CNN model
and proved its clinical utility with another data set, data
set B.

In data set B, we found that the mean differ-
ence in the choroidal thickness measurements over the
ETDRS region between the two methods was 10.34
μm. In our experience, this difference is small and
likely to be clinically insignificant. A study by Rahman
et al.30 has reported that interobserver variability in
choroidal thickness measurements may result in differ-
ences of up to 32 μm. Moreover, this difference was
also much smaller than diurnal variation in choroidal
thickness. A study by Tan et al.31 reported that signif-
icant diurnal variation was noted in choroidal thick-
ness among healthy adults, and the mean amplitude
was 33.7 μm. Regarding the segmentation errors in
the choroidal outer boundary, our proposed model
performed slightly better in the high-myopia subgroup.
The possible reason for the lower error may be that
the choroid–sclera interface wasmore clearly and easily
visible in the high-myopia subgroup.32

In addition to testing the performance of our
proposed model, we also highlighted the importance
of choroidal thickness in myopia progression. A 2-
year longitudinal observational study by Li et al.33
found that myopic participants with a thinner choroid
tended to have a higher likelihood of progression
of myopic maculopathy. The exact mechanism of
why eyes with high myopia develop degenerative and
atrophic changes remains unclear. The mechanical
stretch of the retina and ischemia by prolonged axial
length, which may decrease the density and diameter
of the choriocapillaris, were the most probable reasons
for the development of myopic maculopathy.34 Apart
from the axial length, age was also correlated with
myopia choroidal thickness. The possible pathogene-
sis that can explain the relationship between aging and
choroid thinning is that choroidal vessels are prone
to be affected by systemic conditions, such as hyper-
tension and hyperlipidemia, and are likely to undergo
atherosclerotic and aging changes. These microvas-
cular changes may result in a decrease in choroidal
thickness.35,36 Besides, in contrast to prior studies that
measured only the perpendicular distance between

Bruch’s membrane and the choroidal outer boundary
at a few points to represent the average choroidal thick-
ness,37 we measured the average choroid thickness over
the EDTRS area.

AI has been shown to be capable of helping clini-
cians to make an accurate assessment and decisions
in many ways. It is worth noting that the mask R-
CNN model we proposed showed great performance
for delineating the association between choroidal thick-
ness and myopia progression. However, the appli-
cation of a deep learning model for exploring the
relationship between choroidal thickness and numer-
ous pathologic eye diseases, as well as changes in
choroidal thickness after treatment with intravitreal
anti–vascular endothelial growth factor injections, has
not been explored. Moreover, some of the limita-
tions of our study should be highlighted, as they
should potentially be addressed in future research.
First, the method we used to segment the choroid is
the two-dimensional (2D) method, which might have
caused the segmentation of adjacent 2D slices to be
discontinuous. The three-dimensional (3D) segmen-
tation method, which directly uses the full volumet-
ric image represented by a sequence of 2D slices,
might achieve better continuity across adjacent 2D
slices.38 However, 3D segmentation using deep learn-
ing techniques requires significantly higher computa-
tion power and memory overhead than sequential 2D
image analyses. In the future, suitable 3D segmenta-
tionmethods based on deep learning techniques should
be developed to automatically segment the choroid
and further improve segmentation quality. Second,
we segmented and quantified the choroidal thickness
without calculating the choroidal vascularity index.
The choroidal vascularity index has been discussed in
numerous studies with regard to its potential appli-
cations in the evaluation and management of several
disorders of the retina and the choroid.39,40 Third,
we only included eyes with good-quality OCT images,
which might have contributed to potential selection
bias.

In conclusion, AI has become an indispensable
method for solving complex problems. In this study,
we proposed the mask R-CNN model to evaluate
the choroidal thickness in OCT images. The results
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showed that the model has excellent performance for
segmentation and quantification of the choroid. In
addition, the mask R-CNN model is feasible for use
in the assessment of choroid change in myopia. Future
research is recommended to investigate whether the
proposed deep learning model, mask R-CNN, can be
used to realize the pathogenesis of additional chori-
oretinal diseases, to reflect disease activity, and to help
the clinician make better treatment choices for disease
control.
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