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Objective: Vagus nerve stimulation (VNS) is an adjunctive and well-established treatment

for patients with drug-resistant epilepsy (DRE). However, it is still difficult to identify

patients who may benefit from VNS surgery. Our study aims to propose a VNS outcome

prediction model based on machine learning with multidimensional preoperative heart

rate variability (HRV) indices.

Methods: The preoperative electrocardiography (ECG) of 59 patients with DRE

and of 50 healthy controls were analyzed. Responders were defined as having at

least 50% average monthly seizure frequency reduction at 1-year follow-up. Time

domain, frequency domain, and non-linear indices of HRV were compared between

30 responders and 29 non-responders in awake and sleep states, respectively. For

feature selection, univariate filter and recursive feature elimination (RFE) algorithms were

performed to assess the importance of different HRV indices to VNS outcome prediction

and improve the classification performance. Random forest (RF) was used to train

the classifier, and leave-one-out (LOO) cross-validation was performed to evaluate the

prediction model.

Results: Among 52 HRV indices, 49 showed significant differences between DRE

patients and healthy controls. In sleep state, 35 HRV indices of responders were

significantly higher than those of non-responders, while 16 of them showed the same

differences in awake state. Low-frequency power (LF) ranked first in the importance

ranking results by univariate filter and RFE methods, respectively. With HRV indices in

sleep state, our model achieved 74.6% accuracy, 80% precision, 70.6% recall, and 75%
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F1 for VNS outcome prediction, which was better than the optimal performance in awake

state (65.3% accuracy, 66.4% precision, 70.5% recall, and 68.4% F1).

Significance: With the ECG during sleep state and machine learning techniques, the

statistical model based on preoperative HRV could achieve a better performance of VNS

outcome prediction and, therefore, help patients who are not suitable for VNS to avoid

the high cost of surgery and possible risks of long-term stimulation.

Keywords: drug-resistant epilepsy, heart-rate variability, vagus nerve stimulation, circadian rhythm, outcome

prediction, feature selection

INTRODUCTION

More than 65 million people affected by epilepsy worldwide
and 10–50% of patients with drug-resistant epilepsy (DRE) can
potentially take advantage of curative epileptic surgery through
craniotomy after complete preoperative evaluations (1–3). Vagus
nerve stimulation (VNS) therapy is a beneficial option for
patients who are not suitable for craniotomy or cannot benefit
from craniotomy. As an adjuvant therapy for patients with
DRE, VNS has been widely used by more than 100,000 patients
worldwide (4). Despite the increasing application, studies have
shown that VNS can rarely help patients achieve complete seizure
freedom. Specifically, seizures were reduced by 50% or more in
∼50% of the patients, while about a quarter of patients with DRE
do not get any benefit from the VNS therapy (5). The outcomes of
VNS in patients vary greatly. This may be due to the complexity
of clinical factors, including etiology syndromes, etiology, and
usage of antiepileptic drugs (AEDs) (6). Therefore, presurgical
identification of patients who are not suitable for VNS is valuable.

Previous studies have explored the relationship between
preoperative heart rate variability (HRV) indices and VNS
outcome and evaluated the feasibility of HRV indices to be
used as predictors for the response to VNS (7–9). Liu et al.
suggested that presurgical HRV measurements representing
parasympathetic cardiac control were significantly associated
with the responsiveness to VNS, and found that non-responders
(<50% reduction in seizure frequency at 1-year follow-up) had
significantly lower root mean square of the differences between
adjacent RR intervals (RMSSD), percentage of differences
between successive NN intervals above 50ms (pNN50), high
frequency (HF), and SD1 than responders. Among them,
RMSSD had the greatest discriminatory power (AUC: 0.774 ±

0.063) in the result of receiver operating characteristic curve
analysis (7, 8). However, Hödl et al. came to the contradictory
conclusion that non-responders had significantly higher HF
than responders before surgery and at 1-year follow-up (9). In
the above studies, significance test methods were performed
to analyze the importance of each HRV variable to efficacy.
Significant test depends on sample size and does not give any
indication of the relevance between variables (10, 11). Due to
these limitations, based on single HRV indices, the generalization
ability of VNS outcome prediction models might be poor.
There were increasing uses of multivariate indicators that could
better quantify the magnitude of difference (12). Compared with
traditional statistical methods, machine learning could review

large volumes of data and discover specific trends and patterns
that would not be apparent to humans. Through random forest
(RF) classifier, the normalization of data is not required and the
risk of overfitting can be reduced (13, 14). Machine learning
has been widely used in the medical field in recent years. In
addition, researchers had applied this method to classify response
to chronic VNS on the basis of intrinsic connectivity within
thalamocortical circuitry (15–17). Combining machine learning
and HRV indices might provide a simpler and more conducive
way to the prediction of VNS outcome.

Using traditional HRV analysis, previous studies found that
autonomic activity shows a circadian rhythm with a prevalence
of sympathetic tone during the day and a considerable relative
increase in parasympathetic tone during the night (18–20).
Ronkainen et al. measured the interictal circadian rhythm
of HRV in 17 patients with DRE and found that they had
decreased 24-h diurnal fluctuations of low frequency (LF)
and HF compared with healthy control (21). Furthermore,
studies have shown that VNS increased the complexity of
HRV with DRE patients during sleep state and decreased it
during awake state (22, 23). Since VNS has potential effects
on cardiac autonomic nerve function, the circadian variation of
preoperative HRV might also be related to the performance of
efficacy prediction. Therefore, it is worthwhile to investigate the
influence of HRV differences in the sleep and awake states on
the prediction of VNS outcome. In this paper, we propose a
VNS outcome prediction method with RF classifier for patients
with DRE based on preoperative HRV indices. HRV analysis
was performed on both patients and healthy controls. Results
obtained in sleep and awake states were further compared
and feature selection was performed to improve the statistical
model accuracy.

MATERIALS AND METHODS

Participants and Study Design
Fifty-nine DRE patients were implanted with VNS equipment
(G111, Pins Medical Ltd., Beijing, China) between 2014 and
2015 and underwent 1-year follow-up evaluation. Seven centers
took part in this study, namely Beijing Tiantan Hospital
Capital Medical University, Sanbo Brain Hospital Capital
Medical University, TsingHua University YuQuan Hospital,
Peking University First Hospital FengTai Hospital, Chinese
PLA General Hospital, First Affiliated Hospital of PLA
General Hospital, and Navy General Hospital. All patients
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underwent a complete preoperative evaluation, including 24-
h ECG recordings; long-term video-EEG, MRI, or PET; and
comprehensive clinical assessments. The inclusion criteria were
as follows: (1) 7–60 years old; (2) in good health except for the
epilepsy; (3) at least one seizure per month; (4) have been tested
at least two suitable AEDs for tolerance or blood level at the upper
limit of the target range, and at least two of them can be tolerated
at normal dose; and (5) minimum mental state examination
(MMSE) score≥ 18 (no severe cognitive impairment). Exclusion
criteria were as follows: (1) results of MRI or PET show the
epilepsy was caused by intracranial space-occupying lesions;
(2) tumor, cardiopulmonary anomaly, diabetes, progressive
neurological disease, asthma, mental disease, and other surgical
contraindications; (3) smoking, alcohol addiction, and breathing
disorders related to sleep; and (4) a history of medication
which may affect the autonomic function. Healthy controls were
selected in accordance with the gender ratio and age range
of the DRE patients. All healthy controls had no medication
or other disease affecting the function of the autonomic nerve
system based on their medical history and physical examination
results. During the 3 months before VNS surgery and the 1-year
follow-up period after VNS surgery, the number and dose of
AED regimens remained unchanged. Our study was approved by
the Institutional Review Committee of Beijing Tiantan Hospital
Capital Medical University. All subjects or their parents gave
written and informed consent including the collection of their
information and usage in our research.

ECG Recording and Preprocessing
A 12-lead, consecutive 24-h ECG recording was performed under
free-moving condition by Holter monitoring system (MIC12H-
3S, JincoMed, Beijing, China) at a digital sampling rate of 500Hz
for all participants. During the recording, patients were asked to
document the type, time, and duration of their daily activities and
possible seizures. After ECG records were visually checked for
potential non-sinus or ectopic beats by a PC-based acquisition
system (SkyHolter, JincoMed), we extracted RR intervals from
the stable signal provided by lead V5 and eliminated ectopic
beats by interpolation based on surrounding normal beats for
adjustment (8). Based on the HR characteristics, we removed the
effects of seizures periods and reduced the variability of physical
activities on the experimental results, by selecting 4-h periods
of reliable RR intervals in quiet awake and sleep states of each
patient for further analysis (24, 25).

HRV Analysis
HRV analysis was performed on 4-h RR intervals by NeuroKit2
(26), which is a toolbox based on Python 3.6.3 for comprehensive
HRV analysis with a total of 52 indices. Time domain, frequency
domain, and non-linear HRV indices were measured according
to the guidelines and studies on the HRV assessment and spectral
analysis techniques (27–33). Time domain indices included the
RMSSD, mean RR intervals (MeanNN), standard deviation of the
RR intervals (SDNN), standard deviation of differences between
adjacent RR intervals (SDSD), percentage of differences between
successive NN intervals above 50 /20ms (pNN50/pNN20),

SDNN divided by MeanNN (CVNN), median absolute deviation
of the RR intervals (MadNN), MadNN divided by the median of
the absolute differences of their successive differences (MCVNN),
interquartile range of the RR intervals (IQRNN), and baseline
width of the RR intervals distribution obtained by triangular
interpolation (TINN). Spectral analysis by using fast Fourier
transform (FFT) included frequency components as follows: very
low frequency (VLF; 0.003–0.04), LF (0.04–0.15Hz), HF (0.15–
0.4Hz), and normalized LF (LFn) and HF (HFn), obtained by
dividing the low frequency power by the total power. Non-
linear HRV metrics contain the characteristics of the Poincaré
plot geometry, indices of heart rate asymmetry, indices of heart
rate fragmentation, and indices of complexity (31, 32). Among
them, SD1 is an index of short-term RR interval fluctuations,
while SD1d and SD1a are short-term variance of contributions
of decelerations (prolongations of RR intervals) and accelerations
(shortenings of RR intervals), respectively (33). Contrary to SD1,
SD2 represents long-term RR interval fluctuations, so as SD2d
and SD2a. S is the area of ellipse described by SD1 and SD2.
The cardiac sympathetic index (CSI) is calculated by dividing
the longitudinal variability of the Poincaré plot by its transverse
variability, and slope index (SI) described the asymmetry of
the Poincaré plot. PSS is the percentage of NN intervals in
short segments. Among all the HRV metrics, LF component
reflects the dual regulation of sympathetic and vagus nervous
system, and VLF is possibly related to sympathetic activity (27,
28). In addition, studies have shown that in the case of low-
frequency breathing, the regulation of vagal tone to heart rate
will significantly affect the LF power (27, 34, 35). At present, it is
agreed that VLF is an intrinsic rhythm of the heart and the basis
for the human body to maintain a healthy state. Under normal
circumstances, VLF in the resting state can reflect the regulation
of sympathetic nervous system on heart rate (35, 36).

Statistical Analysis
The Mann–Whitney U-test was performed to compare the
demographic data and HRV indices of responders and non-
responders, and data were presented as mean ± standard
deviation or number (percentage). Fisher’s exact tests or chi-
square tests were applied for qualitative or categorical variables
between different groups. Features with a threshold of p <

0.05 were considered statistically significant and reserved for
further selection.

VNS Outcome Prediction With Feature
Selection
After HRV indices of all patients were analyzed by NeuroKit2,
we applied RF algorithm with 20 trees to train the prediction
model. Feature selection was applied before training to improve
the prediction performance. In contrast to other dimensionality
reduction techniques, feature selection does not alter the original
form of the variables but select a subset of them (37). Specifically,
in our study, feature selection removed HRV indices irrelevant
with VNS outcome, thus reducing the difficulty of classification
tasks and decreased the risk of overfitting.
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We tried both univariate feature filter and recursive feature
elimination (RFE) algorithm for feature selection. Univariate
filter technique assesses the relevance of each feature by analyzing
the intrinsic properties of the data and needs to be performed
only once for classifier evaluation (37). Specifically, we chose
chi-squared statistics as measurement for the relevance between
variables and targets, for it was a relevance filtering method
specifically for discrete targets (i.e., classification problems). The
importance of the whole feature subsets was determined by the
sum of relevance score of each feature and low-scoring features
were removed. In order to evaluate the prediction performance
of univariate filter, we performed the fast correlation-based
feature filter (FCBF), a kind of multivariate filter approach as
a comparison. FCBF selects features with high correlation with
the target and little correlation with other variables through
a metric called symmetrical uncertainty (38). In addition to
filter algorithm, we tried RFE, a kind of wrapper algorithm
that embeds model hypothesis search in feature subsets search.
Unlike the filter method, the RFE algorithm directly uses the
performance of the final model as the evaluation criterion for
feature selection, in other words, to randomly search the feature
subset with the best prediction results for the given model.
Specifically, for a feature set with a number of d, we calculate
the error of all feature subsets (2d−1) from their cross-validation
scores and select the subset with the smallest error as the final
result. To avoid choosing dominant features among few subjects,
we applied nested cross-validation (CV), where an inner CV loop
is used to perform the tuning of the parameters, while an outer
CV is used to compute an estimate of the error (39). Nested
cross-validation can tune decoders’ parameters while avoiding
circularity bias. We performed nested CV with k-fold set to 5
both in the inner and outer loops (40). In order to obtain a
stable sorted result of all HRV indices according to their relevance
score, we repeated the RFE process 50 times and accumulated
the ranking of each index during each experiment. While the
computation through the univariate filter method was simpler,
it ignored the interaction with the classifier and the dependences
between features, for the search space of the optimal solution was
only performed in the feature subset. On the other hand, the RFE
method costed a relatively large amount of computation but often
brought good performance (37, 38).

After the sorted HRV indices were obtained through the above
methods, respectively, we chose different numbers of top-ranked
indices as feature subsets for VNS outcome prediction. A leave-
one-out (LOO) cross-validation was carried out, which was a
K-fold cross-validation with K equal to the number of subjects
in the dataset. For each time of validation, one subject was taken
as the test set for prediction and the function approximator
is trained based on the rest of the subjects. Same as K-fold
cross-validation, the average error is computed to evaluate the
model. Although it was a computationally expensive procedure
to perform, the LOO technique was suitable for small datasets
and contributed to a relatively reliable and unbiased evaluation
of the classification model (41). At last, we could obtain a LOO
cross-validated selection of the best feature subset corresponding
to the classification scores.

RESULTS

Participants
A total of 59 patients with DRE and 50 healthy controls
participated in our study. Patients included 40 males and
19 females and healthy controls included 34 males and 16
females. Both groups range in age from 7 to 38 years
old. Demographic data of all the participants are presented
in Supplementary Table 1. No significant differences were
presented between DRE patients and healthy controls. At 1-
year follow-up evaluation, 30 patients responded to VNS therapy
and had monthly seizure frequency decreased by more than
50% (responders). Eight patients were seizure-free at the end
of 1-year VNS treatment. Demographics and clinical factors
of 59 DRE patients are listed in Table 1. We observed no
significant differences between responders and non-responders
in demographic data, seizure characteristics, ictal scalp EEG

TABLE 1 | Preoperative clinical data and VNS settings at 1-year follow-up of

responders and non-responders.

Variables Responders

(n = 30)

Nonresponders

(n = 29)

p-value

Demographic data

Age (years) 19.6 ± 7.9 18.8 ± 8.3 0.824

Male/female 23/7 17/12 0.170

BMI (kg/m2) 22.5 ± 4.3 22.2 ± 4.3 0.544

Seizure characteristics, no. (%)

Epilepsy duration (years) 12.4 ± 7.4 10.6 ± 7.1 0.475

Seizure per month 90.3± 176.4 59.4 ± 89.1 0.164

FS 7 (23.3%) 3 (10.3%) 0.299

GS 11 (36.7%) 8 (27.6%) 0.580

FS + GS 12 (40.0%) 18 (62.1%) 0.120

Cerebral lesions (ictal scalp

EEG), no. (%)

Temporal 17 (56.7%) 19 (65.5%) 0.596

Frontal 11 (36.7) 7 (24.1%) 0.399

Parietal 7 (23.3%) 10 (34.5%) 0.399

Occipital 3 (10.0%) 8 (27.6%) 0.104

Non-specific EEG

abnormalities

9 (30.0%) 7 (24.1%) 0.771

Number of AEDs 3.0 ± 1.2 3.0 ± 1.0 0.848

Etiology (MRI), no. (%)

Symptomatic 13 (43.3%) 12 (41.4%) 1.000

Cryptogenic 17 (56.7%) 17 (58.6) 1.000

VNS settings

Current amplitude (mA) 1.4 ± 0.6 1.5 ± 0.4 0.619

Pulse width (µs) 441.7± 105.7 431.0± 111.7 0.525

Frequency (Hz) 29.5 ± 1.5 28.8 ± 3.9 0.415

VNS on time (s) 30.0 ± 0.0 29.7 ± 1.6 0.161

VNS off time (min) 5.0 ± 0.0 5.7 ± 3.6 0.161

BMI, body mass index; FS, focal seizure; GS, generalized seizure; EEG,

electroencephalography; AEDs, antiepileptic drugs; MRI, magnetic resonance

imaging; VNS, vagus nerve stimulation.
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TABLE 2 | Preoperative time domain, frequency domain, and non-linear HRV indices of responders and non-responders.

HRV indices Sleep Awake

Responders Non-responders P-value Responders Non-responders P-value

RMSSD 54.5 ± 26.2 34.9 ± 15.0 <0.001 27.0 ± 13.1 21.6 ± 9.8 0.025

MeanNN 896.4 ± 124.6 835.5 ± 138.3 0.031 673.3 ± 85.6 630.5 ± 87.4 0.041

SDNN 87.0 ± 26.3 70.7 ± 21.6 0.005 70.6 ± 21.6 68.4 ± 24.0 0.306

SDSD 54.5 ± 26.2 34.9 ± 15.0 <0.001 27.0 ± 13.1 21.6 ± 9.8 0.025

CVNN 0.10 ± 0.02 0.08 ± 0.02 0.008 0.10 ± 0.02 0.11 ± 0.03 0.395

CVSD 0.06 ± 0.03 0.04 ± 0.02 0.001 0.04 ± 0.02 0.03 ± 0.01 0.052

MedianNN 902.2 ± 130.8 842.0 ± 143.5 0.034 672.9 ± 86.4 629.1 ± 88.6 0.036

MadNN 76.7 ± 29.9 56.5 ± 14.7 <0.001 69.9 ± 25.9 71.7 ± 30.7 0.497

MCVNN 0.08 ± 0.03 0.07 ± 0.01 0.002 0.10 ± 0.03 0.11 ± 0.04 0.204

IQRNN 105.4 ± 43.4 77.0 ± 20.4 <0.001 96.2 ± 35.2 98.2 ± 43.0 0.497

pNN50 30.2 ± 17.3 14.9 ± 13.4 0.001 7.94 ± 8.79 3.75 ± 5.48 0.014

pNN20 60.1 ± 19.1 46.8 ± 18.2 0.002 31.3 ± 17.3 19.8 ± 13.7 0.006

TINN 690.9 ± 160.7 631.6 ± 185.9 0.039 577.8 ± 115.5 587.0 ± 169.3 0.431

VLF 2079.9 ± 1566.0 1423.0 ± 958.1 0.019 1338.4 ± 848.5 1020.0 ± 866.0 0.026

LF 1569.3 ± 1, 214.9 1097.3 ± 759.9 0.037 715.6 ± 496.4 593.5 ± 653.6 0.047

HF 832.4 ± 717.4 525.4 ± 360.3 0.010 490.8 ± 369.5 357.5 ± 361.8 0.041

VHF 119.6 ± 83.8 62.1 ± 53.7 0.001 76.2 ± 63.5 66.6 ± 108.6 0.083

LnHF 6.42 ± 0.82 5.97 ± 0.86 0.010 5.88 ± 0.85 5.51 ± 0.83 0.041

SD1 38.5 ± 18.5 24.7 ± 10.6 <0.001 19.1 ± 9.2 15.3 ± 7.0 0.025

SD2 116.1 ± 34.7 96.5 ± 29.7 0.011 97.7 ± 29.9 95.4 ± 33.6 0.285

SD1SD2 0.33 ± 0.12 0.26 ± 0.09 0.005 0.20 ± 0.07 0.16 ± 0.04 0.052

S 15382.1 ± 12014.7 8133.5 ± 5, 719.7 <0.001 6383.8 ± 4516.9 5080.9 ± 4029.3 0.105

CSI 3.59 ± 1.70 4.29 ± 1.35 0.005 5.86 ± 2.17 6.67 ± 2.02 0.052

CVI 4.78 ± 0.34 4.52 ± 0.30 <0.001 4.41 ± 0.31 4.32 ± 0.30 0.105

IALS 0.51 ± 0.05 0.49 ± 0.05 0.041 0.49 ± 0.06 0.47 ± 0.05 0.076

PSS 0.78 ± 0.11 0.73 ± 0.1 0.028 0.74 ± 0.08 0.71 ± 0.08 0.087

SI 49.99 ± 0.02 50.0 ± 0.01 0.003 50.0 ± 0.02 50.0 ± 0.03 0.290

SD1d 27.9 ± 13.7 17.7 ± 7.6 <0.001 13.6 ± 6.6 11.0 ± 5.2 0.030

SD1a 26.5 ± 12.5 17.2 ± 7.4 0.001 13.4 ± 6.5 10.6 ± 4.6 0.026

SD2d 77.9 ± 21.7 65.2 ± 19.9 0.009 68.6 ± 20.6 67.0 ± 23.4 0.344

SD2a 86.0 ± 27.2 71.1 ± 22.3 0.010 69.6 ± 21.9 67.9 ± 24.2 0.306

SDNNd 58.9 ± 16.9 47.9 ± 14.5 0.004 49.6 ± 14.9 48.1 ± 16.7 0.311

SDNNa 64.0 ± 20.2 51.87 ± 16.1 0.005 50.2 ± 15.8 48.6 ± 17.3 0.295

ApEn 1.44 ± 0.27 1.32 ± 0.20 0.007 1.07 ± 0.3 0.89 ± 0.22 0.010

SampEn 1.31 ± 0.27 1.20 ± 0.20 0.008 0.89 ± 0.28 0.71 ± 0.21 0.009

Data were presented as mean value ± standard deviation.

characteristics, AED information, etiology, and VNS settings
(all p > 0.05). No serious adverse events were found in
the participants.

HRV Differences Between Sleep and
Awake States
Fifty-two presurgical HRV indices including time domain,
frequency domain, and non-linear measurements were
performed on participants in sleep and awake states, respectively.
DRE patients had significantly lower RMSSD, MeanNN, SDNN,
SDSD, MedianNN, MadNN, IQRNN, pNN50, pNN20, TINN,
VLF, LF, HF, VHF, SD1, SD2, S, CSI Modified, SD1d, SD1a, SD2d,
SD2a, SDNNd, and SDNNa in comparison with the healthy

controls (Supplementary Table 2). For the differences of HRV
indices between sleep and awake states, the results of significance
tests showed that in sleep state 30 indices with responders and 21
indices with non-responders were significantly higher than those
in awake state (Supplementary Table 3). For the differences
between responders and non-responders, in sleep state, 35
indices of responders were significantly higher than those of
non-responders except for CSI (3.59 ± 1.7 vs. 4.29 ± 1.35, p =

0.005) and SI (49.99 ± 0.02 vs. 50.0 ± 0.01, p = 0.003) (Table 2),
while in awake state, 16 indices of responders showed the same
significance (RMSSD, MeanNN, SDSD, CVSD, MedianNN,
pNN50, pNN20, VLF, LF, HF, LnHF, SD1, SD1d, SD1a, ApEn,
SampEn), which were included in the 35 indices. Comparison
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FIGURE 1 | The log transformation of chi2-squared statistics of each heart rate variability (HRV) index in sleep state computed by the univariate filter method. The top

three HRV indices are shown in orange bars.

with p < 0.05 was considered statistically significant, and the
following HRV indices showed significant differences between
responders and non-responders in sleep state but not in awake
state including SDNN (p = 0.005 vs. p = 0.306), CVNN (p =

0.008 vs. p= 0.395), MadNN (p= 0.001 vs. p < 0.497), MCVNN
(p = 0.002 vs. p = 0.204), IQRNN (p = 0.001 vs. p < 0.497),
TINN (p = 0.039 vs. p = 0.431), VHF (p = 0.001 vs. p = 0.083),
SD2 (p = 0.011 vs. p = 0.285), SI (p = 0.003 vs. p = 0.290),
SD2d (p = 0.009 vs. p = 0.344), SD2a (p = 0.010 vs. p = 0.306),
SDNNd (p = 0.004 vs. p = 0.311), and SDNNa (p = 0.005 vs.
p= 0.295).

VNS Outcome Prediction With Feature
Selection
With univariate filter and RFE methods, sorted results of HRV
indices based on their relevance with VNS efficacy in both
sleep and awake states were obtained, respectively. Through
calculation of chi-squared statistics by the univariate filter
method, the top three indices were S, LF, and VLF in sleep
state (Figure 1) and S, VLF, and HF in awake state (Figure 2).
In both states, SI ranked last with the smallest chi-squared

score, which presented the weakest relevance with the VNS
outcome. With the RFE method and nested cross-validation,
accumulated ranking results of importance score of each HRV
indices are shown in Supplementary Figures 1, 2. After 50
iterations of algorithms, LF ranked first steadily in both states
(got the smallest cumulative results), indicating that through
nested cross-validation, it did the greatest contribution to the
classification of responders and non-responders, and it was
followed by PSS and S in sleep state and pNN20 andVLF in awake
state, respectively.

The distribution of prediction accuracy with a number of
top-ranked HRV indices as features in both sleep and awake
states is shown in Figure 3, and performances with optimal
feature combination are described inTable 3. The best prediction
performance was obtained by the univariate filter method
with data in sleep state when selecting the top three HRV
indices (Figure 3), achieving 74.6% accuracy, 80.0% precision,
70.6% recall, and 75.0% F1 score. Compared with the awake
state, the best prediction performance in sleep state was better
and required fewer top-ranked HRV indices for both feature
selection methods. The prediction performances of univariate
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FIGURE 2 | The log transformation of chi2-squared statistics of each HRV index in awake state computed by the univariate filter method. The top three indices are

shown in orange bars.

filter with other relevance measurements (ANOVA F-value,
mutual information) and multivariate filter method (FCBF) are
presented in Supplementary Table 4. The best performance of
univariate filter among all the metrics was 74.6% with chi-
squared statistics, while mutual information presented the worst
results (69.8% accuracy in sleep state and 65.1% accuracy
in awake state). Based on chi-squared statistics, univariate
filter performed better than the multivariate filter approach.
Other classifiers were also compared with RF for the outcome
predictions (Supplementary Table 5). The RF classifier with
univariate filter in sleep state presented the best prediction
results (five-fold cross-validation: 78.3% accuracy, LOO: 74.6%
accuracy). In addition, with the RF classifier, the model achieved
best performances in the combinations of different states, feature
selection methods, and cross-validation methods, except for
the result based on RFE and LOO methods in awake state
which was slightly lower than SVM (RF: 64.9% accuracy,
SVM: 66.7% accuracy). The lowest result was obtained in the
classification using KNN with the univariate filter method in
awake state (five-fold cross-validation: 58.5% accuracy, LOO:
58.7% accuracy).

DISCUSSION

Our study retrospectively investigated the presurgical HRV
indices of 59 DRE patients and 50 healthy controls. To study
if HRV would be a true biomarker for VNS outcome related
to abnormal autonomic nerve function of DRE patients, we
provided a comparison to a matched normal population and
found that 49 indices showed significant differences between
DRE patients and healthy controls. Among them, 25 indices
of healthy controls were significantly higher than those of
DRE patients, indicating that DRE patients showed a cardiac
autonomic function response as a significant decrease of HRV
indices (7). HRV indices in sleep state were more conducive
to distinguish between responders and non-responders and
significantly higher than indices obtained in awake state.
Univariate filter and RFE algorithms were performed to select
the optimal feature set and sort HRV indices based on their
relevance to VNS outcome for 1-year follow-up. Combining
HRV indices in sleep state as feature vector based on data
attributing importance ranking, the statistical model of the
RF classifier achieved better prediction performance, and the
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FIGURE 3 | The distribution of prediction accuracy with different numbers of top-ranked HRV indices as features. UF-sleep, univariate filter with data in sleep state;

UF-awake, univariate filter with data in awake state; RFE-sleep, RFE with data in sleep state; RFE-awake, RFE with data in awake state. The best classification results

with optimal size of features are depicted by circles (UF_sleep: 3, 74.6%; RFE_sleep: 9, 73.4%; UF_awake: 28, 65.3%; RFE_awake: 25, 68.8%).

TABLE 3 | VNS outcome classification performances of univariate filter and RFE feature selection methods in sleep and awake states.

States Univariate filter RFE

Accuracy (%) Precision (%) Recall (%) F1 (%) Accuracy (%) Precision (%) Recall (%) F1 (%)

Sleep 74.6 80.0 70.6 75.0 73.4 80.3 86.4 77.9

Awake 65.3 66.4 70.5 68.4 68.8 73.7 76.4 69.5

optimal size of the feature set obtained by the univariate filter
method achieved the best prediction performance. To the best
of our knowledge, this is the first study that combines a
machine learning method with preoperative HRV indices for
VNS outcome prediction, and investigates the effect of sleep and
awake states on prediction performance.

Our findings showed higher presurgical HRV of patients with
DRE in sleep state than in awake state, which was consistent
with previous studies (42–44). The overall trends of the circadian
rhythm of heart rate and HRV are opposite. Specifically, heart
rate in sleep state is lower than in awake state. About an hour
before awakening, heart rate gradually rises and maintains a
relatively stable level in awake state. Meanwhile, the time and
frequency domain indices of HRV in sleep state are higher
and gradually decline with the end of sleep, dropping to the
lowest value in a fully awake state. The diurnal change of HRV
indicates the characteristic of stronger vagal tone in sleep state.
The circadian rhythm of HRV was closely related to the cardiac
autonomic nervous system, reflecting the dynamic balance of
the mutual influence of the sympathetic and parasympathetic
nervous system.

Importantly, our results suggested better performance of
presurgical data in sleep state on differentiating responders
and non-responders based on significance test. Moreover, the

prediction accuracy with the optimal feature set of data in
sleep state was better than that in awake state for both feature
selection methods. Compared with awake state, more HRV
indices showed significant differences between responders and
non-responders in sleep state, which might be related to the
stronger external interference in awake state on ECG recordings
from the environment, emotions, daily activities, and other
factors. The specific reasons are still unclear, since the circadian
rhythm of HRV is also affected by age, gender, drugs, and various
diseases (45). Besides that, studies have shown that VNS has
the potential to restore the natural chaotic behavior of the heart
by activating the parasympathetic division of the autonomic
nervous system and to increase the complexity of HRV during
sleep and decrease it during wakefulness (22, 23). Patients who
experienced more than 50% reduction in seizures after 1 year
of VNS treatment had a significantly higher amount of deep
sleep (non-rapid eye movement 3, NREM3) (9, 46). The hypnotic
agent adenosine has the potential of driving deep sleep and
is anti-epilepsy. Therefore, adenosine receptor expression and
signaling might also participate in the mechanism of VNS (46).
In addition, in our research, responders showed significantly
higher presurgical HRV indices including RMSSD, pNN50, SD1,
and HF, which agreed with previous findings (7). Since the HF
component mainly reflects the vagal activity and the RMSSD,
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pNN50, and SD1 are high correlates with HF (8), it was indicated
that patients with preoperative cardiac autonomic nerve function
damage, especially for severe reduction of vagal tone, have a poor
postoperative prognosis of VNS. Possible factors contributed to
the higher vagal activity of responders including the effects of
the long-term intake of AEDs, psychological comorbidity, and
recurrent seizures (34, 47).

Importance ranking results of HRV indices were obtained by
univariate filter and RFE feature selection methods. In the results
of univariate filter, S ranked first in both states, followed by LF
and VLF, while the RFE method ranked LF in first place. Among
the top-ranked non-linear indices, S describes the area of ellipse
in Poincaré plot and correlates with RMSSD and baroreflex
sensitivity, which is the change in interbeat interval duration
per unit change in blood pressure (29). Apart from frequency
domain HRV indices, heart rate complexity (ApEn, SampEn)
and fragmentation (PSS) indices also got high importance scores
in the RFE ranking results. Both feature selection methods
emphasized the importance of LF and non-linear HRV indices
to VNS outcome prediction. ApEn measures the regularity and
complexity of time series. While large ApEn values indicate low
predictability of fluctuations in successive RR intervals, small
ApEn values mean that the signal is regular and predictable
(35). SampEn was designed to provide a less biased and more
reliable measure of signal regularity and complexity (36). As for
frequency domain indices, LF mainly reflects the activity of the
baroreceptors in the resting state, and it would be significantly
affected by the regulation of the vagal tone under low respiratory
rate (34–36). Because vagal tone is affected by respiratory cycle,
stress, anxiety, worry, and other emotions, LF could also be
indirectly influenced by these external factors. Previous studies
have pointed out that VLF was the inherent rhythm of the
heart to maintain the health of the body, correlated with the
change in body temperature and vasomotor tone, and affected
the regulation of the renal angiotensin system (27, 34). Similar
to LF, in the resting state, VLF could reflect the regulating
effect of sympathetic nerves on heart rate. Since data in sleep
state were more beneficial to distinguish VNS outcome, in sleep
state, the optimal feature combinations for the best prediction
performance are three and eight top-ranked HRV indices by
the univariate filter and RFE method, respectively, while in
awake state, the optimal feature combination requiredmoreHRV
indices (univariate filter: 28 indices, RFE: 26 indices).

The present studies on VNS outcome prediction also
investigated the seizure characteristics and demographic
information of patients with DRE and conducted discussions
on the analysis of physical signs such as MRI, EEG, and ECG
(7, 8, 48–53). Whether seizure characteristics had potential
relationship with the response of VNS is still uncertain.
Although epileptic seizures were rarely completely controlled,
generalized epilepsy benefited more than partial seizures from
VNS therapy (54). Another study demonstrated that patients
with predominantly partial seizures responded most favorably
to VNS, whereas those with generalized tonic–clonic seizures
responded least favorably (5). The study of predicting the VNS
efficacy based on presurgical EEG computed the power spectral
analyses retrospectively on preoperative EEG recordings from
60 epileptic patients with VNS, indicating that there were

significant differences in EEG reactivity between responders
and non-responders (55). Specifically, the dynamics of alpha
and gamma activity were strongly related to the VNS outcome.
Although most ECG studies on cardiac function of patients with
DRE have focused on heart rate-related changes, there are still
a range of other variables of ECG that have potential value for
epilepsy detection and seizure prediction. Studies have shown
that the information of seizure contained in the single-channel
ECG is comparable with that of scalp EEG, and the entire
spectrum of ECG is beneficial for the assessment of patient’s
preseizure state (56). Another work reported on the ECG
changes of epilepsy patients during preictal, ictal, interictal, and
postictal states (57). It suggested that patients were more likely to
have abnormal QTc intervals and ST segments, elevated T waves,
increased P wave dispersion, and prolonged PR intervals during
the interictal period. Changes during preictal and ictal states
including arrhythmia, prolonged QTc intervals, and ST segment
abnormalities are also reported. Those wave characteristics of
ECG might have potential relevance to cardiac function and be
useful to the VNS outcome prediction in the future.

Compared with a previous work, some novelties are shown
in this paper. Through machine learning and HRV indices, a
multivariate statistical model for predicting the VNS outcome
was obtained and the importance of each HRV index in
outcome prediction was measured by feature selection. LOO
validation, which was suitable for a small dataset, was performed
to contribute to a reliable and unbiased evaluation of the
classification model. In order to study the influence of circadian
rhythm on the prediction of VNS outcome, we compared the
HRV indices and prediction performances in different states and
found the data in sleep state showing better outcome predictive
power. In addition, more time domain, frequency domain, and
non-linear HRV indices were included in this paper compared
with previous work (7, 8), so as to provide a more comprehensive
basis for the VNS outcome prediction model.

Several limitations are present in our study. Although
we excluded the possible influence of demographic data and
other clinical examination results on VNS outcome prediction,
potential effects including respiratory rate, type of seizure, and
different types and dosages of AEDs on heart rate and HRV
were not completely elucidated. We obtained 4-h RR intervals
in awake state by selecting the periods when the heart rate
is relatively stable, which might not exclude the interference
from mild exercises such as walking to our experimental results.
Besides, we recruited DRE patients with a wide age range, and
the potential influence of age on VNS outcome prediction should
be investigated in the future. To further establish the wide
application of ECG-based VNS outcome prediction in clinical
use, a sizeable, multicenter, and prospective study is required
to evaluate the feasibility and reliability of the VNS outcome
prediction model.

CONCLUSION

In conclusion, based on the preoperative HRV and machine
learning method, our statistical model suggested that ECG
recorded in sleep state could achieve better prediction
performance of VNS outcome. Both univariate filter and
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RFE feature selection methods emphasized the importance of
LF component and non-linear indices to efficacy prediction.
These findings are beneficial for patients to evaluate whether
VNS surgery is suitable for them and for researchers to further
investigate the influence and effect of circadian rhythm of HRV
on efficacy prediction.
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