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Abstract 

Lamb survival is an important welfare and productivity issue for sheep industries worldwide. Lower lamb survival 
has been reported for primiparous ewes, but the causes of this are not well studied. The aim of this study was to 
determine causes of perinatal deaths for lambs born to primiparous ewes in Western Australia, and identify if infec-
tious diseases are implicated. Lamb mortality from birth to marking were determined for 11 primiparous ewe flocks 
on 10 farms in Western Australia. Lamb mortality from birth to marking averaged 14% for single-born and 26% for 
multiple-born lambs. Lamb necropsies (n = 298) identified starvation–mismosthering–exposure (34%), dystocia (24%) 
and stillbirth (15%) as the most common causes of perinatal lamb death. There was no evidence of exotic abortigenic 
pathogens in aborted and stillborn lambs (n = 35). Chlamydia pecorum was detected by qPCR in 15/35 aborted and 
stillborn lambs on 5/6 farms. Preliminary molecular characterisation of C. pecorum detected in samples from aborted 
and stillborn lambs (n = 8) using both Multilocus Sequence Typing and ompA genotyping indicated all strains were 
genetically identical to previously described pathogenic livestock strains, denoted ST23, and dissimilar to gastroin-
testinal strains. High frequency of detection of a pathogenic C. pecorum strains ST23 associated with ovine abortion 
and stillbirth on multiple farms located across a wide geographic area has not been previously reported. Chlamydia 
pecorum may contribute to reproductive wastage for primiparous sheep in Western Australia. Further investigation to 
understand C. pecorum epidemiology and impact on sheep reproduction is warranted.
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Introduction
Improving lamb survival is an important economic and 
welfare issue for sheep industries worldwide. Approxi-
mately 10% of single-born lambs and 30% of twin-born 
lambs die prior to weaning under extensive grazing 
conditions across Australia, with most losses occurring 
in the first 48  h of life [1–3]. The starvation–mismos-
thering–exposure complex, stillbirths, and dystocia are 
the most common causes of lamb mortality during the 
perinatal period [1, 2, 4]. Lower lamb survival has been 

reported for primiparous ewes compared to adult flocks 
in Australia [5–7] and overseas [6, 8–11]. However, 
causes of mortality for lambs born to primiparous ewes 
are not well described and it is not clear if the main fac-
tors contributing to lamb mortality in primiparous ewes 
are similar to those for multiparous ewes.

Infectious diseases may contribute to lamb mortality 
through abortion, stillbirths and birth of weak lambs 
that are more likely to die soon after birth. Campy-
lobacteriosis, listeriosis and toxoplasmosis were the 
most common aetiological agents identified in sheep 
abortion investigations submitted to Australian vet-
erinary diagnostic laboratories between 2006 and 2019 
[12, 13]. This is consistent with older reports describ-
ing these as the most common infectious causes of 
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abortion and perinatal mortality in Australian sheep 
[14–17]. Sporadic abortion associated with Chlamydia 
pecorum has been reported in sheep from Australia 
[12, 18] and overseas [19, 20], but the epidemiology 
of C. pecorum-associated abortion in sheep remains 
poorly understood.

Primiparous ewes may be more susceptible to infec-
tious diseases, as younger ewes are less likely to have 
developed immunocompetency to infection prior to 
pregnancy [21, 22]. Most recent Australian studies that 
included lamb necropsies were conducted with mul-
tiparous ewes, and cause of death was assigned based 
on gross post-mortem findings without adjunct labo-
ratory investigation [2, 23–27]. In general, relatively 
few investigations for abortion and perinatal lamb 
death are submitted to veterinary diagnostic labora-
tories for exclusion of infectious diseases [12]. Conse-
quently, the role of infectious diseases as a contributor 
to mortality of lambs born to primiparous ewes are 
not well described and it is possible that the contribu-
tion of infectious disease to perinatal mortality may be 
underrecognized.

The aim of this study was to determine the com-
mon causes of perinatal death for lambs born to pri-
miparous ewes, and whether infectious disease was 
implicated. In doing so, we identified C. pecorum in 
a surprisingly high proportion of aborted and still-
born lambs from multiple farms, and subsequently 
expanded the study to determine molecular character-
istics for C. pecorum strains detected in aborted and 
stillborn lambs.

Materials and methods
Animals and study sites
Eleven flocks of primiparous ewes from ten farms were 
monitored between the start of mating and lamb mark-
ing at approximately 6  weeks from the start of lambing 
(Table  1). All farms were located in southern Western 
Australia in a region with Mediterranean climate charac-
terised by hot dry summer and cool wet winter.

On each farm, Merino or non-Merino ewes were 
mated as either ewe lambs (7–10 months, n = 7 flocks) or 
primiparous yearling ewes (18–20  months, n = 4 flocks; 
Table 1). All rams were of the same breed as the ewes to 
which they were joined. Rams were confirmed seronega-
tive for Brucella ovis prior to mating using a modified 
complement fixation test [28] where three local B. ovis 
isolates were used as the antigen (DDLS freeze-dried 
culture collection numbers 0735, 1655, 1794). On two 
farms, ewes were artificially inseminated followed by 
a period of natural mating. All other flocks were mated 
naturally with an average mating period of 38 days (range 
32–46  days). All ewes were managed as per standard 
farm practice including use of body condition monitor-
ing to guide nutrition and grazing management, with 
no experimental interventions imposed by this study 
other than monitoring of ewes and lambs as described 
(Table 1).

Measurements
Ewes were pregnancy scanned via transabdominal ultra-
sonography at 62–87  days from the start of mating to 
determine litter size and foetal viability. Ewe body condi-
tion score was recorded at approximately 140 days from 

Table 1  Characteristics of primiparous ewe flocks from Western Australia 

a Determined by transabdominal ultrasound conducted 62–87 days from the start of mating or artificial insemination.
b Average body condition score of the flock assessed approximately 140 days from the start of mating.
c Composite: mixed (non-Merino) breed ewes.

Flock code Year Location Ewe breed Ewe age at mating 
(months)

Pregnant ewes 
(n)a

Pre-lambing 
body condition 
scoreb

A 2018 Kojonup Merino 18–20 186 2.7

B 2018 Kojonup Merino 18–20 178 2.7

C 2019 Katanning Merino 18–20 204 2.8

D 2019 Broomehill Merino 18–20 169 2.5

E 2019 Katanning Merino 7–9 86 2.7

F1 2018 Narrogin Compositec 7–9 148 3.1

F2 2019 Narrogin Compositec 7–9 168 3.1

G 2018 York Compositec & White 
Suffolk

7–9 130 3.1

H 2019 Kojonup Compositec 7–9 151 3

I 2019 Kojonup Dorper 8–10 146 3

J 2019 Ongerup White Suffolk 7–10 103 3.1
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the start of mating using a scale of 1 (very thin) to 5 (very 
fat) as previously described [29].

Farm staff checked the lambing flocks once or twice 
daily throughout the lambing period. Lambs were identi-
fied with an ear tag and their birth type and dam pedigree 
were recorded within 24 h of birth for most (8/11) flocks. 
The total number of lambs born for each flock was cal-
culated using records of the number of lambs tagged at 
birth plus the number of dead lambs collected. On farms 
where tagging at birth was not performed, the number 
of lambs born was calculated based on number of lambs 
present at marking plus the number of dead lambs col-
lected. Number of lambs born may have been underes-
timated at these sites because it is unlikely that all lambs 
that died were recovered for necropsy.

Lamb necropsies and sample collection
Lambs that died in the first three days following birth 
were retained for necropsy to determine cause of death. 
Dead lambs were either refrigerated (4  °C) or frozen 
(−20  °C) for up to 5  days before necropsies were per-
formed. One aborted foetus and one foetal membrane 
were also recovered from Flock F1 prior to the start of 
lambing and submitted for necropsy and diagnostic test-
ing for infectious agents.

Lamb necropsies were performed by a single person 
using methods described by Everett-Hincks and Duncan 
[30]. Briefly, post-mortem examination included record-
ing the weight, sex and details of the external appearance 
of the lamb along with gross examination of thoracic and 
abdominal organs. Brain tissues were assessed for lesions 
only in lambs that had not been frozen. Cause of death 
was classified according to methods previously described 
[30], and described in more detail in Additional file 1.

Tissue samples from aborted or stillborn lambs from 
flocks with at least two lambs classified as abortion or 
stillbirth were submitted to the Department of Primary 
Industry and Regional Development Diagnostic Labora-
tory Service (South Perth, Western Australia). The type 
of tissues submitted varied between cases (Additional 
file  2), with liver and placenta submitted for all cases 
except where these were not available due to predation.

Laboratory investigation
Histology, bacteriology and molecular diagnostics for 
endemic and exotic abortigenic agents were performed 
by the Department of Primary Industry and Regional 
Development’s Diagnostics and Laboratory Services. Bac-
teriology comprised culture on blood agar plus selective 
culture for Salmonella spp., Campylobacter spp. and Lis-
teria spp.. Molecular testing included polymerase chain 
reactions (PCRs) for Brucella spp., Campylobacter spp., 
Leptospira spp., Toxoplasma gondii, Coxiella burnetii, 

pestiviruses and Chlamydia spp. that are described in 
more detail below.

All aborted tissue samples underwent routine bac-
teriological culture on Columbia agar (Oxoid) with 5% 
equine blood and MacConkey agar (Oxoid). Addition-
ally, foetal liver, cotyledon and placenta samples were 
subject to selective isolation for Listeria, Salmonella and 
Campylobacter (PathWest Media, Western Australia). All 
cultures were incubated at 37 °C with 5% CO2 except for 
the Campylobacter cultures which were incubated under 
microaerophilic conditions.

Histopathology was performed on formalin fixed tis-
sues processed to haematoxylin and eosin (H&E) slides; a 
subset of cases was also subjected to immunohistochem-
istry. Representative specimens were processed from 10% 
buffered formalin solution to paraffin embedded tissue 
in a Logos Milestone histological processer and blocked 
using standard histological techniques. Sections were 
trimmed at 4 μm thickness and stained to H&E in a Leica 
autostainer XL with Leica CV5030 coverslipper. Selected 
sections were subject to immunohistochemistry with 
an anti-Chlamydia polyclonal antibody (B47829R, Pro-
gen) and an anti-Toxoplasma gondii polyclonal antibody 
(B65201R, Biodesign). Both antibodies were visualised 
using the Dako Envision Dual-link system and Dakocy-
tomation DAB+ (both Dako, Agilent) according to the 
manufacturers’ instructions.

Molecular testing—nucleic acid extraction
DNA extraction was performed using the QIAamp DNA 
Mini Kit (Qiagen) and run on the automated Qiacube 
platform (Qiagen) following the Purification of DNA 
from tissues protocol. RNA was extracted using the 
MagMAX-96 Viral RNA Isolation Kit (Thermo Fisher 
Scientific) on the MagMAX Express-96 (Thermo Fisher 
Scientific) magnetic bead processor.

Molecular testing—Chlamydia spp.
Chlamydia quantitative polymerase chain reactions 
(qPCRs), targeting the outer membrane protein A 
(ompA) gene, were performed on all foetal liver, cotyle-
don and placenta samples using species-specific assays 
for the detection of C. pecorum [31], C. abortus and 
C. psittaci [32]. Positive C. pecorum detections were 
confirmed via 298  bp and 806  bp Chlamydiales 16S 
rRNA gene fragments PCRs [33] followed by Sanger 
sequencing.

Chlamydia qPCR assays were performed in 25 µL 
reaction volumes containing 0.5  µM of each primer, 
0.2  µM of probe, 12.5 µL of Rotor-Gene Multiplex 
Master Mix (Qiagen) and 5 µL of extracted DNA. The 
qPCR reactions were run on a Rotor-Gene Q (Qiagen) 
real-time PCR cycler under the following conditions: 
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initial denaturation at 95  °C for 5 min followed by 45 
cycles of 95  °C for 15  s and 60  °C for 15  s with fluo-
rescent probe acquisition occurring during the 60  °C 
annealing/extension step. A 25 µL reaction volume was 
also used for the Chlamydiales PCRs and contained 
0.4 µM of each primer, 12.5 µL of HotStarTaq Master 
Mix (Qiagen) and 5 µL of extracted DNA. Conven-
tional PCR was performed on a DNA Engine (Bio-Rad) 
thermal cycler under the following conditions: initial 
denaturation at 95  °C for 5 min followed by 40 cycles 
of 94 °C for 30 s, 55 °C for 45 s and 72 °C for 45 s with 
a final elongation step of 72 °C for 7 min. To minimise 
contamination risk synthetic positive control gBlocks 
Gene Fragments (Integrated DNA technologies) were 
designed for all PCRs.

Conventional PCR amplicons were purified using 
the Qiaquick PCR purification kit (Qiagen) and for-
ward and reverse sequencing reactions were prepared 
in 12 μL volumes containing approximately 12–18  ng 
of PCR product and 9.6 pmol of primer. All amplicons 
were sequenced at the Australian Genome Research 
Facility (AGRF Perth Node) and sequence and BLAST 
analysis was performed using Geneious R11 [34].

Molecular testing—other abortifacents
Screening for Brucella spp. [35], Campylobacter spp. 
[36], Coxiella burnetii [37, 38], pathogenic Leptospira 
spp. [39], Toxoplasma gondii (VetMAX T. gondii Kit—
Thermo Fisher Scientific) and Pestivirus [40, 41] was 
undertaken via PCR. Further screening for Brucella 
spp. [42] was performed at The Australian Centre for 
Disease Preparedness, Geelong, Victoria. All primer 
sequences, probes, final concentrations, and cycling 
conditions for diagnostic PCRs and molecular test-
ing performed in this study are outlined in Additional 
file 3.

C. pecorum genotyping by Multi Locus Sequence Typing 
(MLST) and ompA
Prior to genotyping, the C. pecorum positive DNA sam-
ples from six liver and two cotyledon samples taken from 
eight aborted and/or stillborn lambs from four different 
farms (Additional file 2) were quantified for C. pecorum 
genome copy number (tested in duplicate) using stand-
ard curve calibrated and High Resolution Melt (HRM) C. 
pecorum qPCR assay [43]. The genome copy number/µL 
in samples ranged from 3.41 × 102–2.47 × 105 copies/µL 
DNA template, with geometric mean of 7.26 × 103 cop-
ies/µL (Table 2). The C. pecorum-specific MLST [44, 45] 
and ompA gene sequence analyses [46] are the most com-
monly used molecular typing targets for C. pecorum, due 
to their recognised congruence with whole-genome phy-
logeny. Full-length ompA genotyping [47] and C. peco-
rum MLST [45] were applied as previously described to 
these eight C. pecorum positive DNA samples.

The resultant MLST sequences were confirmed for 
sequence type (ST) by using the online Chlamydiales 
PubMLST database [48]. Both concatenated C. pecorum 
MLST, and ompA sequence and phylogenetic analy-
ses were performed in GeneiousPrime 2020 [34]. The 
concatenated MLST sequences of eight samples from 
this study were aligned using ClustalOmega (as imple-
mented in Geneious) to other 36 publicly available  live-
stock C. pecorum MLST sequences retrieved from the 
Chlamydiales PubMLST database [48]. Using the concat-
enated MLST sequences 3095 bp alignment for the 44 C. 
pecorum global and Australian livestock strains, we have 
constructed a mid-point rooted approximately-maxi-
mum-likelihood phylogenetic tree, using FastTree 2.1.11 
[49].

The ompA sequences from this study were analysed 
by BLASTn [50] to evaluate their % sequence similarity 
to Top BLAST hits, and aligned using ClustalOmega (as 
implemented in Geneious) to other publicly available C. 

Table 2  Mean C. pecorum loads detected by qPCR, and sequence type and sequence identity identified using MLST and 
ompA 

Strain name Tissue Mean Ct Mean qPCR Loads 
(copies/uL)

MLST ompA % 
sequence 
identity

FarmF1_Foetus1 Cotyledon 21.53 10 552 ST 23 100% E58

FarmF1_StillbornLamb2 Liver 21.24 12 900 ST 23 100% E58

FarmF1_Foetus3 Liver 18.46 88 353 ST 23 100% E58

FarmF1_StillbornLamb4 Liver 24.69 1176 ST 23 100% E58

FarmA_StillbornLamb1 Liver 26.47 341 ST 23 100% E58

FarmH_StillbornLamb1 Liver 22.09 7110 ST 23 100% E58

FarmH_StillbornLamb2 Cotyledon 16.97 247 296 ST 23 100% E58

FarmJ_StillbornLamb Liver 25.06 911 ST 23 100% E58
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pecorum ompA sequences retrieved from GenBank [51]. 
Using the 980 bp ompA alignment for the eight C. peco-
rum  strains described in this study and additional 20 
previously described strains, we constructed a mid-point 
rooted Bayesian phylogenetic tree, using MrBayes [52] 
as implemented in GeneiousPrime (Figure  1). The tree 
parameters included: GTR + I + G nucleotide substitu-
tion model, with four Markov Chain Monte Carlo chains 
of million generations, subsampled every 10 000 runs, 
and 100 000 trees discarded. The ompA sequences from 
this study were deposited in Genbank under accession 
numbers MW273771-MW273778. The MLST sequences 
were deposited in the Chlamydiales PubMLST database 
[48].

Statistical analyses
Lamb mortality (%) between birth and marking for sin-
gle-born lambs and multiple-born lambs (twins and tri-
plets) were compared using two-tailed z-test [53]. Only 
farms where lambs were tagged at birth (Flocks A, B, C, 
E, G, H, I, J) were included in calculation of mortality for 
single- and multiple-born lambs. The proportion of cases 
with C. pecorum detected for each ewe age category (ewe 
lambs and yearling ewes) were compared using two-
tailed z-test [53].

Results
Lamb mortality
From a total of 1963 lambs born, 1395 individual lamb 
records (including birth type, dam pedigree and survival) 
were available. Lamb mortality for study flocks are out-
lined in Additional file  4. Overall, lamb mortality from 
birth to marking ranged 12.6–27.1% for Merino yearling 
flocks and 9.3–40.7% for non-Merino ewe lamb flocks. 
Mortality rate for multiple-born lambs (twins or triplets) 
was 12% higher than for single-born lambs (P ≤ 0.001). 
One aborted foetus was recovered from Flock F1, and 
sequential pregnancy ultrasounds identified 7% of ewes 
with evidence of pregnancy loss occurring between day 
80 and 117 from the start of mating in that flock. No 
overt evidence of outbreak of abortion (“abortion storm”) 
or ewe illness was observed by the farmers in any of the 
flocks during the study.

Necropsies and cause of death
A total of 298 lamb necropsies were performed, which 
represented 69.1% of lambs that died between birth and 
marking. Remaining cases without necropsy either were 
not recovered by the farmers or died after 72 h of age.

The cause of death assigned at necropsy are 
shown in Additional file  5. Cause of death was 
established for 76% (227/298) of cases. The 

starvation–mismosthering–exposure complex, dysto-
cia, and stillbirths accounted for 96% (218/227) of cases 
where cause of death was identified. Predation and 
decomposition were reported for 26% of necropsies. 
Overall, abortion, prematurity and stillbirth represented 
21% necropsies where a cause of death category was 
assigned. Ewe death during the lambing period (n = 16) 
and subsequent death of their progeny was associated 
with 5% (23/431) lamb mortalities from birth to marking.

Laboratory investigation for abortion and stillbirth cases—
pathogen detection
Specimens for 35 cases classified as abortion or stillbirth 
from six farms were tested for evidence of infectious dis-
ease (Table 3 and Additional file 2). Chlamydia pecorum 
DNA was detected by qPCR in 39% (13/33) of stillborn or 
premature cases and 100% (2/2) of abortion cases, with 
C. pecorum detected at five of the six farms (Table  3). 
Chlamydia pecorum DNA detection in aborted or still-
born progeny was higher for cases born to ewe lambs 
(64%, 14/22) compared with yearling Merino ewes (8%, 
1/13; P = 0.001).

The only abortigenic bacteria isolated via culture was 
Trueperella pyogenes (n = 2), including in one case where 
C. pecorum was concurrently detected using qPCR. 
Toxoplasma gondii, Listeria spp., Campylobacter fetus, 
Campylobacter jejuni and exotic abortigenic agents (C. 
abortus, B. melitensis, S. enterica serovar Abortusovis) 
were not detected by culture or molecular diagnostics 
(Table 3).

Laboratory investigation for abortion and stillbirth cases—
histopathology
The majority of tissues submitted had significant autoly-
sis and/or had been frozen which negatively impacted 
histopathological assessment (Additional file 6). In addi-
tion, due to the opportunistic nature of some of the 
sample collection, the range of tissues available for exam-
ination was variable, which prevented standardised eval-
uation of every individual. Cases where fixed tissues were 
available for histological assessment (n = 17) are summa-
rised in Additional file 6. For cases in which C. pecorum 
was detected by qPCR and fixed tissue were available for 
histopathology (n = 9), lesions observed included placen-
titis (n = 4) epicarditis (n = 3), meningitis and encephali-
tis (n = 2), portal hepatitis and renal pyelitis (n = 2).

Necrotising placentitis with neutrophilic vasculitis was 
present for three lambs, with variable placental miner-
alisation. Another lamb displayed histiocytic infiltration 
of the allantoic mesenchyme without necrosis or vascu-
litis. Three of the five placental samples were subjected 
to Chlamydia IHC and all three were positive, with cyto-
plasmic staining of trophoblasts and macrophages.
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Epicarditis was noted in three lambs, with mild, mul-
tifocal histiocytic and lymphocytic infiltrates present 
in each. Two lambs displayed a multifocal, histiocytic 
meningitis, moderate in intensity in one and mild in the 
second. The more severe case also had multifocal neu-
trophilic encephalitis and multifocal glial nodule for-
mation. These sections were both Chlamydia spp. and 
Toxoplasma gondii IHC negative. Two lambs had mild, 
multifocal infiltrates of histiocytes and lymphocytes in 
the portal triads of the liver. Two lambs had histiocytic 
and variably neutrophilic infiltrates in the submucosa 
of the renal pelvis. The more severe case also displayed 
several renal epithelial cells distended by small, round, 
basophilic intracytoplasmic bodies compatible with 
chlamydial inclusions. The epithelium in the second case 
had sloughed and was unavailable for examination.

In addition, five lambs displayed meconium or squa-
mes in small pulmonary airways and five had a mild mac-
rophage or neutrophil infiltrate in the alveoli. Of the five 
with inflammatory infiltrates in alveoli, two displayed 
positive staining of macrophage cytoplasm by Chlamydia 
IHC.

Molecular characterisation of C. pecorum using MLST 
and ompA genotyping
The C. pecorum MLST and ompA genotyping was applied 
to samples from aborted (n = 2) or stillborn lambs (n = 6) 
from four farms, and compared to previously reported C. 
pecorum MLST and ompA sequences. The C. pecorum 
strain sequence types (STs) detected in the aborted and 
stillborn lambs were denoted as ST23. This genotype was 
identical to, and clustering with strains previously asso-
ciated with pathogenicity including recently described 
ovine abortion from NSW (e.g. NSW_F1, NSW_F2, 
NSW_F3), ovine polyarthritis and/or conjunctivitis (e.g. 
Australian Mer_Ovi1_Jnt and Nar_S24_LE), and sporadic 
bovine encephalomyelitis (US E58, and Australian NSW/
Bov/SBE, WA_Bov65_Brain) (Figure  1). The remaining 
C. pecorum STs that have been previously described are 
mainly sheep and cattle rectal strains, and strains from 
pig and goat hosts. These other ST clustered in three dis-
tinct and diverse larger clades.

Similarly, the ompA sequences detected in aborted and 
stillborn lambs in this study were genetically identical to 
previously reported isolates and strains associated with 

Table 3  Detection of infectious agents from aborted or stillborn lambs in Western Australia 

a Premature twins.
b C. sputorum and C. mucosalis by sequencing (suspected contaminant).

Yearlings Ewe lambs

Flock A Flock B Flock F1 Flock F2 Flock H Flock I Flock J Total

Cases submitted (n)

Total 10 3 10 4 4 2 2 35

Aborted foetus & membranes 0 0 1 0 0 0 0 1

Aborted membranes only 0 0 1 0 0 0 0 1

Stillborn lamb 10 3 8 4 4 2 2a 33

Chlamydia spp.
C. pecorum

 qPCR positive 1 0 9 0 3 1 1 15

 Sequencing—C. pecorum 1 0 4 0 3 1 1 10

 Insufficient amplification 0 0 5 0 0 0 0 5

C. abortus 0 0 0 0 0 0 0 0

C. psittaci 0 0 0 0 0 0 0 0

Other
Listeria (culture) 0 0 0 0 0 0 0 0

Salmonella (culture) 0 0 0 0 0 0 0 0

Trueperella pyogenes (culture) – – 1 – 1 – – 2

Campylobacter (culture) 0 0 0 0 0 0 0 0

Campylobacter (PCR) 0 0 2b 0 0 0 0 2a

Leptospira (PCR) 0 0 0 0 0 0 0 0

Toxoplasma (qPCR) 0 0 0 0 0 0 0 0

Coxiella (qPCR) 0 0 0 0 0 0 0 0

Brucella (PCR) 0 0 0 0 0 0 0 0

Pan-pestivirus (qPCR) 0 0 0 0 0 0 0 0
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pathogenicity (e.g. Australian Mer/Ovi1/Jnt), US E58, 
and Australian NSW/Bov/SBE) clustering together in 
a well-supported clade (Additional file  7). The remain-
ing the ompA sequences from sheep, goat and/or bovine 
rectal and other strains clustered in several genetically 
diverse clades (Additional file 7).

Discussion
The detection of C. pecorum in aborted and stillborn 
lambs from primiparous ewes from multiple farms was 
the most striking observation in this study. Chlamydia 
pecorum has predominantly been associated with pol-
yarthritis [54–56], keratoconjunctivitis [43] and asymp-
tomatic gastrointestinal carriage and faecal shedding 
in Australian sheep [57]. Abortion due to C. pecorum is 
sporadic and not commonly reported [12, 18, 20], and 
the role of C. pecorum as an abortigenic agent is not well 
defined. Thereby, detection of this organism in aborted 
and stillborn lambs from multiple farms with no epide-
miological or geographical relationship is notable, and C. 
pecorum should be considered as a differential diagnosis 
for abortion and perinatal mortality in Australian sheep.

Determining the aetiology in abortion and perinatal 
lamb death investigations is inherently challenging [12], 
and conclusive diagnosis of disease cannot be made 
based only on detection of a pathogen in tissue samples. 
Nevertheless, several observations from this study sug-
gest C. pecorum was a likely aetiological agent associ-
ated with abortion and stillbirth on these farms. Firstly, 
other endemic and exotic abortigenic agents were not 
detected. Secondly, histopathological changes for cases 
where C. pecorum was detected were consistent with 
those reported for C. abortus and previously described 
C. pecorum abortion in small ruminants [18, 58, 59]. 
The high loads of C. pecorum detected in placenta and 
foetal liver from aborted and stillborn lambs (Table  2) 
was consistent with observations for other clinical dis-
eases associated with C. pecorum [44, 55, 56]. Finally, 
MLST and ompA characterisation of high load C. peco-
rum DNA from aborted and stillborn lambs identified 
ST23 type strains that were identical to other globally 
distributed ST23 strains associated with pathology in 
sheep and cattle, including abortion [18, 60], arthritis 
[61, 62] and conjunctivitis [61, 62] in sheep, and sporadic 
bovine encephalopathy in cattle [44, 61]. Emerging evi-
dence of abortigenic potential of C. pecorum is perhaps 
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constructed using a 3095 bp concatenated MLST sequences alignment from the 44 C. pecorum strains, including the abortigenic C. pecorum strains 
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not surprising given the closely related C. abortus is an 
important cause of abortion in sheep in other countries, 
and C. psittaci is a cause of abortion in horses [63, 64].

Chlamydia pecorum was detected in aborted and 
stillborn lambs from five out of six farms. However, the 
degree to which C. pecorum ST23 contributed overall 
lamb mortalities could not be determined. Infectious 
disease screening was not conducted for lambs that died 
from causes other than abortion or stillbirth, includ-
ing those classified as starvation-mismothering. How-
ever, similar to other bacterial infections of the pregnant 
uterus, it is likely that C. pecorum-associated placentitis 
results in a spectrum of outcomes, including abortion, 
stillbirths, lambs that are born alive, but weak and with 
low birth weights and poor survival, congenital infec-
tions or even normal offspring, depending on the severity 
of placental pathology and colonisation [18, 65]. Future 
investigations should determine whether infection con-
tributes to reduced lamb viability, as well as abortion or 
stillbirth, and factors that impact outcome for infection.

Chlamydia pecorum detection was higher for aborted 
and stillborn progeny of younger ewes (ewe lambs) com-
pared to yearling ewes. This was consistent with a recent 
case report from New South Wales, Australia where C. 
pecorum abortion was reported in primiparous ewe 
lambs, with no evidence of abortion storm in multipa-
rous ewes on the same property [18]. Ewes mated as ewe 
lambs (under 12 months of age) may be more susceptible 
to C. pecorum ST23 infection and pathology. The repro-
ductive performance of ewe lambs is highly variable. 
Improved understanding about the impact of C. pecorum 
ST23 on reproductive performance of ewe lambs and 
opportunities to mitigate impacts could inform manage-
ment recommendations to improve their reproductive 
performance.

Chlamydia pecorum is endemic in Australian livestock 
[55, 57, 61], including sheep and cattle, and ubiquitous 
in livestock worldwide [64]. The route by which ewes 
became infected was not tested in our study. Faecal-oral 
transmission has been hypothesised, however mucosal 
shedding has been reported and transmission routes 
such as oculo- oral- or nasal contact, sexual transmission 
or inhalation are plausible [64].

Asymptomatic C. pecorum infections are commonly 
detected in sheep, with faecal carriage detected 30% fae-
cal samples over three time points and flock point preva-
lence ranging 0–94% in Australian sheep [57]. However, 
MLST and ompA genotyping has demonstrated ST23 
detected in cases of abortion, arthritis and conjunctivitis 
are distinct from gastrointestinal strains detected in rec-
tal swabs (Figure 1). Therefore, studies that do not char-
acterise C. pecorum ST cannot assess prevalence for the 
pathogenic ST23 genotype and the epidemiology for C. 

pecorum ST23 in Australian sheep remains poorly under-
stood. Incidence of abortion, conjunctivitis and lameness 
are typically not reported for flocks included epidemio-
logical studies because these conditions are challenging 
to detect in extensively managed sheep and may not be 
evident at the time of sampling. The incidence of con-
junctivitis and arthritis was not able to be determined for 
flocks in our study, however polyarthritis associated with 
C. pecorum was detected in sheep from Farm F [56].

Overall lamb mortality for flocks in this study was 
comparable with ranges reported in other Australian 
studies [1]. Stillbirths accounted for 19% of necropsies 
where cause of death was determined, and despite the 
detection of C. pecorum, was not markedly different to 
stillbirths as proportion of total losses reported in other 
Australian studies [2]. Notably, stillbirths and abortion 
associated with C. pecorum ST23 were detected in flocks 
without overt evidence of abortion storm (i.e. observa-
tion of abortions by the farmer) or illness in ewes that 
would have normally triggered a veterinary investigation. 
This suggests C. pecorum may be associated with sub-
clinical losses that go undetected on Australian farms, 
and explains why C. pecorum abortion is not more widely 
reported.

Listeriosis, campylobacteriosis and toxoplasmosis are 
the most common infectious causes of abortion and peri-
natal death in Australian sheep [12, 13]. These diseases 
are sporadic and were not detected in any of the aborted 
or stillborn lambs in this study. There was no evidence of 
exotic infectious diseases. Trueperella pyogenes was cul-
tured in two cases, but the significance of this finding was 
not clear. Although T. pyogenes has been reported as a 
primary abortigenic agent [12, 66], the commensal nature 
of the organism on the mucosal surfaces predisposes 
aborted and birth material to secondary contamination 
[67]. Regarding the case where both T. pyogenes and C. 
pecorum were detected in the same lamb, co-infections 
with other pathogens has been reported for both species 
[31, 67]. However, the role of a synergistic interaction 
between C. pecorum and T. pyogenes, precipitating in 
disease, has not been established. This observation also 
serves as a reminder to consider mixed and co-infections 
during abortion investigations.

Starvation–mismosthering–exposure complex and 
dystocia accounted for most lamb mortalities that 
occurred in the perinatal period and mortality was higher 
for multiple-born lambs compared to single-born lambs. 
This was consistent with studies reported for multiparous 
ewes in Australia [1, 2, 5, 68], and primiparous ewes in 
New Zealand [9, 10]. Strategies to reduce dystocia and 
starvation–mismosthering–exposure, including provi-
sion of adequate shelter for lambing ewes and manag-
ing ewe nutrition during pregnancy to optimise lamb 
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birthweights may help optimise survival for progeny of 
primiparous ewes [4].

The ability to assess brain and neurological tissue at 
necropsy was impacted by freezing of some carcasses and 
the extent of time lapsed prior to necropsy. This impacted 
comparison of proportion of mortalities attributable to 
dystocia relative to other studies that use brain and spi-
nal cord lesion scores to determine cases as dystocia 
B (stillbirth) or dystocia C (birth injury) where obvious 
subcutaneous oedema of the head or neck is not present 
[2, 25]. Additionally, predation and decomposition were 
evident in approximately one quarter of necropsies, con-
tributing to number of cases where cause of death could 
not be determined.

Chlamydia pecorum was detected in abortions and 
stillborn progeny of primiparous ewes from multiple 
farms and should be considered as a differential diagnosis 
for abortion and perinatal mortality in Australian sheep. 
The C. pecorum strains detected from abortions and 
stillborn lambs belong to the ST23 clade that has previ-
ously been associated with abortions in sheep and cattle, 
and other diseases including polyarthritis, conjunctivitis 
and sporadic bovine encephalitis. Further investigation 
to quantify impact of C. pecorum as a cause of abortion, 
stillbirth or poor lamb viability in sheep, and determine 
factors that impact infection outcome are warranted. 
Starvation–mismosthering–exposure complex, dystocia 
and stillbirths accounted for most lamb mortalities for 
lambs born to primiparous ewes, which is consistent with 
that reported for adult ewes.
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