Genetic and Proteomic Characterization of *rpoB* Mutations and Their Effect on Nematicidal Activity in *Photorhabdus luminescens* LN2

Xuehong Qiu, Xun Yan, Mingxing Liu, Richou Han*

Guangdong Entomological Institute, Guangzhou, Guangdong, China

Abstract

Rifampin resistant (Rif^R) mutants of the insect pathogenic bacterium Photorhabdus luminescens LN2 from entomopathogenic nematode *Heterorhabditis indica* LN2 were genetically and proteomically characterized. The Rif^R mutants showed typical phase one characters of Photorhabdus bacteria, and insecticidal activity against Galleria mellonella larvae, but surprisingly influenced their nematicidal activity against axenic infective juveniles (IJs) of H. bacteriophora H06, an incompatible nematode host. 13 out of 34 Rif^R mutants lost their nematicidal activity against H06 IJs but supported the reproduction of H06 nematodes. 7 nematicidal-producing and 7 non-nematicidal-producing Rif^R mutants were respectively selected for rpoB sequence analysis. rpoB mutations were found in all 14 Rif^R mutants. The rpoB (P564L) mutation was found in all 7 mutants which produced nematicidal activity against H06 nematodes, but not in the mutants which supported H06 nematode production. Allelic exchange assays confirmed that the Rif-resistance and the impact on nematicidal activity of LN2 bacteria were conferred by rpoB mutation(s). The non-nematicidal-producing Rif^R mutant was unable to colonize in the intestines of H06 IJs, but able to colonize in the intestines of its indigenous LN2 IJs. Proteomic analysis revealed different protein expression between wild-type strain and Rif^R mutants, or between nematicidal-producing and non nematicidalproducing mutants. At least 7 putative proteins including DsbA, HlpA, RhIE, RpIC, NamB (a protein from T3SS), and 2 hypothetical proteins (similar to unknown protein YgdH and YggE of Escherichia coli respectively) were probably involved in the nematicidal activity of LN2 bacteria against H06 nematodes. This hypothesis was further confirmed by creating insertion-deletion mutants of three selected corresponding genes (the downregulated rhlE and namB, and upregulated dsbA). These results indicate that the rpoB mutations greatly influence the symbiotic association between the symbionts and their entomopathogenic nematode hosts.

Citation: Qiu X, Yan X, Liu M, Han R (2012) Genetic and Proteomic Characterization of *rpoB* Mutations and Their Effect on Nematicidal Activity in *Photorhabdus luminescens* LN2. PLoS ONE 7(8): e43114. doi:10.1371/journal.pone.0043114

Editor: Vladimir N. Uversky, University of South Florida College of Medicine, United States of America

Received March 1, 2012; Accepted July 17, 2012; Published August 17, 2012

Copyright: © 2012 Qiu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by National Natural Science Foundation of China (No: 31010103912, No: 31000879 and No: 31101494), Natural Science Foundation of Guangdong Province, China (No: 10151026001000010) and Guangzhou Science & Technology Project (No: 2011J2200032). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: richou-han@163.net

Introduction

Rifampin (Rif), first introduced in 1972 as an antitubercular drug, was initially extremely effective against Mycobacterium tuberculosis, and other bacteria [1-2]. With its widespread and extended use, the number of bacterial isolates resistant to Rif has increased. Most Rif-resistance mutations in M. tuberculosis as well as in Escherichia coli and Staphylococcus aureus were conferred by a set of restrictive mutations in the rpoB gene, which encoded the β subunit of RNA polymerase (RNAP) in bacteria [3-4]. DNAdependent RNAP, which contains an essential catalystic core enzyme $(\alpha_2\beta\beta'\omega)$ and one of the sigma (δ) factors, is the central enzyme for expression of genomic information in all organisms. Rif inhibits transcription initiation by blocking the *rpoB* of bacterial RNAP [5-6]. E. coli rpoB mutations that suppress the auxotrophy due to lack of stringent response were demonstrated to affect the transcription of stringently controlled genes by destabilizing the RNAP-stable RNA promoter complex [7]. The Rif resistant (Rif^R) *M. tuberculosis* mutations of the *rpoB* gene were found in nearly 95% of clinical isolates [4]. Most of the mutations were located from

nucleotides 1276 to 1356 (codon 432–458 in *M. tuberculosis rpoB* gene and codon 507–533 in *E. coli rpoB* gene). An 81 bp core region was called the Rif resistance determining region (RRDR) of rpoB [8–10]. However, a significant number of Rif^R mycobacteria with no mutations in the rpoB gene have been isolated from different clinical samples [11–14]. A 191A/C mutation in the Rv2629 gene was reported to be significantly associated with Rifresistance in *M. tuberculosis* [15]. Recently, it was reported that the K1 uptake regulator TrkA played an important role in intrinsic and acquired antibiotic resistance in mycobacteria [16]. Besides Rif-resistance, the rpoB mutation (A621E) conferred dual heteroresistance to daptomycin and vancomycin in *Staphylococcus aureus* [17], but most rpoB mutations were involved in reduced vancomycin susceptibility [18]. It suggested that different rpoB mutations may have different effect on bacteria.

Photorhabdus and *Xenorhabdus* bacteria belonging to the Enterobacteriaceae are symbiotically associated respectively with entomopathogenic *Heterorhabditis* and *Steinernema* nematodes, which are used as a commercial bioinsecticide for many economically important insect pests [19]. The association between the nematodes and their symbiotic bacteria plays an important role in the pathogenicity and production of these nematode-bacterium complexes. The infective juveniles (IJs) of these nematodes are a developmentally arrested non-feeding form, ensheathed in the second stage cuticle and harbor *Photorhabdus* or *Xenorhabdus* cells as symbionts in their intestines. The IJ nematodes properly maintain and carry the bacteria needed for killing insects and providing a suitable environment for the reproduction of new vectors [20–22]. Different *Photorhabdus* or *Xenorhabdus* bacterial isolates differ in their ability to support *in vitro* monoxenic cultures of non-host nematodes [23–30] and to retain the bacterial cells in the IJ intestines [22–23,26,28,31].

Strains of *Photorhabdus* and *Xenorhabdus* not only show insecticidal activities towards different insects [32–36] but also exhibit nematicidal activities against some plant nematodes, such as *Meloidogyne incognita* [37], the free-living soil nematode *Caenorhabditis elegans* [38], and for *Steinernema* nematodes [39].

The trans-specific nematicidal activity of *P. luminescens* subsp. *akhurstii* LN2, a normal symbiont of *H. indica* LN2, against *H. bacteriohora* H06 nematodes was previously observed [40]. These bacteria secrete unidentified toxic factors lethal for H06 nematodes although the bacteria produce signals which trigger the recovery of H06 IJ nematodes [30]. A novel *P. luminescens* LN2 gene involved in the nematicidal activity against *H. bacteriophora* H06 IJs was identified [41].

Xenorhabdus and *Photorhabdus* bacterial isolates resistant to Rif were used in several references [42–46]. When different Rif^R mutants of *P. luminescens* LN2 were monoxenically combined respectively with the axenic IJs of a Chinese isolate *H. bacteriophora* H06, the involvement of *rpoB* mutation in the nematicidal activity (incompatible symbiosis) was discovered.

To achieve an overall view of phenotypic, genetic and metabolic modifications associated with different Rif^{R} mutants, the experiments were conducted to determine: (1) the effects of different Rif^{R} mutants of *P. luminescens* LN2 on the growth of their corresponding incompatible nematode hosts, *H. bacteriophora* H06; (2) the phenotypic and biochemical characters of the Rif^{R} mutants; (3) the *rpoB* mutations in the Rif^{R} mutants; (4) the effects of *rpoB* mutations in the Rif^{R} mutants; (5) the mutualistic colonization of H06 IJs by the Rif^{R} mutants; (6) the proteomic analysis of the mutants and wild-type bacterial strain; (7) the effects of differentially expressed proteins detected from proteomic analysis on nematicidal activity.

Materials and Methods

Nematode Species, Bacterial Strains, Plasmids and Culture Conditions

Bacterial strains and plasmids used in this study are listed in Table 1. *P. luminescens* subsp. *akhurstii* LN2 isolated from its host nematode *H. indica* LN2 was used for the isolation of spontaneous Rif^R mutants. *P. luminescens* H06 or HNA were used for the mass production of *H. bacteriophora* H06. The bacterial strains were cultured in LB1 broth (1% tryptone, 0.5% yeast Extract, 0.5% NaCl) or on LB1 agar at 25°C. The primary form (phase one) of these bacteria was obtained by selecting green or blue-green colonies on NBTA or red colonies on MacConkey agar, and repeated subculturing [47]. Stock cultures were maintained in 15% glycerol (v/v) in LB1 at -80° C. *E. coli* strains were grown in LB2 broth (1% tryptone, 0.5% yeast Extract, 1% NaCl) or on LB2 agar at 37°C.

When required, antibiotics were added to the medium with the following concentrations: ampicillin (Amp), 100 μ g/mL; kanamy-cin (Km), 50 μ g/mL; rifampin (Rif), 50 μ g/mL; and tetracycline

(Tc), $25 \ \mu\text{g/mL}$; chloramphenicol (Cm), $25 \ \mu\text{g/mL}$. All the antibiotics used in this study were purchased from Sigma Chemical Company and all medium components from Oxoid Company, England.

Production of Axenic Heterorhabditis IJs

Axenic *H. bacteriophora* H06 IJs for the monoxenic nematodebacterium recombinations were obtained according to the method as previously described [30]. Briefly, IJs of H06 were grown monoxenically on nonspecific *P. luminescens* HNA on a sponge medium consisting of 1% yeast extract, 5% egg yolk, 15% soya flour, 5% corn oil, 8% polyether polyurethane sponge and 50% distilled water [30]. The IJs were collected by centrifugation and migration through a 30 μ m nylon cloth sieve under sterile conditions, surface-sterilized in 0.5% streptomycin-sulfate (Merck, Germany) for 6 h and then rinsed three times in sterile distilled water. The axenicity of these surface-sterilized IJs was checked as previously described [30]. Because these IJs can be reared with the provided bacterial isolates, and are not able to contain the bacteria in their intestines, they are free of bacteria after surface sterilization.

Nematicidal Bioassay of the Rif^R Mutants

The Rif^R mutants from LB1 agar with Rif were screened for their nematicidal activities against H. bacteriophora H06 IJs according to the method as previously described [30]. Approximately 100 axenic H06 IJs were introduced to the 2-day old lawn of wild-type strain or Rif^R mutants of *P. luminescens* LN2 grown on LB1 agar in 96-well tissue culture plate (Corning, New York, USA). Mortality and growth of the IJs were observed daily and recorded until 15 days. A lawn of wild-type P. luminescens H06 was used as a control. A mutant was considered positive for nematode growth if the tested nematodes were able to survive at least 7 days and produce the next generation of juveniles from the hermaphrodites. If the mutants were unable to support the survival of nematodes, the introduced IJs died after 7 days. The effect of the Rif^R mutants on H06 IJs were verified by repeating the nematode survival and growth experiments three times, each with 12 replicates. Among the 34 tested Rif^R mutants, 13 mutants were identified positive, and 21 mutants negative for the growth of H. bacteriophora H06. 7 positive (LN2-R2, LN2-R6, LN2-R12, LN2-R15, LN2-R28, LN2-R31, LN2-R33) and 7 negative mutants (LN2-R3, LN2-R5, LN2-R7, LN2-R8, LN2-R11, LN2-R16, LN2-R25) were selected for further study (Table 2).

Colonial Characterization of the Mutants and Wild-type Bacterial Strain

Colony pigmentation was determined on LB1 agar, NBTA, and MacConkey agar plates. pH-sensitive pigment production in LB1 was determined by addition of 1 M NaOH or 1 M HCl. Tests for the production of antibiotic substances were conducted as previously described [48], using *Bacillus subtilis* as test organism, and scored positive when a growth inhibition zone of >3 mm was measured around the *P. luminescens* colonies at 96 h after inoculation of the overlay culture. Bioluminescence was observed by dark-adapted eyes in a dark room. Cell morphology was observed microscopically. Catalase activity was tested by introducing 0.1 ml 3% hydrogen peroxide into the bacterial cultures and observing the release of oxygen. For all assays, both wide-type and mutant colonies were characterized on the same agar plate ad positive and negative controls. At least three plates for each medium were established. Table 1. Bacterial strains and plasmids used in this study.

Strain/plasmid	Description, relevant characteristics	Reference or source
Photorhabdus Iuminescens strains		
LN2/LN2-W	Wild-type isolate from host nematode H. indica LN2	Ralf-Udo Ehlers
LN2-R1~LN2-R34	Spontaneous Rif ^R mutant of wild-type strain LN2; Rif ^R	This study
LN2-A	Spontaneous Amp ^R mutant of wild-type strain LN2; Amp ^R	This study
LN2-M1	Tn5 insertion mutant of LN2; Amp ^R , Km ^R	[41]
H06	Wild-type isolate from host nematode H. bacteriophora H06	Laboratory stock
HNA	Wild-type isolate from host nematode H. megidis HNA	Dr Wim Wouts
_N2-W∆ <i>rpoB-</i> LR31	LN2-W containing the mutant rpoB allele from LN2-R31	This study
_N2-R31∆ <i>rpoB-</i> LW	LN2-R31containing the wild-type rpoB allele from LN2-W	This study
_N2∆rhIE	LN2-A <i>rhlE</i> ::Cm	This study
_N2∆namB	LN2-A <i>namB</i> ::Cm	This study
.N2∆ <i>dsbA</i>	LN2-A <i>dsbA</i> ::Cm	This study
Escherichia coli strains		
DH5a	Host of plasmids	TaKaRa
517-1 (λpir)	<i>E. coli</i> lysogenized with λpir , replication of <i>ori</i> R6K	[51]
TOP10	Cloning strain	Invitrogen
Plasmids		
oMini-Tn <i>5</i>	<i>ori</i> T, <i>ori</i> R6K, delivery plasmid for mini-Tn5; Km ^R	[52]
DCR4-TOPO	Cloning vector; Amp ^R , Km ^R	Invitrogen
oMD-18T	Cloning vector; Amp ^R	TaKaRa
oMD-19T	Cloning vector; Amp ^R	TaKaRa
oUC19-egfp	pUC19 carrying <i>egfp</i> ; Amp ^R	Laboratory stock
oMD-egfp	pMD-18T carrying ribosome binding site and <i>egfp</i> gene; Amp ^R	This study
oMD-lac-egfp	pMD-19T carrying ribosome binding site, <i>lacZ</i> promoter and <i>egfp</i> gene; Amp ^R	This study
oMini-lac-egfp	pMini-Tn5 carrying a Notl fragment containing ribosome binding site, lacZ promoter and egfp gene; Km ^R	This study
PHU281	<i>lacZ' mob</i> (RP4), Tc ^R derivative of pUC18 with <i>oriT</i>	[50]
PHU281-rpoB-LW	pPHU281 carrying a BamHI-PstI fragment containing rpoB gene from wild-type strain of P. luminescens LN2	This study
PHU281-rpoB-LR31	pPHU281 carrying a BamHI-PstI fragment containing rpoB gene from Rif ^R mutant of P. luminescens LN2-R31	This study
oKNG101	R6K Ori, <i>sacB</i> , Sm ^R	[56]
oKNG101 <i>-rhlE</i> ::Cm	pKNG101 carrying a <i>rhlE</i> ::Cm fragment, Sm ^R , Cm ^R	This study
oKNG101- <i>namB</i> ::Cm	pKNG101 carrying a <i>namB</i> ::Cm fragment, Sm ^R , Cm ^R	This study
oKNG101- <i>dsbA</i> ::Cm	pKNG101 carrying a <i>dsbA</i> ::Cm fragment, Sm ^R , Cm ^R	This study

doi:10.1371/journal.pone.0043114.t001

DNA Manipulation

Plasmid DNA preparation, extraction of genomic DNA, restriction enzyme digestions, and ligations were carried out as previously described [49]. Restriction enzymes (Promega, USA) and T4 ligase (Novagen, Germany) were used according to the manufacturer's instructions. Plasmids were extracted from *E. coli* with QIAprep Spin Miniprep kit (Qiagen, Netherlands). When required, DNA fragments were extracted and purified from agarose gels using E.Z.N.A.TM Gel Extractio kit (Omega, USA). The genomic DNA was isolated from *P. luminescens* bacteria using E.Z.N.A.TM Bacterial DNA Kit (Omega).

Mutation Analysis of the rpoB Gene from Different Strains

To examine the *rpoB* sequence from the Rif^R mutants and wildtype strain (LN2-W), together with a spontaneous Amp^R mutant LN2-A and the *namA* mutant LN2-M1 [41], the gene was amplified from the genomic DNA of different strains, by PCR with PfuUltraTM II Fusion HS DNA Polymerase (Stratagene, Germany), using the primers rpoB-BamHI-F (5'-GCT<u>GGATC-</u> <u>CATGGTTTACTCCTATACCGAG-3')</u> and rpoB-PstI-R (5'-<u>GCACTGCAG</u>TTATTCGTCTTCCAGCTCGATG-3'). The amplified gene was cloned into pCR4-TOPO vector (Invitrogen, USA), and transformed into *E. coli* TOP10 (Invitrogen). DNA sequencing was performed by Invitrogen Trading (Shanghai) Co. Ltd. All strains were sequenced at least twice. The sequence data of the *rpoB* gene were assembled and analyzed with DNAstar and CLUSTAL W program. The *rpoB* sequence data from wild-type strain of *P. luminescens* LN2 has been submitted to the GenBank database under accession number (JN177303).

Allelic Exchange Mutagenesis of the rpoB Gene

The plasmids of pCR4-TOPO-rpoB-LW and pCR4-TOPOrpoB-LR31 containing corresponding *rpoB* genes from LN2-W and LN2-R31, were digested with *BamH*I (GGATCC) and *Pst*I **Table 2.** *rpoB* mutations of the Rif^R mutants and their effect on H06 nematode growth.

Bacterial mutants	Nucleotide change	Amino acid change	Effect on the growth of H06 nematodes
LN2-R2	G436T	V146F	+
LN2-R6			
LN2-R15			
LN2-R12	C938A	A313D	+
	C1585T	R529C	
LN2-R28	C1535T	S512F	+
LN2-R33			
LN2-R31	C1537A	Q513K	+
LN2-R3	C1691T	P564L	-
LN2-R7			
LN2-R11			
LN2-R16			
LN2-R25			
LN2-R5	C521T	A174V	-
	C1691T	P564L	
LN2-R8	C826T	Q276*	-
	C1691T	P564L	
	A2475G	No change	
LN2-A	No change	No change	-
LN2-M1	No change	No change	+

*Nematode production;

⁻No nematode production and nematode died after 7 days;

*stop code.

doi:10.1371/journal.pone.0043114.t002

(CTGCAG), respectively. The resulting rpoB fragments were purified and ligated into the suicide vector pPHU281 [50] digested with BamHI and PstI to yield plasmids pPHU281-rpoB-LW and pPHU281-rpoB-LR31. The resulting plasmids were transferred into E. coli S17-1 (λpir) [51]. Strains LN2-WΔrpoB-LR31 (LN2-W containing the mutant *rpoB* allele from LN2-R31) and LN2-R31*ArpoB*-LW (LN2-R31containing the wild type rpoB allele from LN2-W) were created by allelic exchange with pPHU281-rpoB-LR31 and pPHU281-rpoB-LW, respectively, using biparental mating method. Rif^R.Amp^R.Tc^S exconjugants of LN2-WArpoB-LR31 and Rif^S.Amp^R.Tc^S exconjugants of LN2- $R31\Delta rpoB-LW$ were selected on LB1 agar plates with appropriate antibiotics. The exconjugants had undergone allelic exchange and lost the wild-type or mutated copy of *rpoB* and the plasmid vehicle. The mutants were verified for the presence of the appropriate rpoB allele by sequencing rpoB gene as described above. The resulting confirmed allelic exchange mutants were determined for the nematicidal activities against the IJs of H06 as described above.

Insecticidal Injection Assays

To check the insecticidal activity of the Rif^R mutants, the wildtype strain and Rif^R mutants of *P. luminescens* LN2 were grown overnight in LB1 broth without antibiotics, subcultured into fresh LB1 broth with 1% of bacterial culture, and incubated at 25°C for 24 h prior to injection. These cultures were washed and diluted to concentrations of 10, 100, 1000 CFU/ μ L in sterile phosphate buffered saline (PBS; 137 mM NaCl, 2.7 mM KCl, 10 mM NaHPO₄, 2 mM KH₂PO₄, pH 7.4). Last instar larvae of greater wax moth *Galleria mellonella* were incubated on ice for approximately 5 min. 10 μ L of the diluted cultures or sterile PBS were injected into the first proleg of each of 10 insect larvae using a 30gauge syringe (Hamilton, Reno, NV). Three replicates with 10 insect larvae per replicate were established. Insects were monitored every 6 h for 120 h post injection. Dead insects were observed to confirm the presence of red color and bioluminescence.

Colonizations of H06 IJs by the GFP-labelled Mutants

To observe the colonization of II nematodes by the Rif^R mutant bacteria, the Rif^R mutant LN2-R31 positive for the growth of H06 nematodes was labeled with GFP by transposon mutagenesis of a pMini-Tn5 [52] containing an expressed *egfp* gene (pMini-lac-egfp). The pMini-lac-egfp was constructed as follows. A fragment containing an egfp gene and ribosome binding site (GAAGGTTTA-GAC) was obtained from pUC19-egfp with primers egfp-SD2 (5'-GAAGGTTTAGACATGGGCAAAGGAGA-3') and egfp-rev (5'-TAGCGGCCGCTTATTTGTATAGTTCATC-3') (NotI). The amplified 750 bp PCR product was cloned into the pMD-18T vector (TaKaRa, Japan) and transformed into E. coli DH5a. Green clone on LB2 plates with ampicillin was selected to extract the plasmid pMDegfp. A NotI-NotI fragment containing the lac promoter and egfp gene from pMD-egfp was cloned into pMD-19T Simple vector (TaKaRa) to generate pMD-lac-egfp, with primers lac-F (5'-AGCGGCCGC-GAGCGCAGCGAGTCAGTGAGC-3) (NotI) and egfp-rev (NotI). After transformed into *E. coli* DH5 α , clones (Amp^R) expressing GFP were detected using epifluorescence microscope (Nikon Eclipse 80i). To construct a transposon delivery vector pMini-lac-egfp, the NotI-NotI fragment carrying ribosome binding site, lac7 promoter and egfp gene from pMD-lac-egfp was inserted into the NotI site of pMini-Tn5. The ligation product was transformed into *E. coli* S17-1 (λpir). Clones

 $(\mathrm{Km}^{\mathrm{R}})$ with green fluorescence were used to deliver the *egfp* gene into the chromosome of the Rif^R mutant LN2-R31 by diparent conjugation. Conjugants (Km^{R} .Rif^R) were selected on LB1 plates at 25°C. GFP-labeled LN2-R31 was observed to express stable green fluorescence, even in the absence of antibiotic selection.

To check the colonization of H06 IJs by the Rif^R mutant LN2-R31, the nematodes were cultured on sponge medium [30] inoculated with GFP-labeled LN2-R31 as described above respectively. The IJs were extracted from the sponge and observed for GFP-labeled bacteria. The IJs were also homogenized with a sterile glass homogenizer after surface sterilization with 0.1% merthiolate and 5-time rinse with sterile distilled water. The presence of the GFP-labeled bacteria retained in the IJs intestines was determined by plating dilutions of surface-sterilized and homogenized nematodes on LB1 agar plates.

2-DE Analysis and Protein Identification by MALDI-TOF-MS

The 48 h old bacterial cells of the wild-type strain and Rif^R mutants (one negative mutant LN2-R16 and three positive mutants LN2-R2, LN2-R31 and LN2-R33, for H06 growth) grown on LB1 plates at 25°C were harvested and washed three times with cold PBS by centrifugation (6000 g, 10 min, 4°C). The cell pellets were resuspended in lysis buffer (8 M urea, 0.2% w/v Bio-Lyte 3/10 Ampholyte (Bio-Rad, USA), 4% CHAPS, 65 mM DTT) containing Protease Inhibitor Cocktail (Calbiochem, Germany) and Benzonase (Novagen, Germany) and disrupted by liquid nitrogen freezing-thawing three times. Cell debris was removed by centrifugation (20000 g, 60 min, 4°C). The supernatant (total cell protein) was divided into aliquots and stored at -80°C until use. Protein concentrations were determined by the Bradford method using Modified Bradford Protein Assay Kit (Sangon, China).

The 2-DE was performed according to the methods described previously [53] and the manufacturer's instruction. The first dimension (isoelectric focusing) was conducted using the IPGphor IEF system (Bio-Rad) at 20°C. For analytical gels, 350 µg protein was solubilized in 400 µL rehydration solution (8M urea, 0.2% w/ v Bio-Lyte 3/10 Ampholyte, 4% CHAPS, 65 mM DTT, 0.001% w/v bromophenol blue), and loaded onto a 17 cm pH 3-10 NL IPG strip (Bio-Rad). Focusing was performed for 13 h at 50V, 1 h at 500 V, 1 h at 1000 V, and 5 h and 30 min at 8000 V (total = 45 kVh). The IPG strips were equilibrated as previously described [53]. The second dimension was performed with 12% (w/v) SDS-polyacrylamide gels using the Protean II xi 2D Multicell system (Bio-Rad). Proteins were stained with silver nitrate, and gels were digitized using Image ScannerII (Amersham Biosciences). Digitized 2-DE gel patterns were edited and matched using the PDQUEST software package (PDI, Humington Station). Triplicate experiments were run to confirm the reproducibility of results

Spots of interest in gels staining with silver nitrate were cut out, washed, reduced, *S*-alkylated with iodoacetamide and in-gel digested at 37°C overnight with sequencing grade porcine trypsin (Promega, USA). After extraction in extractant of 50% ACN (Fisher) and 2.5% TFA (Sigma), peptide mixtures were analyzed using a saturated solution of 5 mg/mL α -cyano-4-hydroxycinnamic acid (CHCA, Sigma) in ACN containing 0.1% TFA (Sigma) (50/50 v/v) using a 4800 Proteomics Analyzer equipped with matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) (Applied Biosystems, Framingham, MA, USA). For MS calibration, the trypsin autolysis peptides were used as internal calibrants. Monoisotopic peak masses were automatically determined within the mass range of 800–4000 Da,

with a minimum S/N of 50. Five of the most intense ion signals were selected as precursors for MS/MS acquisition. Combined MS and MS/MS queries were performed with the MASCOT search engine (V2.1, Matrix Science, UK) embedded in GPS-Explorer Software (V3.6, Applied Biosystems), using the *P. luminescens* database (Gene DB). MASCOT protein scores (based on combined MS and MS/MS spectra) of greater than 61 were considered statistically significant (p \leq 0.05). The individual MS/MS spectrum with statistically significant (confidence interval >95%) best ion score (based on MS/MS spectra) were also accepted.

Insertion-deletion Mutations of the Corresponding Genes from Differentially Expressed Proteins

Compared with the nematicidal-producing mutant LN2-R16 and wild type strain, four proteins including RplC, RhlE, NamB (a putative transport and binding protein from type III secretion system), and a hypothetical protein similar to unknown protein YggE of *E. coli* were downregulated; three proteins including DsbA, HlpA, and a hypothetical protein highly similar to unknown protein YgdH of *E. coli* were upregulated in the nonnematicidal-producing mutants (LN2-R2, LN2-R31 and LN2-R33) (Table 3–4, Figure S1, S2, S3, S4, S5). At least these 7 putative proteins were probably involved in the nematicidal activity of LN2 bacteria against H06 nematodes.

To confirm these results, the downregulated *rhlE* and *namB*, and upregualted *dsbA* (GenBank accession number IX274431, [X274430 and [X274432 respectively) from the differentially expressed proteins were selected for construction of insertiondeletion mutations to determine the effects of the knock-out genes on the nematicial activity. Three P. luminescens LN2 mutants termed as $LN2\Delta rhlE$, $LN2\Delta namB$ and $LN2\Delta dsbA$ were created. Insertion-deletion mutations in these three genes were constructed using fusion PCR strategy as previously described [54]. For each gene, three fragments F1 (the upstream of the target gene), camR (Chloramphenicol cassette) and F2 (the downstream of the target gene) were generated using primer pairs of P1 and P2, P3 and P4, and P5 and P6 (Table S1), respectively. The camR gene was amplified from the plasmid pSZ21 [55] and the F1 and F2 gene fragments were amplified from P. luminescens LN2 genomic DNA. Approximately equal amounts of the three purified fragments F1, camR and F2 were mixed, and used as a template to generate a new DNA fragment by a second PCR performed with the primers P1 and P6. Three resulting fragments, which corresponded to rhlE::Cm, namB::Cm and dsbA::Cm, respectively, were separately cloned into a pMD-19T Simple vector. Then the resulting plasmids of pMD-rhlE::Cm, pMD-namB::Cm and pMD-dsbA::Cm were separately ligated to the same enzyme digested suicide vector pKNG101 [56] to generate pKNG101-rhlE::Cm, pKNG101namB::Cm and pKNG101-dsbA::Cm. P. luminescens LN2 mutants termed as $LN2\Delta rhlE$, $LN2\Delta namB$ and $LN2\Delta dsbA$ were created by allelic exchange with pKNG101-rhlE::Cm, pKNG101- namB::Cm and pKNG101-dsbA::Cm, respectively, as previously described [54]. The phenotypic characterization, rpoB sequence and effects on nematicidal activity of three resulting mutants were determined as described above.

Results

Isolation and Characterization of the Rif^R Mutants of *P. luminescens* LN2

Several hundreds of the Rif^{R} mutants of *P. luminescens* LN2 were isolated and 34 mutants were randomly selected for further study. The wild type strain and the selected mutants showed the typical

Table 3. Total proteins with altered level of synthesis in the nematicidal-producing and non nematicidal-producing mutants.

Spot No.	Protein Name/plu	Organism	Gene	Function	Protein PI	Protein PI Protein MW	Ratio				
							W/M	R2/W	R16/W	R31/W	R33/W
Ribose	Ribosomal protein										
9	30S ribosomal protein S8	P. luminescens TT01	rpsH	Binds directly to 165 rRNA central domain where it helps coordinate assembly of the platform of the 305 subunit	9.35	14205.6	-	0.7	0.8	0.27	1.03
15	50S ribosomal protein L17, plu4701	P. luminescens TT01	rplQ	A component of the macrolide binding site in the peptidyl transferase cente	11.04	14708.8	-	0.5	1.27	0.69	1.34
26	50S ribosomal protein L3, plu4726	P. luminescens TT01	rplC	Binds directly near the 3' end of the 235 rRNA, where it nucleates assembly of the 505 subunit; essential for peptidyltransferase activity; mutations in this gene confer resistance to tiamulin	9.87	22328.9	-	0	0.41	0	0
44	50S ribosomal protein L9 plu4570	P. luminescens TT01	rpll	In <i>E. coli</i> this protein is wrapped around the base of the L1 stalk	6.13	15872.5	-	2.38	2.23	0.92	1.37
45	50S ribosomal protein, L9 plu4570	P. luminescens TT01	rpll	In <i>E. coli</i> this protein is wrapped around the base of the L1 stalk	6.13	15872.5	. 	1.82	3.29	0.51	1.23
Adapt	Adaptations conditions										
~	Hypothetical protein, plu2032	P. luminescens TT01		Similar to Unknown protein YbdQ of <i>E. coli</i> ; Similar to universal stress protein (pfam00582: Usp)	6.19	15907.4	. 	3.79	2.9	1.46	4.83
6	Hypothetical protein, plu2030	P. luminescens TT01		Similar to Unknown protein YbdQ of <i>E. coli</i> , Similar to universal stress protein (pfam00582: Usp)	5.76	15283.2	-	1.71	1.21	0.2	0.45
48	Alkyl hydroperoxide reductase, small subunit (antioxidant), plu3907	P. luminescens TT01	ahpC	Alkyl hydroperoxide reductase, small subunit (antioxidant)	5.98	22259.3	-	0.8	0.82	6.0	0.47
Secon	Secondary metabolites										
12	Crystalline inclusion protein CipB	P. luminescens TT01	cipB	Unknown, similar to crystalline inclusion protein type II	6.08	11281.6	-	0.12	0	0.51	0
25	Crystalline inclusion protein CipA, plu1576	P. luminescens TT01	cipA	Crystalline inclusion protein CipA	6.06	11710.9	-	0	0.08	0.74	0
32	Unknown	P. luminescen		Similar to hemolysin from Fusobacterium nucleatum clinical isolate found in GenBank, Accession Number AF525507	5.61	39995.2	-	0.9	1.7	0.44	0.8
62	Hypothetical protein, plu4211	P. luminescens TT01		Highly similar to Hcp protein	6.29	18482.5	-	11.43	14.91	19.98	3.24

Cont.	
m.	
able	
F	

Spot No.	Protein Name/plu	Organism	Gene	Function	Protein PI	Protein MW	Ratio				
							W/W	R2/W	R16/W	R31/W	R33/W
Metab	Metabolism of amino acids and related molecules	olecules									
30	Ethanolamine ammonia-lyase small subunit, plu2971	P. luminescens TT01	eutC	Catalyzes the formation of acetaldehyde from ethanolamine	6.37	31188.4	-	4.17	0.5	1.1	1.2
36	Tryptophan synthase subunit beta, plu2466	P. luminescens TT01	trpB	Catalyzes the formation of L-tryptophan from L-serine and 1-(indol-3-yl)glycerol 3-phosphate	6.2	43098	-	1.22	0.25	0.41	0.58
46	Serine/arginine repetitive matrix protein 2		Srrm2		12.02	294500.8	-	0.72	1.7	0.89	6.0
50	2,3-dihydroxy-2,3-dihy drophenylpropionate dehydrogenase, plu2207	P. luminescens TT01	hcaB	Converts cis-3-(3-carboxyethyl) -3,5-cyclohexadiene-1,2-diol (PP-dihydrodiol) into 3-(2,3-dihydroxylphenyl) propionate	5.43	29519.1	-	0.37	0.3	0.49	6.0
51	Hypothetical protein, plu4676	P. luminescens TT01		Similar to 3-oxoacyl-lacyl-carrier-protein] synthase II (beta- ketoacyl-ACP synthase II) (KAS II)	5.58	45407.3	-	3.29	3.0	0.01	<0.01
52	Serine hydroxymethyltransferase, plu3291	P. luminescens TT01	glyA	Catalyzes the reaction of glycine with 5,10- methylenetetrahydrofolate to form L-serine and tetrahydrofolate"	5.92	45229.8	-	3.74	4.55	2.93	5.6
53	Urease accessory protein, plu2176	P. luminescens TT01	nreG	Urease accessory protein	5.04	22868.1	-	4.42	2.98	5.17	6.66
54	Hypothetical protein, plu2040	P. luminescens TT01		Similar to vibrio bactin utilization protein ViuB	5.51	31363	-	2.36	3.61	1.83	6.57
55	3-oxoacyl-(acyl carrier protein) synthase III, plu2835	P. luminescens TT01	fabH	FabH; beta-ketoacyl-acyl carrier protein synthase III; catalyzes the condensation of acetyl-CoA with malonyl-ACP to initiate cycles of fatty acid elongation; differs from 3-oxoacyl-(acyl carrier protein) synthase I and II in that it utilizes CoA thioesters as primers rather than acyl-ACPs"	5.33	34189.6	-	5.12	6.14	3.85	6.77
Nucleo	Nucleosides and nucleotides biosynthesis and metabolism	and metabolism									
-	Hypothetical protein, plu3994	P. luminescens TT01		Similar to putative membrane protein YqjD (carboxyl transferase) of <i>E. coli</i>	7.93	11042	-	4.03	0.57	2.91	1.2
m	IS630 family transposase, plu0720	P. luminescens TT01	ISPlu3Y	Transposase, IS630 family	9.35	39771.5	1	0.38	0.17	0.02	0.11
47	IS630 family transposase, plu0468	P. luminescens TT01	ISPlu10J	Transposase	9.59	39687.9	1	0.85	0.6	0.71	0.25
4	ATP-dependent RNA helicase RhIE, plu1511	P. luminescens TT01	rhlE	This helicase is not essential cell growth	10.01	48258.8		0.05	0.52	0.04	0.02
19	ATP-dependent RNA helicase RhIE, plu1511	P. luminescens TT01	rhIE	This helicase is not essential cell growth	10.01	48258.8	-	0	1.43	0.2	0
18	Nucleoside diphosphate kinase, plu1372	P. luminescens TT01	ndk	Catalyzes the formation of nucleoside triphosphate from ATP and nucleoside diphosphate	5.35	15591.8	-	1.43	1.96	2.48	2.53
57	Uracil phosphoribosyl transferase, plu2759	P. luminescens TT01	ddn	Catalyzes the formation of uracil and 5-phospho-alpha-D -ribosy 1-diphosphate from UMP and diphosphate	5.46	22489	-	1.59	2.81	1.83	4.95

Spot No.	Protein Name/plu	Organism	Gene	Function	Protein PI	Protein MW	Ratio				
							W/W B	R2/W R	R16/W	R31/W	R33/W
58	Reverse gyrase	Leptospirillum sp. Group II UBA			9.31	56458	1 0		4.93	6.32 (0.41
Cell w.	Cell wall/membrane biogenesis										
œ	Karst CG12008-PA, isoform A	Drosophila melanogaster	kst	Kst-PA; spectrin beta-heavy chain; beta-H spectrin;	5.93	471351.1	1	2.20 1.	1.8	1.33	1.16
43	hypothetical protein, plu3994	P. luminescens TT01		Similar to putative membrane protein YqjD of E. coli	7.93	11042	1 0	0.21 0.	0.05 (0.1	0.08
2	Periplasmic chaperone, plu0681	P. luminescens TT01	hlpA	Histone-like protein HLP-1 precursor	9.43	18476.8	1 2	2.63 0.	0.81	2.11	2.64
Transp	Transport and binding proteins										
10	Unknown	P. luminescens W14		From (type III secretion system, partial sequence) GI:27550090 6.1	0 6.1	16883.6	1 0		1.53 (0	0
64	Unknown	P. luminescens w14		From (type III secretion system, partial sequence) GI:27550090 6.1		16883.6	1 0	0.1 0.	0.91	0.11 0	0.15
65	Unknown	P. luminescens w14		From (type III secretion system, partial sequence) GI:27550090 6.1		16883.6	1 0	0.11 0.	0.93	0.11 0	0.16
11	Hypothetical protein, plu1886	P. luminescens TT01		Hypothetical transmembrane protein	5.88	15588.6	1	1.53 2.	2.83	1.57 (0.43
13	Macrolide transporter subunit MacA, plu1590	P. luminescens TT01	macA	Probable macrolide-specific ABC transporter; confers macrolide6.95 resistance via active drug efflux		40743.2	1 0	0		0	0
17	Sec-independent protein translocase protein, plu4410	P. luminescens TT01	tatA	Sec-independent protein translocase protein	6.18	9289.9	1 0	0.76 0.	0.81	0.72	0.23
42	Na-binding protein HU-alpha (NS2) (HU-2), plu0492	P. luminescens TT01	dbhA	Na-binding protein HU-alpha (NS2) (HU-2)	9.1	9407	1	2.1 2.	2.3 (0.59 (66.0
Inform	Information and regulatory pathways										
14	DNA-binding transcriptional regulator HexR, plu2121	P. luminescens TT01	hexR	Represses the expression of the <i>zwf, eda, glp</i> and <i>gap</i>	6.97	31694.5	1 2	2.2 1.	1.96	1.92	0.91
16	DnaK transcriptional regulator DksA, plu0876	P. luminescens TT01	dksA	Dnak transcriptional regulator DksA	5.04	17415.8	1 0		0.05	0.65 (0
20	Nucleotide-binding protein, plu3881	P. luminescens TT01		Similar to Unknown protein YajQ of E. coli	5.77	18311.4	1 1	1.47 0.	0.89	1.48	1.09
22	Transcriptional repressor MprA, plu1277	P. luminescens TT01	mprA	DNA-binding transcriptional repressor of microcin B17 synthesis7.01 and multidrug efflux; negative regulator of the multidrug operon <i>emrAB</i> "		20365.5	-	1.67 1.	1.18	1.38	1.09
27	Hypothetical protein, plu0318	P. luminescens TT01		Similar to AidA protein of Ralstonia solanacearum	5.7	22068.3	1	1.03 1.	1.68 (0.86 (0.87

Table 3. Cont.

Tabl	Table 3. Cont.										
Spot No.	Protein Name/plu	Organism	Gene	Function	Protein PI	Protein MW	Ratio				
							W/W	R2/W	R16/W	R31/W	R33/W
49	Periplasmic protein disulfide isomerase I, plu0381	P. luminescens TT01	dsbA	Disulfide interchange protein DsbA precursor	7.7	22954.8	-	3.8	1.57	3.49	3.62
37	Protease precursor DegQ, plu4018	P. luminescens TT01	degQ	Protease precursor DegQ	9.12	48028.9	-	0	0	0	0
38	Protease precursor DegQ, plu4018	P. luminescens TT01	degQ	Protease precursor DegQ	9.12	48028.9	-	0	0	0	0
Energ	Energy production and conversion										
24	GD22749	Drosophilia simulans	Dism\ GD22749	Chromosome segregation ATPases [Cell division and chromosome partitioning]; COG1196	5.23	76326.8	-	1.39 (0	<0.01	< 0.01
23	Hypothetical protein, plu2075	P. luminescens TT01		Similar to 3-oxoacyl-[acyl-carrier protein] reductase	8.55	25032.6	-	0.12 (0.31	0.45	0.33
35	WblA protein, plu4796	P. luminescens TT01	WblA	Probable lipopolysaccharide biosynthesis protein; Similar to putative UDP-glucose/GDP-mannose dehydrogenase	5.86	48484	-	2.1 0	0	2.07	0.05
40	Catalase, plu3068	P. luminescens TT01	katE	Catalase	6.92	55509.5	-	0	0	0	0
41	Catalase plu3068	P. luminescens TT01	katE	Catalase	6.92	55509.5	-	0	0	0	0
56	Phosphoglycero mutase, plu1471	P. luminescens TT01	gpmA	Catalyzes the interconversion of 2-phosphoglycerate to 3-phosphoglycerate	5.62	28396.7	-	1.64	2.88	2.02	3.5
Phage	Phage-related proteins										
28	Hypothetical protein, plu3012	P. luminescens TT01		Probable phage protein; Similar to tail fiber assembly protein from bacteriophage	4.67	21467.8	-	0.68 (0.88	2.36	0.44
29	Hypothetical protein, plu2035	P. luminescens TT01		Some similarities with putative tail fiber protein of prophage	4.23	23641.5	-	0	e	0.42	0.88
39	Hypothetical protein, plu3803	P. luminescens TT01		Some similarities with prophage tail fiber protein	6.37	66850.4	-	0.23 (0.5	0.1	0
60	Hypothetical protein, plu3032	P. luminescens TT01		Putative bacteriophage protein; Some similarities with Unknown protein of <i>Photorhabdus</i>	6.08	22021.6	-	1.93	2.55	2.14	4.66
63	Hypothetical protein, plu3012	P. luminescens TT01		Probable phage protein; Similar to tail fiber assembly protein from bacteriophage	4.67	21467.8	-	1.66	1.72	5.27	0.48
Flagellin	llin										
31	Flagellin, plu1954	P. luminescens TT01	fliC	Structural flagella protein	5.19	38183.6	-	0	0.1	0.87	0
Post-t	Post-translational modification										
61	PTS system, N-acetyl- galactosamine-specific IIB component 2 (EIIB-AGA) (N-acetyl- galactosamine-perme, plu0835	P. luminescens TT01	agaV	Probable PTS system; Highly similar to PTS system, cytoplasmic, N-acetylgalactosamine-specific	6.51	17774.4	-	3.87	2.18	4.31	1.5

Tablé	Table 3. Cont.										
Spot No.	Protein Name/plu	Organism	Gene	Function	Protein PI	Protein PI Protein MW Ratio	Ratio				
							W/M	R2/W	R16/W	R31/W	R33/W
Uknown	uw										
2	Hypothetical protein, plu0661	P. luminescens TT01		Highly similar to Unknown protein YgdH of E. coli	5.95	51257.2	1	2.74 (0.81	2.51	1.76
21	Unknown	Fanconi anemia group D1 protein	LOC7 25687	Similar to Breast cancer type 2 susceptibility protein	8.75	82829.5	-	0.05	0	0	0
33	Hypothetical protein, plu3611	P. luminescens TT01		Similar to Unknown protein YggE of E. coli	5.97	25893.5	-	0	2.33	0.2	0.4
34	Hypothetical protein MHP7448_0445	Mycoplasma hyopneumoniae 7448		GI:72080777	9.17	275940.9	-	0.39 (0.19	0.1	0.05
59	Hypothetical protein UM02446.1	Ustilago maydis 521		Gl:124514614	8.96	130494.3	-	11.46	2.78	6.42	6.6
doi:10.	doi:10.1371/journal.pone.0043114.t003										
Table	e 4. Total proteins with altered	level of synthesis	in the n	Table 4. Total proteins with altered level of synthesis in the nematicidal-producing and non nematicidal-producing mutants.	ıcing mutan	ts.					

nts.		nematicidal-producing strains	R16/W	0.41	0.52	1.43	0.81	1.53	0.91	0.93	1.57
ucing muta	Ratio	nematicid strains	W/M	-	-	-	-	-	-	-	-
proteins with altered level of synthesis in the nematicidal-producing and non nematicidal-producing mutants.	Function			Binds directly near the 3' end of the 235 rRNA, where it nucleates assembly of the 505 subunit; essential for peptidyltransferase activity; mutations in this gene confer resistance to tiamulin	This helicase is not essential cell growth	This helicase is not essential cell growth	Histone-like protein HLP-1 precursor	From (type III secretion system, partial sequence) GI:27550090	From (type III secretion system, partial sequence) GI:27550090	From (type III secretion system, partial sequence) GI:27550090	Disulfide interchange protein DsbA precursor
e nemat	Gene			rplC	rhIE	rhIE	hlpA				dsbA
of synthesis in th	Organism			P. luminescens TT01	P. luminescens TT01 rhlE	P. luminescens TT01	P. luminescens Π01	P. luminescens W14	P. luminescens w14	P. luminescens w14	P. luminescens TT01 dsbA
Table 4. Total proteins with altered level	Protein Name/plu			50S ribosomal protein L3, plu4726	ATP-dependent RNA helicase RhIE, plu1511	ATP-dependent RNA helicase RhIE, plu1511	Periplasmic chaperone, plu0681	Unknown	Unknown	Unknown	Periplasmic protein disulfide isomerase I, plu0381
Tab	Spot No.			26	4	19	2	10	64	65	49
	10				Au	gust	: 20	12 V	′olume	2 7 1	ssue 8

non nematicidal-producing strains

ō

R33/W

R31/W

R2/W

0

0

0

0.02

0.05

2.64

2.63

0

0

0

0

0.04 0.2 2.11

0

0.15

0.11

0.1

rpoB Mutation and Nematicidal Activity

0.16

0.11

0.11

3.62

3.49

3.8

1.76 0.4

2.51 0.2

2.74

0.81 2.33

--

Highly similar to Unknown protein YgdH of E. coli

Similar to Unknown protein YggE of E. coli

P. luminescens TT01 P. luminescens TT01

doi:10.1371/journal.pone.0043114.t004 Hypothetical protein, plu3611 Hypothetical protein, plu0661

33

2

0

characteristics of phase one bacteria as described: uptake of dye from NBTA and MacConkey agar, production of pH-sensitive pigments, occurrence of inclusion bodies, antibiotic activity, and bioluminescence.

The Effects of the $\operatorname{Rif}^{\mathsf{R}}$ Mutants on the Growth of H06 Nematodes

13 of 34 Rif^R *P. luminescens* LN2 mutants were able to support the growth of H06 IJs, with hermaphrodites containing living juveniles inside and outside after 12 days on the agar plates, while 21 of them were negative for the growth of H06 nematodes. On the bacterial lawns with those mutants or the wild-type, which did not support the nematode production, all the nematodes did not grow beyond adults and died after 7 days.

The Mutation Loci of *rpoB* Gene in the Rif^R Mutants

7 positive mutants (LN2-R2, LN2-R6, LN2-R12, LN2-R15, LN2-R28, LN2-R31 and LN2-R33) and 7 negative mutants (LN2-R3, LN2-R5, LN2-R7, LN2-R8, LN2-R11, LN2-R16 and LN2-R25) for H06 nematode growth (Table 2) were randomly selected for rpoB gene sequencing. The entire rpoB sequences of 14 selected Rif^R mutants, wild type strain, LN2-A and LN2-M1 were sequenced at least twice. The rpoB gene from all colonies was 4029 bp in length, the same to that of P. luminescens subsp. laumondii TT01 [57]. The identity of rpoB genes between the wild-type strain of LN2 and TT01 was 96.13%. All of the 14 Rif^R mutants carried mutations in the rpoB gene. 10 mutants showed a single nucleotide mutation resulting in an amino acid substitution, and 2 mutants presented two nucleotide mutations resulting in two amino acid substitutions, but only one mutant displayed three nucleotide mutations resulting in two amino acid substitutions (Table 2). No mutation was observed in the rpoB gene of Amp^R mutant LN2-A and namA mutant LN2-M1.

The *rpoB* (P564L) mutation was found in all 7 mutants which produced nematicidal activity against H06 nematodes, but not in the mutants which supported H06 nematode production. While the single mutations of V146F, S512F, Q513K and double mutations of A313D and R529C were detected respectively in the mutants which supported H06 nematode production (Table 2). The single and double mutations resulted in loss of nematicidal activity against H06 nematodes and ability to supported H06 nematode production.

Allelic Exchange Assays

The recombinant LN2-W $\Delta r \rho o B$ -LR31 (LN2-W strain containing the mutant $r \rho o B$ allele from LN2-R31) and the LN2-R31 $\Delta r \rho o B$ -LW (LN2-R31 containing the wild type $r \rho o B$ allele from LN2-W) were selected on Am^R Rif^R Tc^s and Am^R Rif^S Tc^s LB1 agar plates, respectively.

Successful homologous recombination of rpoB gene in the recipient strains was verified by randomly selecting three colonies from each recipient and checking their rpoB gene sequences by PCR and DNA sequencing. The sequences of rpoB gene from three colonies of each recipient were 100% identical.

The recombinant LN2-W $\Delta rpoB$ -LR31 showed Rif resistance and lost the nematicidal activity against H06 IJs, while LN2-R31 $\Delta rpoB$ -LW was sensitive to Rif and restored the nematicidal activity. These results clearly indicated that rpoB mutation was responsible for the Rif-resistance and the absence of nematicidal activity of LN2-R31.

Insecticidal Activity

The Rif^R mutants, including nematicidal-producing LN2-R16 and non nematicidal-producing LN2-R2, LN2-R31 and LN2-R33, together with wild-type of *P. luminescens* LN2 caused 100% mortality of *G. mellonella* at the concentrations of 1000 CFU/ μ L after 24 h, 100 CFU/ μ L after 30 h, and 10 CFU/ μ L after 36 h. No insect mortality was recorded in the control after 120 h. It appeared that the mutant bacteria also displayed insecticidal activity against *G. mellonella* larvae.

IJ Colonization of the GFP-labelled Mutants

No H06 IJs from the culture with GFP-labeled LN2-R31 mutant contained GFP-labeled bacteria in their intestines. No GFP-labeled bacteria were also observed from the mechanically disrupted H06 IJs. However, the IJs of *H. indica* LN2 from GFP-labeled LN2-R31 mutant contained GFP-labeled bacteria in their intestines. Bacterial colonization of the intestines of IJs is an important process in the nematode-bacterium symbiosis. The present result demonstrated that the mutation of *rpoB* gene restored the nutrient suitability of the LN2 bacteria for the reproduction of H06 nematodes by silencing the nematicidal activity of the bacteria, but did not establish the environment for bacterial colonization of the IJs.

The Proteomic Analysis of the Mutants and Wild-type

The effects of *poB* mutations on the nematicidal activity of LN2 bacteria were further investigated by identifying the differentially expressed proteins by 2-DE. The parental and selected *rpoB* mutant strains grown on LB1 agar plates were collected after 48 h. Cells were disrupted and whole cell proteins were separated on 2-DE gels spanning the pH 3–10, silver stained, and analyzed by MS. Protein levels were expressed as percentage volume, which corresponds to the percentage ratio between the volume of a single spot and the total volume of all spots present in a gel. The mean values of spot intensity were calculated using at least three gels. Spots showing more than 15% variation were not considered (Student's test, with 7 degrees of freedom, p<0.05). Little deviation was observed in the patterns on replica gels.

Approximately 900 spots were revealed on the silver-stained 2-DE patterns of the whole cell proteins from wild type strain LN2-W and the mutant strains of LN2-R16, LN2-R2, LN2-R31 and LN2-R33 (Figure S1, S2, S3, S4, S5). Protein spots were distributed over the 3–10 pH range, with most spots in the 4– 7 pH range.

Major differences were detected from different *rpoB* mutants (Figure S1, S2, S3, S4, S5, Table 3). Comparing to the wild type strain, 19, 12 and 13 spots were differentially upregulated, downregulated or missing, respectively, by a factor of at least two in the *rpoB* mutant LN2-R2; 19, 12 and 9 spots in the LN2-R16; 17, 19 and 8 spots in the LN2-R31; and 13, 19 and 14 spots in the LN2-R33.

The spots with intensity changes by a factor of at least two were selected for MALDI-TOF-MS analysis (Table 3), using NCBI website and the PhotoList database (http://genolist.pasteur.fr/PhotoList/).

The proteins identified could be classified into thirteen categories based on functions: (1) ribosomal protein, (2) adaptation conditions, (3) secondary metabolities, (4) metabolisim of amino acids and related molecules, (5) nucleosides and nucleotides biosynthesis and metabolism, (6) cell wall/membrane biogenesis, (7) transport and binding proteins, (8) information and regulation pathways, (9) energy production and conversion, (10) phage-related proteins, (11) flagellin, (12) post-translational modification,

and (13) other functions and unknown. A list of the proteins affected by rpoB mutation was shown in Table 3.

Proteomic analysis revealed major difference between wild-type strain and Rif^R mutants, and between nematicidal-producing and non nematicidal-producing mutants. In all the analyzed rpoB mutants, 15 putative proteins (YbdQ, Hcp, GlyA, UreG, ViuB, FabH, Ndk, Upp, Kst, MprA, DsbA, GpmA, AgaV, one bacteriophage protein and one unknown protein) were upregulated, and 11 (AhpC, CipA, cipB, HcaB, ISPPlu3Y, ISPlu10J, YqjD, TatA, DksA, FliC, and three hypothetical proteins) were downregulated. In particular, the following putative proteins were not detected from all the analyzed *rpoB* mutants: MacA (probable macrolide-specific ABC transporter, spot 13); DegQ (protease precursor, spot 37, 38); and KatE (catalase, spot 40, 41). Interestingly, an unknown function protein Brca2 (similar to breast cancer type 2 susceptibility protein, spot 21) was not present in the mutants, but present in the wild type strain. It appeared that the absence of these proteins was due to the rpoB mutation rather than the antibiotic pressure, because they were absent also from a namA disruption mutant of LN2 [41] without rpoB mutation in the culture without any rifampin (unpublished data).

Compared with the nematicidal-producing mutant LN2-R16 and wild type strain, four proteins in the non-nematicidalproducing mutants (LN2-R2, LN2-R31 and LN2-R33) were downregulated at least a 2-fold difference in expression, including RplC (putative ribosomal protein, spot 26), RhlE (putative nucleosides and nucleotides biosynthesis and metabolism protein, spot 4, 19), NamB (a putative transport and binding protein from type III secretion system, part of T3SS, spot 10, 64, 65) and a hypothetical protein (similar to unknown protein YggE of E. coli, spot 33); three proteins including DsbA (periplasmic protein disulfide isomerase I involved in information and regulatory pathways, spot 49), HlpA (periplasmic chaperone involved in cell wall/membrane biogenesis, spot 5), and a hypothetical protein(highly similar to unknown protein YgdH of E. coli, spot 2) were upregulated in the non-nematicidal-producing mutants(LN2-R2, LN2-R31 and LN2-R33) (Table 4, Figure S1, S2, S3, S4, S5). It was suggested that at least these 7 proteins were involved in the nematicidal activity of LN2 bacteria against H06 nematodes.

Genetic Confirmation of Differentially Expressed Proteins

LN2 Δ *rhlE*, LN2 Δ *namB* and LN2 Δ *dsbA* mutants showed the typical characteristics of phase one bacteria as the wild type strain. No mutation in *rpoB* gene was observed in these mutants. LN2 Δ *rhlE* and LN2 Δ *namB* mutants were able to support the growth of H06 IJs, with hermaphrodites containing living juveniles inside and outside after 12 days on the agar plates, while LN2 Δ *dsbA* mutant was negative for the growth of H06 nematodes as the wild type strain. The results confirmed the involvement of these selected genes in the nematicidal activity against H06 nematodes.

Discussion

In this study, a similar mechanism determining Rif-resistance in *E. coli* and *M. tuberculosis* [3,11,58] was verified in *Photorhabdus* bacteria. Surprisingly, the Rif^R mutants influenced the nematicidal activity of *P. luminescens* LN2 bacteria against a different nematode, *H. bacteriophora* H06. Furthermore, some but not all *rpoB* mutants of LN2 bacteria lost nematicidal activity against H06 IJs. The *rpoB* mutation was demonstrated to be responsible for the Rif-resistance and the effect on the nematicidal activity in the Rif^R mutants of LN2. There are fundamental connections between rifampin resistance, RNA polymerase structure and function and global

gene expression in the literatures. Rif mutations in E. coli affected a wide variety of phenotypes, including altered growth properties and stimulated secondary metabolism [59]. A novel rpoB mutation in B. subtilis showed a unique spectrum of effects on growth and various developmental events [60]. An rpoB mutation in Streptomyces lividans activated antibiotic production and reduced growth rate [61]. A spontaneous Rif^R mutation isolated from Saccharopolyspora erythraea stimulated bacterial secondary metabolism and was severely impaired in erythromycin production [62]. To the best of our knowledge, this is the first report that rboB mutations influenced the nematicidal activitity of a nematode symbiont on a non-cognate nematode partner. The symbiosis between the entomopathogenic nematodes and their associated bacteria will be also influenced by the rpoB mutations. However, how rpoB mutations affect this nematicidal activity needs to be further explored.

The mutants exhibited several phenotypes of phase one variant as previously described [47], e.g. absorption of the dye from NBTA and MacConkey agar, production of bioluminescence and occurrence of crystalline inclusion proteins in the cells. It was reported that the nematicidal activity occurred only in phase one of *P. luminescens* LN2 [31]. Apparently, the loss of nematicidal activity in the LN2 mutants against H06 nematodes was not the result of a typical phase variation. The physiological status of symbiotic *Photorhabdus* and *Xenorhabdus* bacteria (such as phase variation, mutants) may influence their fitness for nematode production. As *rpoB* mutations were associated with the nematode growth, screening of *rpoB* mutants of symbiotic bacteria of entomopathogenic nematodes may provide a way to select beneficial *rpoB* mutants by Rif for effective mass production of the nematodes.

One of the important characters in *Photorhabdus* bacteria is their insecticidal activities towards different insects [32-33,35]. The present result indicated that the *rpoB* mutations did not change the expression of the toxin genes, at least in the tested mutants, for the mutants also displayed the insecticidal activity against *G. mellonella* larvae.

Different ηoB mutations were associated with their ability to support H06 nematode production. However, the P564L mutation was not associated with the loss of nematicidal activity. The reasons why the mutations affect the physiology and metabolism of the bacterial mutants are not known. The RNA polymerase complex may contact every promoter in the genome, thus any change in critical portions of the enzyme can lead to global changes in gene transcription. Mutations within the Rif binding pocket of ηoB gene may alter the structure of RNA polymerase and hence its regulated interaction with specific promoters, and hence physiology and metabolism [63].

Proteomic analysis revealed at least 7 putative proteins including DsbA, RhIE, NamB (a protein from T3SS), HlpA, RpIC and 2 hypothetical proteins YggE and YgdH might be involved in the nematicidal activity. All these proteins may play different roles in different organisms (64–71). In the present study, it was hard to establish the functional relationship among these proteins in the nematicidal activity of LN2 bacteria. However, the insertion-deletion method confirmed the involvement of the selected corresponding genes (such as *rhlE*, *namB* and *dsbA*) from the differentially expressed proteins in the nematicidal activity against H06 nematodes. It seems that a big network system is involved in this nematicidal activity. Further work is needed to explore this system to understand the molecular mechanism on the trans-specific nematicidal activity of incompatible symbionts.

Supporting Information

Figure S1 2-DE map of total cell proteins from *P. luminescens* **LN2 wild type strain.** A representative gel shows the identified differentially expressed protein spots. 350 µg of total cell proteins was loaded onto a 17 cm pH 3–10 NL IPG strip, separated in the second dimension by SDS-polyacrylamide gel electrophoresis on a 12% gel and stained with silver nitrate. (TIF)

Figure S2 2-DE map of total cell proteins from *P. luminescens* LN2 Rif^R mutant LN2-R2. A representative gel shows the identified differentially expressed protein spots. $350 \ \mu g$ of total cell proteins was loaded onto a 17 cm pH 3–10 NL IPG strip, separated in the second dimension by SDS-polyacrylamide gel electrophoresis on a 12% gel and stained with silver nitrate. (TIF)

Figure S3 2-DE map of total cell proteins from *P. luminescens* **LN2 Rif^R mutant LN2-R16.** A representative gel shows the identified differentially expressed protein spots. 350 µg of total cell proteins was loaded onto a 17 cm pH 3–10 NL IPG strip, separated in the second dimension by SDS-polyacryl-amide gel electrophoresis on a 12% gel and stained with silver nitrate. (TIF)

Figure S4 2-DE map of total cell proteins from *P. luminescens* **LN2 Rif^R mutant LN2-R31.** A representative gel shows the identified differentially expressed protein spots. 350 µg of total cell proteins was loaded onto a 17 cm pH 3–10 NL

References

- Woodley CL, Kilburn JO, David HL, Silcox VA (1972) Susceptibility of mycobacteria to rifampin. Antimicrob Agents Chemother (2): 245–249.
- Mitchison DA (1985) Mechanism of drug action in short-course chemotherapy. Bull Int Union Against Tuber 65: 30–37.
- Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, et al. (1993) Detection of rifampicin resistance mutations in *Mycobacterium tuberculosis*. Lancet 341: 647–650.
 Musser JM (1995) Antimicrobial agent resistance in mycobacteria - molecular-
- genetic insights. Clin Microbiol Rev 8: 496. 5. Zhang GY, Campbell EA, Minakhin L, Richter C, Severinov K, et al. (1999)
- Zhang GY, Campbell EA, Minakhin L, Richter C, Severinov K, et al. (1999) Crystal structure of *Thermus aquaticus* core RNA polymerase at 3.3 angstrom resolution. Cell 98: 811–824.
- Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, et al. (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104: 901–912.
- Zhou YN, Jin DJ (1998) The poB mutants destabilizing initiation complexes at stringently controlled promoters behave like "stringent" RNA polymerases in *Escherichia coli*. Proc Natl Acad Sci U S A 95: 2908–2913.
- Miller N, Hernandez SG, Cleary TJ (1994) Evaluation of gen-probe amplified mycobacterium-tuberculosis direct test and pcr for direct-detection of mycobacterium-tuberculosis in clinical specimens. J Clin Microbiol 32: 393–397.
- 9. Ramaswamy S, Musser JM (1998) Molecular genetic basis of antimicrobial agent resistance in *Mycobacterium tuberculosis*: update. Tuber Lung Dis 79: 3–29.
- Zhang Y, Telenti A (2000) Molecular genetics of mycobacteria; Washington DC: ASM Press. 235–254.
- Yuen LK, Leslie D, Coloe PJ (1999) Bacteriological and molecular analysis of rifampin-resistant Mycobacterium tuberculosis strains isolated in Australia. J Clin Microbiol 37: 3844–3850.
- Riska PF, Jacobs WRJr, Alland D (2000) Molecular determinants of drug resistance in tuberculosis. Int J Tuberc Lung Dis 4: S4–10.
- Herrera L, Jiménez S, Valverde A, García-Aranda MA, Sáez-Nieto JA (2003) Molecular analysis of rifampicin-resistant *Mycobacterium tuberculosis* isolated in Spain (1996–2001). Description of new mutations in the *rpoB* gene and review of the literature. Int J Antimicrob Agents 21: 403–408.
- Zhang Y, Yew WW (2009) Mechanisms of drug resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis 13: 1320–1330.
- Wang Q, Yue J, Zhang L, Xu Y, Chen J, et al. (2007) A Newly identified 191A/ C mutation in the Rv2629 gene that was significantly associated with rifampin resistance in *Mycobacterium tuberculosis*. J Proteome Res 6: 4564–4571.
- Castañeda-García A, Do TT, Blázquez J (2011) The K+ uptake regulator TrkA controls membrane potential, pH homeostasis and multidrug susceptibility in *Mycobacterium smegmatis.* J Antimicrob Chemother 66: 1489–1498.

IPG strip, separated in the second dimension by SDS-polyacryl-amide gel electrophoresis on a 12% gel and stained with silver nitrate.

(TIF)

Figure S5 2-DE map of total cell proteins from *P. luminescens* **LN2 Rif^R mutant LN2-R33.** A representative gel shows the identified differentially expressed protein spots. 350 µg of total cell proteins was loaded onto a 17 cm pH 3–10 NL IPG strip, separated in the second dimension by SDS-polyacryl-amide gel electrophoresis on a 12% gel and stained with silver nitrate.

(TIF)

Table S1 Oligonucleotide sequences used to generate *Photorhabdus luminescens* LN2 mutant constructs in this study.

(DOC)

Acknowledgments

We would like to thank Li Cao and Xiuling Liu for help in nematode culture.

Author Contributions

Conceived and designed the experiments: RCH XHQ. Performed the experiments: XHQ XY MXL. Analyzed the data: XHQ RCH. Wrote the paper: RCH XHQ. Obtained the funding, planned and supervised the project: RCH XHQ.

- Cui L, Isii T, Fukuda M, Ochiai T, Neoh HM, et al. (2010) An RpoB mutation confers dual heteroresistance to daptomycin and vancomycin in *Staphylococcus aureus*. Antimicrob Agents Chemother 54: 5222–5233.
- Watanabe Y, Cui L, Katayama Y, Kozue K, Hiramatsu K (2011) Impact of rpoB Mutations on Reduced Vancomycin Susceptibility in Staphylococcus aureus. J Clin Microbiol 49: 2680–2684.
- Georgis R, Koppenhofer AM, Lacey LA, Belair G, Duncan LW, et al. (2006) Successes and failures in the use of parasitic nematodes for pest control. *Biol Control* 38: 103–123.
- Poinar GOJr, Thomas GM (1966) Significance of Achromobacter nematophilus Poinar and Thomas (Achromobacteriaceae: Eubacteriales) in the development of the nematode DD-136 (Neoplectana sp., Steinernematidae). Parasitol 56: 385– 390.
- Ciche TA, Darby C, Ehlers R-U, Forst S, Goodrich-Blair H (2006) Dangerous liaisons: the symbiosis of entomopathogenic nematodes and bacteria. Biol Control 38: 22–46.
- Goodrich-Blair H, Clarke DJ (2007) Mutualism and pathogenesis in *Xenorhabdus* and *Photorhabdus*, two roads to the same destination. Mol Microbiol 64: 260–268.
- Akhurst RJ (1983) Neoaplectana species: specificity of association with bacteria of the genus Xenorhabdus. Exp Parasitol 55: 258–263.
- Akhurst RJ, Boemare NE (1990) Biology and taxonomy of *Xenorhabdus*. In: Gaugler R, Kaya HK, editors. Entomopathogenic Nematodes in Biological Control. Florida: CRC press. 75–90.
- Ehlers R-U, Stoessel S, Wyss U (1990) The influence of phase variants of *Xenorhabdus* spp. and *Escherichia coli* (Enterobacteriaceae) on the propagation of entomopathogenic nematodes of the genera *Steinernema* and *Heterorhabditis*. Revue de Nematologie 13: 417–424.
- Han RC, Wouts WM, Li LY (1990) Development of *Heterorhabditis* spp. strains as characteristic of possible *Xenorhabdus luminescens* subspecies. *Revue de* Nematologie 13: 411–415.
- Han RC, Wouts WM, Li LY (1991) Development and virulence of *Heterorhabditis* spp. strains associated with different *Xenorhabdus luminescens* isolates. J Invertebr Pathol 58: 27–32.
- Gerritsen LJM, Smits PH (1993) Variation in pathogenicity of recombinations of *Heterorhabditis* and *Xenorhabdus luminescens* strains. Fund Appl Nematol 16: 367– 373.
- Gerritsen LJM, Smits PH (1997) The influence of *Photorhabdus luminescens* strains and form variants on the reproduction and bacterial retention of *Heterorhabditis megidis*. Fund Appl Nematol 20: 317–322.
- Han RC, Ehlers R-U (1998) Cultivation of axenic *Heterorhabditis* spp. dauer juveniles and their response to non-specific *Photorhabdus luminescens* food signals. Nematologica 44: 425–435.

- Han RC, Ehlers R-U (2001) Effect of *Photorhabdus luminescens* phase variants on the *in vivo* and *in vitro* development and reproduction of the entomopathogenic nematodes *Heterorhabditis bacteriophora* and *Steinernema carpocapsae*. FEMS Microbiol Ecol 35: 239–247.
- Bowen DJ, Ensign JC (1998) Purification and characterization of a highmolecular-weight insecticidal protein complex produced by the entomopathogenic bacterium *Photorhabdus luminescens*. Appl Environ Microbiol 64: 3029–3035.
- Bowen D, Rocheleau TA, Blackburn M, Andreev O, Golubeva E, et al. (1998) Insecticidal toxins from the bacterium *Photorhabdus luminescens*. Science 280: 2129–2132.
- Ensign JC, Bowen DJ, Tenor J, Petell JK, Orr GL, et al. (2002) Insecticidal protein toxins from *Xenorhabdus*. PCT Patent, No. US6379946 B1.
- Yang G, Dowling AJ, Gerike U, ffrench-Constant RH, Waterfield NR (2006) *Photorhabdus* virulence cassettes confer injectable insecticidal activity against the wax moth. J Bacteriol 188: 2254–2261.
- Ffrench-Constant RH, Dowling A, Waterfield NR (2007) Insecticidal toxins from *Photorhabdus* bacteria and their potential use in agriculture. Toxicon 49: 436–451.
- Hu K, Li J, Webster JM (1995) Mortality of plant-parasitic nematodes caused by bacterial (*Xenorhabdus* spp. and *Photorhabdus luminescens*) culture media. J Nematol 27: 502–503.
- Sicard M, Hering S, Schulte R, Gaudriault S, Schulenburg H (2007) The effect of *Photorhabdus luminescens* (Enterobacteriaceae) on the survival, development, reproduction and behaviour of *Caenorhabditis elegans* (Nematoda: Rhabditidae) Environ Microbiol 9: 12–25.
- Sicard M, Ferdy JB, Pagès S, Le Brun N, Godelle B, et al. (2004) When mutualists are pathogens: an experimental study of the symbioses between *Steinernema* (entomopathogenic nematodes) and *Xenorhabdus* (bacteria). J Evol Biol 17: 985–993.
- Han RC, Ehlers R-U (1999) Trans-specific nematicidal activity of *Photorhabdus* luminescens. Nematology 1: 687–693.
- Qiu XH, Han RC, Yan X, Liu MX, Li C, et al. (2009) Identification and characterization of a novel gene involved in the trans-specific nematicidal activity of *Photorhabdus luminescens* LN2. Appl Environ Microb 75: 4221–4223.
- Heungens K, Cowles CE, Goodrich-Blair H (2002) Identification of *Xenorhabdus nematophila* genes required for mutualistic colonization of *Steinernema carpocapsae* nematodes. Mol Microbiol 45: 1337–1353.
- Joyce SA, Clarke DJ (2003) A hexA homologue from Photorhabdus regulates pathogenicity, symbiosis and phenotypic variation. Mol Microbiol 47: 1445– 1457.
- Cowles CE, Goodrich-Blair H (2004) Characterization of a lipoprotein, NilC, required by *Xenorhabdus nematophila* for mutualism with its nematode host. Mol Microbiol 54: 464–477.
- Martens E, Goodrich-Blair H (2005) The Steinernema carpocapsae intestinal vesicle contains a subcellular structure with which Xenorhabdus nematophila associates during colonization initiation. Cell Microbiol 7: 1723–1735.
- Chalabaev S, Turlin E, Charles JF, Namane A, Pagès S, et al. (2007) The HcaR regulatory protein of *Photorhabdus luminescens* affects the production of proteins involved in oxidative stress and toxemia. Proteomics 7: 4499–4510.
- Akhurst RJ (1980) Morphological and functional dimorphism in *Xenorhabdus* spp., bacteria symbiotically associated with the insect pathogenic nematodes *Neoaplectana* and *Heterorhabditis*. J Gen Microbiol 121: 303–309.
- Akhurst RJ (1982) Antibiotic activity of *Xenorhabdus* spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J Gen Microbiol 128: 3061–3065.
- Sambrook J, Russell DW (2001) Molecular Cloning: A Laboratory Manual, 3rd ed. NewYork: Cold Spring Harbor Laboratory Pres. 2344 p.
- Hübner P, Masepohl B, Klipp W, Bickle TA (1993) nif gene expression studies in Rhodobacter capsulatus: ntrC-independent repression by high ammonium concentrations. Mol Microbiol 10: 123–132.

- Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1: 784–791.
- Herrero M, de Lorenzo V, Timmis KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172: 6557–6567.
- Gorg A, Postel W, Domscheit A, Günther S. (1988) Two-dimensional electrophoresis with immobilized pH gradients of leaf proteins from barley (*Hordeum vulgare*): method, reproducibility and genetic aspects. Electrophoresis. 9: 681–692.
- An R, Grewal PS (2010) Molecular mechanisms of persistence of mutualistic bacteria Photorhabdus in the entomopathogenic nematode host. PLoS One 5: e13154.
- Jiang QY, Zhou ZH, Shen SE, Jin RZ, Huang YD, et al. (1990) Construction of recombinant plasmid of Tn5-nifA having conjugal mobilization of broad host range. Chinese Science Bulletin (in Chinese) 35: 302–305.
- Kaniga K, Delor I, Cornelis GR (1991) A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the *blaA* gene of *Yersinia enterocolitica*. Gene 109: 137–141.
- Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, et al. (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21: 1307–1313.
- Jin D, Gross C (1988) Mapping and sequencing of mutations in the *Escherichia coli* rpoB gene that leads to rifampicin resistance. J Mol Biol 202: 45–58.
- Jin DJ, Gross CA (1989) Characterization of the pleiotropic phenotypes of rifampin-resistant poB mutants of Escherichia coli. J Bacteriol 171: 5229–5231.
- Maughan H, Galeano B, Nicholson WL (2004) Novel *tpoB* mutations conferring rifampin resistance on *Bacillus subtilis*: global effects on growth, competence, sporulation, and germination. J Bacteriol 186: 2481–2486.
- Lai C, Xu J, Tozawa Y, Okamoto-Hosoya Y, Yao X, et al. (2002) Genetic and physiological characterization of *rpoB* mutations that activate antibiotic production in *Streptomyces lividans*. Microbiology 148: 3365–3373.
- 62. Carata E, Peano C, Tredici SM, Ferrari F, Talà A, et al. (2009) Phenotypes and gene expression profiles of *Saccharopolyspora erythraea* rifampicin-resistant (*rif*) mutants affected in erythromycin production. Microbial Cell Factories 8: 18.
- Perkins AE, Nicholson WL (2008) Uncovering new metabolic capabilities of Bacillus subtilis using phenotype profiling of rifampin-resistant rpoB mutants. J Bacteriol 190: 807–814.
- 64. Shouldice SR, Heras B, Walden PM, Totsika M, Schembri MA, et al. (2011) Structure and function of DsbA, a key bacterial oxidative folding catalyst. Antioxid Redox Signal 14: 1729–1760.
- Jain C (2008) The *E. coli* RhlE RNA helicase regulates the function of related RNA helicases during ribosome assembly. RNA 14: 381–389.
- Cartier G, Lorieux F, Allemand F, Dreyfus M, Bizebard T (2010) Cold adaptation in DEAD-box proteins. Biochemistry 49: 2636–2646.
- Gentry DR, Rittenhouse SF, McCloskey L, Holmes DJ (2007) Stepwise exposure of *Staphylacoccus aureus* to pleuromutilins is associated with stepwise acquisition of mutations in *rplC* and minimally affects susceptibility to retapamulin. Antimicrob Agents Chemother 51: 2048–2052.
- Brugirard-Ricaud K, Duchaud E, Givaudan A, Girard PA, Kunst F, et al. (2005) Site-specific antiphagocytic function of the *Photorhabdus luminescens* type III secretion system during insect colonization. Cell Microbiol 7: 363–371.
- Schmidt MA, Balsanelli E, Faoro H, Cruz LM, Wassem R, et al. (2012) The type III secretion system is necessary for the development of a pathogenic and endophytic interaction between Herbaspirillum rubrisubalbicans and Poaceae. BMC Microbiol 12: 98.
- Kim SY, Nishioka M, Hayashi S, Honda H, Kobayashi T, et al. (2005) The gene <u>yggE</u> functions in restoring physiological defects of *Escherichia coli* cultivated under oxidative stress conditions. Appl Environ Microbiol 71: 2762–2765.
- Stinson MW, McLaughlin R, Choi SH, Juarez ZE, Barnard J (1998) Streptococcal histone-like protein: primary structure of hlpA and protein binding to lipoteichoic acid and epithelial cells. Infect Immun 66: 259–265.