AGU100 ADVANCING EARTH AND SPACE SCIENCE

ŗ

Earth's Future

RESEARCH ARTICLE

10.1029/2018EF001064

Key Points:

- Approach for using ¹⁴C to detect fossil and biogenic CH₄ at regional scales is described and ¹⁴CH₄ is simulated in California
- Strong potential for estimating the fossil fraction of regional CH₄ emissions and evaluating bottom-up estimates with ¹⁴CH₄ observations
- Simulated influences of nuclear power plant emissions on ¹⁴CH₄ in California are small on average but highly variable

Supporting Information:

- Supporting information S1
- Data Set S1

Correspondence to:

H. Graven, h.graven@imperial.ac.uk

Citation:

Graven, H., Hocking, T., & Zazzeri, G. (2019). Detection of fossil and biogenic methane at regional scales using atmospheric radiocarbon. *Earth's Future*, 7, 283–299. https://doi.org/ 10.1029/2018EF001064

Received 1 OCT 2018 Accepted 15 JAN 2019 Accepted article online 26 JAN 2019 Published online 18 MAR 2019

©2019. The Authors

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Detection of Fossil and Biogenic Methane at Regional Scales Using Atmospheric Radiocarbon

H. Graven¹, T. Hocking¹, and G. Zazzeri¹

¹Department of Physics, Imperial College London, London, UK

Abstract Regional emissions of methane and their attribution to a variety of sources presently have large uncertainties. Measurements of radiocarbon (¹⁴C) in methane (CH₄) may provide a method for identifying regional CH_4 emissions from fossil versus biogenic sources because adding ¹⁴C-free fossil carbon reduces the ${}^{14}C/C$ ratio ($\Delta^{14}CH_4$) in atmospheric CH₄ much more than biogenic carbon does. We describe an approach for estimating fossil and biogenic CH_4 at regional scales using atmospheric Δ^{14} CH₄ observations. As a case study to demonstrate expected Δ^{14} CH₄ and Δ^{14} CH₄-CH₄ relationships, we simulate and compare Δ^{14} CH₄ at a network of sites in California using two gridded CH₄ emissions estimates (Emissions Database for Global Atmospheric Research, EDGAR, and Gridded Environmental Protection Agency, GEPA) and the CarbonTracker-Lagrange model for 2014, and for 2030 under business-as-usual and mitigation scenarios. The fossil fraction of CH_4 (F) is closely linked with the simulated Δ^{14} CH₄-CH₄ slope and differences of 2–21% in median F are found for EDGAR versus GEPA in 2014, and 7-10% for business-as-usual and mitigation scenarios in 2030. Differences of 10% in F for >200 ppb of added CH₄ produce differences of >10% in Δ^{14} CH₄, which are likely detectable from regular observations. Nuclear power plant ¹⁴CH₄ emissions generally have small simulated median influences on Δ^{14} CH₄ (0–7‰), but under certain atmospheric conditions they can be much stronger (>30%) suggesting they must be considered in applications of Δ^{14} CH₄ in California. This study suggests that atmospheric Δ^{14} CH₄ measurements could provide powerful constraints on regional CH₄ emissions, complementary to other monitoring techniques.

Plain Language Summary Methane is an important greenhouse gas that is emitted by many different human activities including natural gas production and distribution, livestock farming, and waste treatment. We describe a method for estimating how much methane comes from different regional sources by measuring radiocarbon in atmospheric methane. Radiocarbon is not present in methane from fossil sources (natural gas and coal) because all the radiocarbon has decayed over millions of years. In contrast, radiocarbon is naturally present in methane from other sources (livestock and waste). Therefore, fossil sources have a strong diluting effect on radiocarbon in methane that could be detected in observations to quantify fossil and other sources of methane.

1. Introduction

Current estimates of methane (CH₄) emissions on global and regional scales have large uncertainties and large discrepancies, particularly for the attribution of CH₄ emissions to specific sectors (Bergamaschi et al., 2018; Jeong et al., 2016; Kirschke et al., 2013; Miller, Wofsy, et al., 2013). Observations of radiocarbon (¹⁴C) in atmospheric methane currently provide the main observational constraint on the fossil fraction of global total CH₄ emissions (Etiope et al., 2008; Kirschke et al., 2013; Lassey, Lowe, & Smith, 2007). Radiocarbon is absent from fossil fuels because of the radioactive decay that occurs over the long time required for fossil fuels to be formed. In contrast, biogenic carbon incorporates the ¹⁴C/C ratio (Δ^{14} C; Stuiver & Polach, 1977) from atmospheric CO₂, and CH₄ produced from biogenic sources reflects the Δ^{14} C in atmospheric CO₂ as well as the residence time of the biogenic carbon before it is released as CH₄.

The Δ^{14} C in atmospheric CH₄ (Δ^{14} CH₄) is influenced by the amount of CH₄ emitted from fossil and biogenic sources, the Δ^{14} C of biogenic sources, and the emissions of 14 CH₄ from nuclear power plants. Over the industrial period, Δ^{14} CH₄ has increased due to anthropogenic emissions of 14 C from nuclear weapons testing and nuclear power plants.

Studies of Δ^{14} CH₄ have primarily focused on the global long-term trend in Δ^{14} CH₄ (Lassey, Lowe, et al., 2007; Lowe et al., 1988; Quay et al., 1991; Wahlen et al., 1989), with few studies reporting measurements in polluted areas. Townsend-Small et al. (2012) measured Δ^{14} CH₄ in six samples collected over 2 days at Mount Wilson in the Los Angeles area of California, USA, in 2009, concluding qualitatively that there was evidence for fossil methane emissions in Los Angeles because samples enhanced in CH₄ were generally lower in Δ^{14} CH₄. The only other continental observations of atmospheric Δ^{14} CH₄ have been at European continental sites, which are strongly influenced by emissions of ¹⁴CH₄ from nuclear power plants (Eisma et al., 1995; Levin et al., 1992).

Even though very few regional-scale observations have been made to date, atmospheric Δ^{14} CH₄ could provide powerful constraints on the fossil fraction of regional CH₄ emissions. In this paper, we will examine regional CH₄ emissions in California. In California, reductions in total greenhouse gas emissions of 40% below 1990 levels are planned for 2030, with separate mitigation targets for CH₄ emissions from different sectors including landfills, livestock, and oil and gas (California Air Resources Board [CARB], 2017b, 2017c). However, there are large discrepancies across sector-specific CH₄ emission estimates in California, with fossil fractions spanning 11% to 31% for state totals (Jeong et al., 2013).

Some prior studies have used measurements of stable isotopes of CH₄, ethane, or other trace gases to assess CH₄ emissions from different sectors in California. Using stable isotope measurements at Mount Wilson, made over the same 2 days as the Δ^{14} CH₄ observations in 2009, Townsend-Small et al. (2012) found that δ^{13} C and δ D data were consistent with a dominant fossil source of CH₄, which has heavier stable isotopic signatures than biogenic CH₄. Measurements of ethane, which is coemitted from fossil sources including natural gas distribution, made with aircraft campaigns in Los Angeles over 2 months in 2010 were used to estimate that biogenic and fossil emissions in Los Angeles were roughly equal (Peischl et al., 2013), whereas another study from the same campaign suggested fossil emissions were larger (Wennberg et al., 2012). Jeong et al. (2017) found that CH₄ emissions in the San Francisco Bay were primarily biogenic, derived from landfills, by applying an inversion technique with measurements of three volatile organic compounds where ethane data provided the main constraint on source partitioning. There can be large uncertainties in these estimates due to variable or poorly known isotopic or trace gas source signatures and due to short sampling periods of some field campaigns. Discrepancies can also arise from differences in the specific geographical areas of influence on the different measurements. More development of atmospheric observations to evaluate sector-level emissions is needed to refine understanding of CH₄ emissions and attribute the causes of emissions changes over time.

The aim of this paper is to develop the application of Δ^{14} CH₄ measurements to assess regional-scale CH₄ emissions. We present a framework to use regional-scale Δ^{14} CH₄ and CH₄ measurements to estimate fossil-derived and biogenic CH₄, and we discuss the associated uncertainties. As a case study, we simulate gradients in Δ^{14} CH₄ and in CH₄ concentration in California for the full year 2014, given current estimates of biogenic and fossil CH₄ emissions. Then, we simulate the expected changes in Δ^{14} CH₄ and CH₄ gradients under the mitigation targets from the CARB and under a business-as-usual (BAU) scenario (CARB, 2017c). We then assess the impact of ¹⁴CH₄ emissions from nuclear power plants on Δ^{14} CH₄ in California in 2014. These simulations explore how observed Δ^{14} CH₄ could be expected to vary over California, a region of mixed CH₄ sources, if Δ^{14} CH₄ measurements were deployed in a regional atmospheric observation network. Finally, we discuss and provide recommendations for implementation of regional-scale Δ^{14} CH₄ observation and analysis systems.

2. Approach for Estimating Biogenic and Fossil CH_4 From $\Delta^{14}CH_4$

In this section, we describe how biogenic and fossil-derived CH_4 could be estimated from atmospheric $\Delta^{14}CH_4$ measurements at regional scales. The approach follows more extensive prior work on the use of radiocarbon to estimate fossil-derived CO_2 using atmospheric $\Delta^{14}CO_2$ measurements at regional scales (Graven et al., 2018; Levin et al., 2003; Turnbull et al., 2009), but we emphasize some important differences between $\Delta^{14}CO_2$ and $\Delta^{14}CH_4$. These differences include the larger disequilibrium between biogenic and atmospheric CH_4 , which is also generally of opposite sign compared to CO_2 , the potential for larger

measurement uncertainty in Δ^{14} CH₄ than in Δ^{14} CO₂, and the potential for stronger influence of nuclear power plant emissions in certain regions.

Calculation of biogenic CH₄ (C_b) and fossil CH₄ (C_f) is based on mass balances for CH₄ and for ¹⁴CH₄:

$$C_m = C_{bg} + C_b + C_f - C_s \tag{1}$$

$$\Delta_{\rm m} C_{\rm m} = \Delta_{\rm bg} C_{\rm bg} + \Delta_{\rm b} C_{\rm b} + \Delta_{\rm f} C_{\rm f} - \Delta_{\rm m} C_{\rm s} + A_{\rm n}$$
⁽²⁾

Here C_m indicates the CH_4 concentration measured at an observation site, C_{bg} indicates the background or reference CH_4 concentration upwind of the region of interest, C_f indicates the CH_4 concentration caused by fossil-derived CH_4 emissions over the region of interest, and C_b indicates the CH_4 concentration caused by biogenic CH_4 emissions over the region of interest. C_s indicates the decrease in CH_4 concentration caused by CH_4 sinks over the region of interest. In equation (2), an approximate mass balance for $^{14}CH_4$ is constructed by multiplying the terms in equation (1) by their $\Delta^{14}C$ values indicated by Δ . For C_s , the $\Delta^{14}C$ measured at the observation site is used, assuming that the CH_4 being removed by sinks in the region has approximately the same $\Delta^{14}C$ as the $\Delta^{14}CH_4$ measured. While isotopic fractionation occurs during CH_4 sink reactions, the $\Delta^{14}C$ notation includes a correction for mass-dependent fractionation and is therefore unaffected by fractionation from CH_4 sinks. An additional term in equation (2), A_n , relates to the $^{14}CH_4$ present due to nuclear power plant emissions in the region of interest. This term does not appear in equation (1) because the emissions are too small to affect the CH_4 concentration. For consistency with the other terms, A_n includes a factor of 1,000‰/R_s, where R_s is the ratio $^{14}C/C$ in the Modern radiocarbon standard.

Rearranging these equations to solve for C_f and C_b results in

$$C_{f} = (C_{m} + C_{s}) \frac{(\Delta_{m} - \Delta_{b})}{(\Delta_{f} - \Delta_{b})} - C_{bg} \frac{(\Delta_{bg} - \Delta_{b})}{(\Delta_{f} - \Delta_{b})} - \frac{A_{n}}{(\Delta_{f} - \Delta_{b})}$$
(3)

$$C_b = C_m + C_s - C_{bg} - C_f \tag{4}$$

 C_f can be calculated from equation (3) given measurements or estimates of the variables on the right hand side. Δ_f is defined as -1,000% since fossil carbon has no ¹⁴C. Then, C_b can be calculated using C_f from equation (3). The fossil fraction (F) of added CH₄ ($C_f + C_b$) relates to C_f and C_b by

$$F = \frac{C_{\rm f}}{C_{\rm f} + C_{\rm b}} = 1 - \frac{C_{\rm b}}{C_{\rm f} + C_{\rm b}}.$$
(5)

The formulation of C_f in equation (3) differs from the calculation of fossil fuel-derived CO_2 . For CO_2 , the biogenic source term (CO_2 from respiration and/or biomass burning) appears in the equation for fossil fuelderived CO_2 in a correction term that can be ignored, approximated, or estimated using models (Graven et al., 2018; Turnbull et al., 2009). In contrast, the biogenic source term for CH_4 , C_b , is one of the unknowns we want to solve for. Therefore, we manipulate the equations in a different way in order to eliminate C_b from equation (3).

In regional studies of CH₄, CH₄ sinks are typically ignored (C_s assigned to be zero) because the timescales of atmospheric mixing and transport over regional scales (days to weeks) are much shorter than the chemical lifetime of CH₄ (a decade) (Manning et al., 2011). The term A_n is expected to vary strongly by region, depending on the number of nuclear power plants nearby. Previous studies have shown large influences in Europe, which has a high density of pressurized water reactors that emit ¹⁴CH₄ (Eisma et al., 1995; Levin et al., 1992). The influence of these reactors on Δ^{14} CH₄ is larger than for Δ^{14} CO₂ because most of the ¹⁴C is emitted as ¹⁴CH₄ and because the concentration of CH₄ in the atmosphere is 200 times lower than for CO₂. Uncertainties in regional nuclear power plant influences on Δ^{14} CH₄ include uncertainties in ¹⁴CH₄ emissions and in the simulated transport of ¹⁴CH₄ to the measurement site, both of which strongly depend on the region of interest. We explore the magnitude of A_n for California in section 4.3.

The current level of Δ^{14} CH₄ in background air is likely close to 350‰, based on the most recently reported observations (Townsend-Small et al., 2012). However, we note that there are no published measurements of

Figure 1. Diagram showing the expected change in CH_4 concentration and change in $\Delta^{14}CH_4$ from background values for different processes in 2014. Estimated global mean background composition in 2014 is shown with the black square. The dashed lines show the changes expected from mixed biogenic and fossil CH_4 sources, with F denoting the fossil fraction of emissions.

atmospheric Δ^{14} CH₄ after 2009. For a regional observation network, it is likely that Δ_{bg} would be specified by an observation site in the network that is upwind of the region of interest. Uncertainty in Δ_{bg} would be influenced by the uncertainty in Δ^{14} CH₄ measurements as well as variability in Δ_{bg} . Uncertainty in measured Δ^{14} CH₄, contributing to uncertainty in Δ_{m} and Δ_{bg} , was $\pm 5\%$ to $\pm 11\%$ in the most recently reported observations from Townsend-Small et al. (2012). This is substantially higher than the uncertainty in measurements of $\Delta^{14}CO_2$ (±2‰ to ±3‰, Miller, Lehman, et al., 2013), indicating that additional sample processing or smaller sample size for CH₄ compared to CO₂ contribute substantial uncertainty to $\Delta^{14}CH_4$ measurements. Since there are very few measurements of $\Delta^{14}CH_4$ it is difficult to assess variability in Δ_{bg} . Observations made between 1986 and 2000 show standard deviations of ±7‰ in annual, hemispherically binned data (Lassey, Etheridge, et al., 2007), but variability on regional scales may be larger, particularly for places that may receive air from continental rather than marine upwind areas. In order to quantify Δ_{bg} and its uncertainty, regional observation networks should include one or more regional background sites.

The Δ^{14} C of biogenic CH₄ emissions, Δ_b , for recently assimilated organic material that is the substrate for CH₄ from livestock, rice paddies, and landfills will be similar to atmospheric Δ^{14} CO₂, approximately 20‰ in 2014 (Graven et al., 2017). For CH₄ produced from

older organic material Δ_b may be higher or lower, depending on the age of the organic material (Chanton et al., 1995; Garnett et al., 2013; Nakagawa et al., 2002). Materials aged on the order of decades would have higher Δ_b due to nuclear weapons testing and the subsequent decline in $\Delta^{14}CO_2$, whereas materials aged over centuries or millennia would have lower Δ_b due to radioactive decay. In California, natural biogenic CH₄ emissions from wetlands and biomass burning are estimated to be much smaller than biogenic CH₄ emissions from human activities; however, in other regions, these natural emissions may be substantial.

Determination of C_f , C_b , and F using equations (3)–(5) also depends on C_{bg} , which had a global average value of 1,823 ppb in 2014 (www.esrl.noaa.gov/gmd/ccgg/trends_ch4/). While uncertainty in individual CH₄ measurements (uncertainty in C_m) is typically ± 1 ppb (Andrews et al., 2014; Verhulst et al., 2017), uncertainty in C_{bg} can be substantially larger, depending on the region and season of interest. In Jeong et al. (2013), uncertainty in C_{bg} was estimated to be 17–25 ppb for observation sites in central California, and analysis by Verhulst et al. (2017) indicated similar magnitudes in C_{bg} uncertainty for southern California sites.

Comparing these estimates of uncertainty shows that the main contributors of uncertainty in C_f , C_b , and F calculated with Δ^{14} CH₄ and CH₄ measurements are uncertainties in Δ_m , Δ_{bg} , and C_{bg} . Depending on the region's proximity to nuclear power plants, uncertainty in A_n could also contribute a large uncertainty. Considering a scenario with C_m approximately 200 ppb above C_{bg}, using current estimates above and neglecting C_s and A_n, estimated uncertainties in C_f and C_b would be roughly 20–30 ppb, with approximately 10–15% uncertainty in F. Uncertainties in C_f, C_b, and F would likely improve with strong efforts to reduce measurement uncertainty in Δ^{14} CH₄ and to characterize background CH₄ concentration.

As an alternative to direct estimation of F, C_b, and C_f, observed relationships between Δ^{14} CH₄ and CH₄ could be compared to model simulations to detect biases in the fossil fraction of CH₄ emissions estimates. Both fossil CH₄ ($\Delta_f = -1,000\%$) and biogenic CH₄ ($\Delta_b = 20\%$, for Δ^{14} CO₂ in 2014) are lower in Δ^{14} C than atmospheric CH₄ ($\Delta_{bg} = 350\%$, estimated from available data). Therefore, both fossil and biogenic emissions will act to decrease Δ^{14} C of atmospheric CH₄, but fossil emissions have a larger influence per ppb of added CH₄ because fossil CH₄ has a larger disequilibrium with atmospheric Δ^{14} CH₄.

The influence of different individual processes on atmospheric CH_4 concentration and $\Delta^{14}CH_4$ is summarized in the diagram in Figure 1, constructed using equations (1) and (2). Here we use the radiocarbon

signatures and background CH₄ concentration described above. As shown in Figure 1, if only a pure biogenic source of CH₄ were added to atmospheric CH₄, then CH₄ concentration would increase and Δ^{14} CH₄ would decrease following the green line. If only a pure fossil source of CH₄ were added to atmospheric CH₄, then CH₄ concentration would increase and Δ^{14} CH₄ would decrease following the black line. For a mixture of fossil and biogenic sources, the changes would fall between the green and black lines, and the dashed lines show examples of mixtures in 25% increments. If atmospheric CH₄ were affected only by CH₄ sinks, the CH₄ concentration would decrease while Δ^{14} CH₄ would not change. If atmospheric CH₄ were affected only by nuclear power plant emissions, which produce a very small amount of ¹⁴CH₄ that is negligible compared to atmospheric CH₄ concentrations, Δ^{14} CH₄ would increase while CH₄ concentration would not change.

When nuclear ¹⁴CH₄ emissions and CH₄ sinks can be neglected or otherwise accounted for, the decrease in Δ^{14} CH₄ expected per 10 ppb of added biogenic CH₄ is approximately 1.8‰, whereas the decrease in Δ^{14} CH₄ per 10 ppb of added fossil CH₄ is approximately 7.1‰ (green and black lines in Figure 1) for CH₄ additions of up to 200 ppb. Comparing a pure biogenic CH₄ source (F = 0%) with a mixed source of 25% fossil CH₄ and 75% biogenic CH₄ (F = 25%), the decrease in Δ^{14} CH₄ is approximately 3.1‰ per 10 ppb of added CH₄, about 70% more than for a pure biogenic CH₄ source. Similarly, going from a fossil fraction of 25% to 50%, the impact on Δ^{14} CH₄ is about 1.3‰ per 10 ppb larger (4.4‰ per ppb; Figure 1). However, the sensitivity of Δ^{14} CH₄ to a 10 ppb addition of CH₄ diminishes for large additions of CH₄. For large CH₄ additions more than a few hundred parts per billion, the overall sensitivities will be smaller than those quoted here.

Based on these sensitivities, we can consider how a bias in F simulated using an emission estimate with an atmospheric model could be detected using observations of CH_4 and $\Delta^{14}CH_4$. A bias of 10% in F for a 200-ppb addition of CH_4 will result in a 10‰ difference in the observed decrease in $\Delta^{14}CH_4$ below Δ_{bg} , a difference that might be discernible with current measurement precision in $\Delta^{14}CH_4$. A larger CH_4 addition will have a slightly lower sensitivity but a larger absolute magnitude; for example, a 10% difference in F for a 500-ppb addition of CH_4 will cause a 22‰ difference in the simulated decrease in $\Delta^{14}CH_4$. Regular observations could enable detection of differences in simulated and observed $CH_4-\Delta^{14}CH_4$ relationships and therefore differences in F, with a larger number of measurements providing improved detectability.

Interpretation of observed CH_4 - $\Delta^{14}CH_4$ relationships will be sensitive to the uncertainties presented above, primarily the measurement uncertainty in $\Delta^{14}CH_4$, and comparisons with simulations will also be sensitive to uncertainty in modeled atmospheric transport. In this paper, we will present simulations of CH_4 and $\Delta^{14}CH_4$ in California in a similar way as Figure 1, demonstrating differences in the simulated CH_4 and $\Delta^{14}CH_4$ relationships arising from differences in the CH_4 emissions used.

3. Model Simulations in California

As a demonstration of expected regional Δ^{14} CH₄ gradients and CH₄- Δ^{14} CH₄ relationships, we conduct simulations for the year 2014 in western North America, focused on the state of California. California has a relatively dense network of observation sites, run by several laboratories, where atmospheric gases are measured. Some of these sites have been used previously for field campaign measurements of Δ^{14} CO₂ (Graven et al., 2018), and they could feasibly be used in the future for Δ^{14} CH₄ measurements.

We run three types of forward simulations. The first uses current estimates of CH_4 emissions to simulate CH_4 and $\Delta^{14}CH_4$ for the year 2014 using two different CH_4 emissions estimates. These simulations demonstrate the expected regional $\Delta^{14}CH_4$ gradients and $CH_4-\Delta^{14}CH_4$ relationships in contemporary atmospheric measurements. They demonstrate how $\Delta^{14}CH_4$ gradients and $CH_4-\Delta^{14}CH_4$ relationships change when the relative amount of fossil and biogenic emissions differs between different CH_4 emissions estimates, providing an indication of how $\Delta^{14}CH_4$ measurements could help to evaluate CH_4 emissions estimates. The second type of simulation scales current emissions according to expected changes for the year 2030, following either targeted emissions mitigation policies or "business-as-usual" changes in emissions. These simulations show how changes in emissions will be reflected in atmospheric CH_4 and $\Delta^{14}CH_4$ and provide an indication of how atmospheric CH_4 and $\Delta^{14}CH_4$ measurements might detect these changes. The final type of

Table 1

observation blie Boeanons obea in the binnation	Observation	Site	Locations	Used	in	the	Simulation
---	-------------	------	-----------	------	----	-----	------------

Site	Code	Lat (°N)	Lon (°W)	Sampling height (m.a.g.l.)
Sutter Buttes	STB	39.206	121.821	10
Walnut Grove	WGC	38.265	121.491	30
Sandia-Livermore	LVR	37.674	121.708	27
Arvin	ARV	35.239	118.789	10
Victorville	VTR	34.609	117.287	100
Mount Wilson	MWO	34.223	118.063	10
Caltech	CIT	34.137	118.126	10
San Bernardino	SBC	34.085	117.313	58
Scripps Inst. Ocean.	SIO	32.867	117.257	10

Note. Sampling height is in meters above ground level.

simulation includes nuclear power plant ¹⁴CH₄ emissions in the contemporary simulations to assess the magnitude of Δ^{14} CH₄ enhancement by nuclear power plant emissions, which counteracts the influences of local fossil and biogenic CH₄ emissions.

In practice, the measurements of atmospheric CH_4 and $\Delta^{14}CH_4$ that we simulate here could be deployed in a regional inversion system to separately estimate regional fossil and biogenic emissions. We do not explicitly quantify the performance of such an inversion system using radiocarbon data, as in the simulation experiments using $\Delta^{14}CO_2$ in, for example, Basu et al. (2016) and Fischer et al. (2017). Instead, our aim is to elucidate how CH_4 and $\Delta^{14}CH_4$ are likely to vary in California's region of mixed anthropogenic sources. This provides a first step in understanding how atmospheric $\Delta^{14}CH_4$ measurements could contribute to studies of regional CH_4 sources and in planning for optimal deployment of $\Delta^{14}CH_4$ measurements at regional scales.

3.1. Atmospheric Transport Modeling With CarbonTracker-Lagrange

We conduct simulations using the atmospheric modeling system CarbonTracker-Lagrange (https://www.esrl.noaa.gov/gmd/ccgg/carbontracker-lagrange/). CarbonTracker-Lagrange couples an atmospheric model (Weather Research and Forecasting model) with a Lagrangian model (Stochastic Time-Inverted Lagrangian Transport model) to compute station sensitivity footprints. A footprint is a spatial grid of scaling factors that show how much a unit of emission in each grid cell would increase the concentration of an atmospheric species at a particular location and time. Footprints from CarbonTracker-Lagrange are available with hourly resolution on a low-resolution $1.0^{\circ} \times 1.0^{\circ}$ grid for the 10 days preceding the observation time and on a high-resolution $0.1^{\circ} \times 0.1^{\circ}$ grid for 24 hr preceding the observation time. Here we consider time-invariant CH₄ emissions, so we integrate the high-resolution footprint for the first 24 hr and the low-resolution footprint for the second day onward to calculate a total, 10-day footprint for each observation.

The observation sites we consider are listed in Table 1 and shown in Figure 2i. We use local afternoon observation times of 15:00 that are included in CarbonTracker-Lagrange. In a previous study of fossil fuel-derived CO_2 at nearly the same sites in California, simulations using these CarbonTracker-Lagrange footprints were compared with two other modeling systems (Brophy et al., 2018). Similar mean values and ranges of variability were found across simulations using the three different modeling systems, indicating that our simulations of CH_4 and $\Delta^{14}CH_4$ would likely be comparable if a different model were used.

3.2. Estimates of Current CH₄ Emissions in California

Emissions of CH₄ in California from anthropogenic sources were taken from two products providing spatially resolved estimates: EDGAR v4.2FT (Emissions Database for Global Atmospheric Research [EDGAR], 2011) and GEPA (Gridded Environmental Protection Agency; Maasakkers et al., 2016). The spatially resolved estimates have different geographical domains and use different methodologies. The GEPA product contains emissions for the continental United States at $0.1^{\circ} \times 0.1^{\circ}$ resolution. Total emissions for the United States in GEPA are consistent with estimates of 2012 emissions made by the EPA and are distributed spatially according to various data sets (Maasakkers et al., 2016). EDGAR is a global product with $0.1^{\circ} \times 0.1^{\circ}$ resolution. In Table 2 and Figure 2, we compare these two products with statewide totals from the CARB Greenhouse Gas Emissions Inventory (CARB, 2017a) and another spatially resolved estimate: California Greenhouse Gas Emissions Measurement (CALGEM) v2.2 (Jeong et al., 2012). The CALGEM product contains emissions for California only, with $0.1^{\circ} \times 0.1^{\circ}$ resolution. The total emissions in each category in CALGEM are distributed spatially according to various data sets and scaled to match the corresponding category totals for 2010 from a prior version of the CARB Greenhouse Gas Emissions Inventory (Jeong et al., 2012).

Each of the four emissions estimates contains different categories, largely following the emission categories set out by the Intergovernmental Panel on Climate Change. Annual emissions from individual categories were grouped into biogenic or fossil sources (Figure 2 and Tables 2 and S1). These four emissions estimates include only anthropogenic emissions. Natural wetland emissions are estimated to be much smaller:

Figure 2. Estimates of CH_4 emissions from fossil sources (a-c), anthropogenic biogenic sources (d-f), and natural wetlands (g-h). In the top two rows, the estimates are from CALGEM (Jeong et al., 2012) in a and d, GEPA (Maasakkers et al., 2016) in b and e, and EDGAR (2011) in c and f. Wetland emissions from Potter et al. (2006) are shown in g and WetCHARTS (Bloom et al., 2017) in h. The locations of the observation sites and the two nuclear power plants Diablo Canyon (DC) and Palo Verde (PV) are shown in i. The color bar in the upper right applies to all panels a-h.

Table 2

Estimates of California Total Emissions in Gigagrams of CH ₄ Per Year from
CARB (2017a), CALGEM v2.2 (Jeong et al., 2012), GEPA (Maasakkers et al.,
2016), and EDGAR v4.2FT (EDGAR, 2011)

	CARB	CALGEM	GEPA	EDGAR
Year	2013	2010	2012	2008
Total	1615	1282	1898	1849
Biogenic	1318	1138	1552	1272
Fossil	298	144	346	577
Fossil fraction	18%	11%	18%	31%

Note. Emissions are separated by type: biogenic (e.g., livestock, landfill, wastewater, rice farming, and biomass burning) or fossil (e.g., natural gas, petroleum, and combustion). The year corresponding to each estimate is given in the first row, and the fossil fraction is given in the last row. Specific sectors included for GEPA and EDGAR are listed in Table S1.

62 Gg CH₄ per year from the WetCHARTs extended model ensemble average (Bloom et al., 2017) and 35 Gg CH₄ per year by Potter et al. (2006; Figure 2). We exclude natural wetland emissions in our simulations as well as other natural sources such as biomass burning, geological seeps, reservoirs, and wild animals. By excluding natural emissions, we will slightly underestimate increases in CH₄ and decreases in Δ^{14} CH₄, relative to background levels.

California state total emissions vary by approximately 20% across the four estimates, from 1,282 Gg CH₄ per year in California Greenhouse Gas Emissions Measurement (CALGEM) to 1,898 Gg CH₄ per year in GEPA (Table 2). The CARB estimate for 2013 from the 2017 inventory is in the middle of the range, 1,615 Gg CH₄ per year. Total emissions in GEPA and EDGAR are similar (1,898 and 1,849 Gg per year), but the partitioning into fossil and biogenic categories is quite different. EDGAR shows the highest fossil fraction, 31%, while CARB and GEPA have similar fossil fractions of 18%. The fossil fraction in CALGEM is even lower, 11%.

Table 3

Scaling Factors for Emissions in Different Categories Used in Simulations for the Business-as-Usual Scenario and the Target Mitigation Scenario

Scenario	Year	Livestock	Wastewater and other industrial	Landfill	Oil and gas	Other	F (%)	Total emissions (Gg CH ₄ per year)
Base/EDGAR	2008	1	1	1	1	1	31	1,849
BAU	2030	0.97	1.10	0.89	1.14	1	35	1,858
Target	2030	0.60	0.60	0.72	0.55	1	29	1,200

Note. Base refers to current estimates taken to be representative of 2014, where we use the EDGAR estimate for 2008. F is the statewide fossil fraction in each scenario. BAU refers to projected changes under existing regulations (CARB, 2017c). Target refers to projected changes as a result of new regulations (CARB, 2017c).

The spatially resolved estimates show that the Central Valley, the San Francisco Bay, and the South Coast (Greater Los Angeles) areas of the state have the highest emissions (Figure 2). The U.S.-specific GEPA and CA-specific CALGEM estimates show finer detail related to gas distribution networks and point sources for landfill and wastewater sites, whereas EDGAR emissions are more evenly distributed over the state. EDGAR shows much higher emissions in the South Coast than the other two estimates.

3.3. Simulations Using Current Methane Emissions From GEPA and EDGAR

We use the CarbonTracker-Lagrange footprints together with the emissions from GEPA (Maasakkers et al., 2016) and EDGAR v4.2FT (EDGAR, 2011; Figure 2) to simulate the excess CH_4 concentration from fossil and biogenic sources in California and surrounding areas. Simulations are made at each observation site in Table 1 for each afternoon in 2014. We calculate the change in $\Delta^{14}CH_4$ based on the simulated concentrations of fossil and biogenic CH_4 and the assumed background composition and source signatures following section 2 and using equations (1) and (2). Emissions are assumed to be constant in time and CH_4 sinks and natural wetland emissions are not included. In these simulations, we do not include nuclear power plant emissions of $^{14}CH_4$.

3.4. Simulations Using Projected Changes in Emissions for 2030

We use the Short-Lived Climate Pollutant Reduction Strategy report (CARB, 2017c) produced by the CARB to predict the CH_4 emissions in 2030 in California. In the report, several quantitative methane emission reduction targets to be reached by 2030 are presented. Relative to 2013 levels, a reduction of 40% in dairy and livestock emissions and in wastewater and other industrial emissions is planned. A slightly larger reduction of 45% is planned for oil and gas emissions and a smaller reduction of 28% in landfill emissions. In addition to these policy targets, expected changes in CH_4 emissions from existing policies in a BAU case are outlined in the report.

Combining the policy targets and the BAU case with the sectoral EDGAR emissions estimates, we create spatially resolved emissions estimates for 2030. We scale the EDGAR sectoral emissions by the expected fractional changes in sectoral emissions in each scenario. Implementation of policy targets is expected to reduce state total CH_4 emissions by 35% and reduce the fossil fraction of state total emissions from 31% to 29%, compared to the EDGAR emissions in 2008 (Target scenario, Table 3). Following a BAU scenario

-		
Variable	2014	2030
Table 4 Estimated Values for C_{bg} , Δ_{bg} ,	and Δ_b Used in the Simulations	

 $\begin{array}{c} C_{bg} & 1,823 \text{ ppb} & 2,132 \text{ ppb} \\ \Delta_{bg} & 350\% & 350\% \\ \Delta_{b} & 20\% & -41\% \end{array}$ Note. Values for 2014 are as given in section 2. Values for C_{bg} and Δ_{b} in

Note. Values for 2014 are as given in section 2. Values for C_{bg} and Δ_b in 2030 are based on a business-as-usual scenario, Representative Concentration Pathway 8.5 (Graven, 2015; van Vuuren et al., 2011).

would instead increase emissions slightly and increase the fossil fraction of state total emissions from 31% to 35%.

In order to simulate Δ^{14} CH₄ in California in 2030, we need to account for changes in background composition and in biogenic Δ^{14} CH₄ (Table 4). Based on the BAU scenario used by the Intergovernmental Panel on Climate Change in 2013, Representative Concentration Pathway 8.5 (van Vuuren et al., 2011), CH₄ concentration will be 2,132 ppb in 2030. Atmospheric Δ^{14} CO₂ has been simulated to decrease to approximately -41‰ in 2030 in this scenario (Graven, 2015), which we use to specify Δ_{b} . No projections for Δ_{bg} (Δ^{14} CH₄ in background air) have been made for 2030, so we assume a fixed value of 350‰. Following the same method as for the simulations for 2014, we use the CarbonTracker-Lagrange footprints for 2014 together with the scaled emissions from EDGAR to simulate the excess CH_4 concentration from fossil and biogenic sources in California and surrounding areas in 2030. We use these to calculate the fossil fraction and change in $\Delta^{14}CH_4$ at each site following section 2. Again, emissions are assumed to be constant in time, and we do not include natural wetland emissions, CH_4 sinks or nuclear power plant emissions of ${}^{14}CH_4$.

3.5. Simulations Including Nuclear Power Plant ¹⁴CH₄ Emissions

Nuclear power plants of the pressurized water reactor type produce gaseous emissions of ¹⁴C that are primarily in the form of ¹⁴CH₄ (Kunz, 1985; Zazzeri et al., 2018). In California, there is one nuclear site with two pressurized water reactors operating, Diablo Canyon, located in the central coast region (35.211°N, 120.856°W). There is another nuclear site in southwestern Arizona with three pressurized water reactors operating, Palo Verde (33.389°N, 112.865°W). We took ¹⁴CH₄ emission data reported to the Nuclear Regulatory Commission for 2014–2015 (https://www.nrc.gov/reactors/operating/ops-experience/tritium/ plant-info.html). We converted emissions reported in Curies to units of mole per year as described in the SI. For Diablo Canyon, reported ¹⁴CH₄ emissions average 0.25 mol/year over 2014 and 2015, and for Palo Verde, reported emissions are 0.52 mol/year over 2014 and 2015. These emission data are estimates based on recommendations by the Electric Power Research Institute (2010), not actual measurements of emissions.

We simulated nuclear influences on Δ^{14} CH₄ for 2014 at the observation sites in Table 1 using the CarbonTracker-Lagrange footprints in the same way as described above, using equation (2). We combine these with the CH₄ simulations for 2014 made with the EDGAR emissions estimate. Simulations of nuclear influences on Δ^{14} CH₄ were made assuming time-invariant emissions, even though prior studies have shown that nuclear power plant emissions can be highly intermittent (Kunz, 1985; Vogel et al., 2013). Here the simulations with the CarbonTracker-Lagrange footprints apply the emissions uniformly over the grid cell containing the site, which has an area of approximately 100 km². Simulating the emissions from a smaller point source may result in narrower but more intense plumes of influence that may be more realistic; however, it was not possible to simulate point source emissions with this model.

We run simulations of nuclear influences on Δ^{14} CH₄ for 2014 only. Current operating contracts on the Diablo Canyon nuclear site expire in 2024–2025 and the operator announced decommissioning plans in 2016, indicating that the site may be shut down by 2030. Palo Verde is the largest nuclear power plant in the United States and is likely to continue operating through 2030.

4. Results

4.1. Simulations for 2014 in California With EDGAR and GEPA Emissions Estimates

Simulations of CH_4 at the sites in California show differences in the CH_4 concentration and fossil fraction caused by differences in the spatial distributions of fossil and biogenic CH_4 emissions in the EDGAR and GEPA emissions estimates (Figure 3). Excess CH_4 concentration above the background level is higher at all sites in Southern California and at LVR in simulations using EDGAR, whereas excess CH_4 concentration is higher at STB, WGC, and ARV using GEPA (Figure 3a). Median values differ by a factor of 2 at several sites. The differences in excess CH_4 concentration largely reflect the allocation of more emissions in densely populated regions in EDGAR compared to GEPA (Figure 2; Maasakkers et al., 2016), which are generally associated with higher fossil fractions (Table 2 and Figure 3b).

The simulated fossil fractions of excess CH_4 concentration are shown in Figure 3b. These reflect the average fossil fractions of CH_4 emissions of the areas of influence on each site, weighted by the magnitude of emissions and their dilution before reaching the observation site. Only two sites show higher median fossil fractions of excess CH_4 concentration in GEPA: STB and ARV. Higher excess CH_4 concentration and fossil fraction at ARV appears to be associated with intense oil and gas activities in the southern Central Valley that are captured in GEPA but not in EDGAR. Fossil fractions of excess CH_4 generally show more variation in simulations using GEPA than in EDGAR (Figure 2b). This indicates the fossil fraction of emissions is more spatially variable in GEPA, particularly in Southern California. The fossil fraction is somewhat higher at Los Angeles area sites (MWO, CIT, and SBC) than at the site further south in San Diego (SIO) with

Figure 3. Distributions of excess CH_4 concentration (left), fossil fraction (middle), and change in $\Delta^{14}CH_4$ (right) in simulations using the GEPA and EDGAR emissions maps. Bars show the median and interquartile range (middle 50% of the data, between the 25th and 75th quantiles) for each variable at each observation site simulated in the afternoon for 2014 using CarbonTracker-Lagrange. In the right panel, the change in $\Delta^{14}CH_4$ is also shown for a simulation in which the excess CH_4 concentration is determined using EDGAR but the fossil fraction is determined using GEPA.

EDGAR, but the fossil fraction is somewhat lower at Los Angeles area sites than in San Diego with GEPA (Figure 3b), indicating differing distributions of emissions, for example, from natural gas, landfills, and dairies within Southern California in EDGAR and GEPA.

The Δ^{14} CH₄ calculated following section 2 similarly shows large differences in simulations using EDGAR or GEPA emissions (Figure 3c). We use the notation $\Delta\Delta^{14}$ CH₄ to indicate the difference between the Δ^{14} CH₄ at the site and the background Δ^{14} CH₄ in the simulations (analogous to Δ_m - Δ_{bg}). The simulated $\Delta\Delta^{14}$ CH₄ is more negative at all sites in Southern California and at LVR in simulations using EDGAR compared to GEPA. At these sites, the fractional differences in $\Delta\Delta^{14}$ CH₄ are even larger than for excess CH₄ concentration because the higher excess CH₄ concentrations and higher fossil fractions both contribute to more negative $\Delta\Delta^{14}$ CH₄, compared to GEPA. At STB and ARV, the opposite is true, as both excess CH₄ concentration and fossil fraction are higher in GEPA as compared to EDGAR. At WGC, median $\Delta\Delta^{14}$ CH₄ is more negative for EDGAR than GEPA, but the interquartile ranges largely overlap.

In addition to the simulations of $\Delta\Delta^{14}$ CH₄ based on EDGAR and GEPA emissions, we conduct another calculation to help illustrate how much the difference in fossil fraction and difference in excess CH₄ concentration each contribute to the difference in simulated $\Delta\Delta^{14}$ CH₄. We use the simulated excess CH₄ concentration from EDGAR with the simulated fossil fraction from GEPA to calculate $\Delta\Delta^{14}$ CH₄ (Figure 3c). This calculation indicates that differences in excess CH₄ concentration are the primary cause (>70%) of the differences in $\Delta\Delta^{14}$ CH₄ at most sites. At WGC and SBC, differences in the fossil fraction did account for a large fraction of the difference between the median values of $\Delta\Delta^{14}$ CH₄ between the GEPA and EDGAR simulations (66% and 47%, respectively). However, this comparison of median values does not fully quantify the separate effects of excess CH₄ and fossil fraction as the medians are not necessarily additive: at STB and VTR, the median of $\Delta\Delta^{14}$ CH₄ was not in between the medians of the GEPA and EDGAR simulations, indicating that correlations between excess CH₄ and fossil fraction also contribute to resulting median $\Delta\Delta^{14}$ CH₄.

To illustrate the relationships between $\Delta\Delta^{14}$ CH₄ and excess CH₄ concentration in the EDGAR and GEPA simulations, in Figure 4, we show two-dimensional histograms for three of the sites in California. Other sites are shown in Figure S1. The figures show the distribution of excess CH₄ and $\Delta\Delta^{14}$ CH₄ in the range of 0 to 125 ppb and 0‰ to -50%. For reference, the relationships for constant fossil fractions of 0.25 and 0.75 are also shown (see section 2 and Figure 1). At all three sites, simulations with EDGAR have a higher fossil fraction and a stronger (steeper) slope between $\Delta\Delta^{14}$ CH₄ and excess CH₄. There is a relatively tight

Figure 4. Distributions of the simulated change in Δ^{14} CH₄ versus excess CH₄ concentration, shown as two-dimensional histograms at three selected sites. Other sites are shown in Figure S1. The top row shows WGC, middle row SBC, and bottom row SIO. Simulations shown in the left column use GEPA emissions, and the right column use EDGAR emissions. Colors show the fraction of the data contained in each bin. Blue circles show the median of the simulated change in Δ^{14} CH₄ and the median of the excess CH₄ concentration in each case. Dashed lines show the relationship expected from constant fossil fractions of 25% and 75%, for reference.

relationship (high correlation) between simulated $\Delta \Delta^{14}$ CH₄ and excess CH₄ in the simulations at SBC and SIO using EDGAR, reflecting the low variance in simulated fossil fraction (Figure 3b). For the other simulations, there is more scatter, reflecting a variety of fossil fractions in excess CH₄. In the simulation for WGC using GEPA, the fossil fraction appears to decrease when excess CH₄ concentration is high, showing that certain atmospheric conditions result in strong biogenic CH₄ influences at WGC.

These simulations demonstrate the magnitude and patterns of $\Delta\Delta^{14}$ CH₄ that could be measured in the near future in California, as well as the expected differences from different emissions estimates, which can be used to evaluate the utility of $\Delta\Delta^{14}$ CH₄ observations. Median values of $\Delta\Delta^{14}$ CH₄ of -4% to -25% in GEPA and -4% to -62% in EDGAR suggest that current measurement precision could detect $\Delta\Delta^{14}$ CH₄ signals for high pollution events with excess CH₄ concentration in the upper quartiles at all sites, but also for

Figure 5. Distributions of excess CH_4 concentration (left), fossil fraction (middle), and change in $\Delta^{14}CH_4$ (right) in simulations using the Target and BAU scenarios with EDGAR emissions. Bars show the median and interquartile range of each variable at each observation site, similar to Figure 3. In the right panel, the change in $\Delta^{14}CH_4$ is also shown for a simulation in which the excess CH_4 concentration is determined using the BAU scenario but the fossil fraction is determined using the Target scenario.

pollution events in the lower quartiles at ARV, MWO, CIT, and SBC. As pollution events are stronger in winter (Jeong et al., 2016), it is likely that deployment of $\Delta\Delta^{14}$ CH₄ observations in winter would provide more precise determination of fossil fractions than in other seasons.

In practice, observations of $\Delta\Delta^{14}$ CH₄ and excess CH₄ concentration at an observation site could be plotted in a similar way as Figure 4 to analyze the fossil fraction of excess CH₄ and its variability and to compare with the simulations using EDGAR and GEPA. Observations of $\Delta\Delta^{14}$ CH₄ could also be used to calculate C_b and C_f following section 2, which could then be used in an inversion for regional biogenic and fossil CH₄ emissions in California, for example, using EDGAR or GEPA as a prior emissions estimate.

4.2. Simulations for 2030 BAU and Target Emission Scenarios

Using a similar analysis as in the previous section, we now compare simulated excess CH_4 concentrations, fossil fractions, and $\Delta\Delta^{14}CH_4$ in 2030 for Target and BAU scenarios in California (Figure 5). Taking the EDGAR emissions estimate as the baseline emissions in 2013–2014, we find that median excess CH_4 concentrations increase by no more than a few percent in the BAU scenario, but median excess CH_4 concentrations decrease by 36–39% in the Target scenario. For the BAU scenario, there is some compensation between small overall decreases in biogenic emissions and small increases in fossil emissions. Median fossil fraction of excess CH_4 is 3–5% higher for BAU but 3–5% lower for Target, compared to the excess CH_4 simulated with EDGAR.

Median $\Delta\Delta^{14}$ CH₄ is slightly less negative (7–9%) in the BAU scenario but 47–50% less negative in the Target scenario, compared to EDGAR (Figures 5c and 3c). This implies that, in the case where the Target scenario is followed, an observation network for $\Delta\Delta^{14}$ CH₄ should demonstrate that the magnitude of $\Delta\Delta^{14}$ CH₄ grows smaller. Moreover, changes in the magnitude of $\Delta\Delta^{14}$ CH₄ are even more than expected from emissions reductions alone (47–50% decrease in $\Delta\Delta^{14}$ CH₄ compared with a 35% decrease in total emissions, Table 3). In an additional calculation where we use the simulated excess CH₄ concentration from BAU with the simulated fossil fraction from Target to calculate $\Delta\Delta^{14}$ CH₄, similar to Figure 3c, it can be seen that the differences in $\Delta\Delta^{14}$ CH₄ between Target and BAU are mostly attributable to differences in the excess CH₄ concentration rather than differences in the fossil fraction. However, this does suggest that in the case that total emissions changes follow the BAU scenario, but the fossil fraction follows the Target scenario (decreasing rather than increasing fossil fraction, Table 3), then the magnitude of $\Delta\Delta^{14}$ CH₄ is expected to be smaller.

The relationships between $\Delta\Delta^{14}$ CH₄ and excess CH₄ concentration in the BAU and Target simulations are shown in Figure 6 at WGC, SBC, and SIO. Note that the reference lines have flatter slopes than in Figure 4 because of the differences in C_{bg} and Δ_b in 2030. As expected from the higher fossil fraction in the BAU

Figure 6. Distributions of the simulated change in Δ^{14} CH₄ versus excess CH₄ concentration, shown as two-dimensional histograms at three selected sites, as in Figure 4. Here the simulations shown in the left column are for the Target scenario, and the right column for the BAU scenario. Other sites are shown in Figure S2.

scenario compared to the Target scenario (Figure 5b), there are steeper slopes between $\Delta\Delta^{14}CH_4$ and excess CH_4 in simulations of the BAU scenario compared to the Target scenario. These simulations suggest that changes in total emissions could be observed by regional CH_4 measurements and that changes in fossil fractions of emissions could be evaluated with the addition of $\Delta\Delta^{14}CH_4$ measurements.

Here again, in practice $\Delta\Delta^{14}$ CH₄ and excess CH₄ observations could be used to calculate C_f and C_b, which could be implemented in an atmospheric inversion to estimate fossil and biogenic CH₄ emissions in 2030. Figures similar to Figure 6 could help to illuminate whether the observed fossil fractions are similar to those expected with policy implementation. Differences in the $\Delta\Delta^{14}$ CH₄ and excess CH₄ relationships could indicate that certain policies have not been met or that other policies have been more successful than expected.

4.3. Nuclear Power Plant Influences on $\Delta^{14}CH_4$ in California

Nuclear power plant influences on $\Delta^{14}CH_4$ vary strongly across the nine sites. At the three sites north of Diablo Canyon median values of $\Delta\Delta^{14}CH_4$ from nuclear $^{14}CH_4$ emissions are 0‰ and the extent of the

Figure 7. Simulated median and interquartile range of the difference in Δ^{14} CH₄ from the background level for simulations using EDGAR emissions (left). Blue bars show the simulated $\Delta\Delta^{14}$ CH₄ when nuclear ¹⁴CH₄ emissions are neglected, as shown in Figure 3c. White bars show the simulated $\Delta\Delta^{14}$ CH₄ when nuclear ¹⁴CH₄ emissions are included, and red bars show the simulated nuclear influences on $\Delta\Delta^{14}$ CH₄. The right two panels show the simulated $\Delta\Delta^{14}$ CH₄ versus the simulated excess CH₄ concentration when nuclear ¹⁴CH₄ emissions are included for two sites: SBC and SIO. Black circles show the median values and blue circles show the median values when nuclear ¹⁴CH₄ emissions are neglected, as shown in Figures 4d and 4f. Other sites are shown in Figure S3.

interquartile range is less than 1‰ (Figure 7a). However, there are a few instances of high nuclear influences of more than 25‰ at these sites. Nuclear influences shift the median in total $\Delta\Delta^{14}$ CH₄ toward slightly less negative values at these sites (+1‰ to +3‰). For the sites in Central and Southern California, median values of $\Delta\Delta^{14}$ CH₄ from nuclear ¹⁴CH₄ emissions range from 2‰ (ARV) to 7‰ (CIT) (Figure 7a). Nuclear influences shift the median total $\Delta\Delta^{14}$ CH₄ by +4‰ (ARV) to +19‰ (CIT). For SIO, the interquartile range shifts into positive values.

The high correlation seen previously between $\Delta\Delta^{14}$ CH₄ and excess CH₄ at SBC and SIO (Figures 4d and 4f) is replaced with more scatter as a result of nuclear emissions (Figures 7b and 7c). There are now data lying above the reference line for a fossil fraction of 0.25, whereas before there were none. There are even some data lying above a zero fossil fraction or lying above 0 in $\Delta\Delta^{14}$ CH₄, indicating an increase in Δ^{14} CH₄ with an increase in CH₄. In practice, these outliers could be easily flagged as having a strong nuclear influence. Perhaps more important would be correcting for smaller nuclear influences that could bias the interpretation on $\Delta\Delta^{14}$ CH₄, where the simulations we show here would be one approach for making such a correction. We note that in many cases, the most densely populated bins in the $\Delta\Delta^{14}$ CH₄ and excess CH₄ histograms are largely unchanged when nuclear influences are included.

Most of the nuclear influence in California is from ${}^{14}CH_4$ emissions from the Diablo Canyon nuclear site. The impact of emissions from Palo Verde was minor at all sites except for Victorville where it was comparable to emissions from Diablo Canyon.

5. Discussion

We have introduced a framework for interpreting Δ^{14} CH₄ observations in regional atmospheric measurement networks, showing that Δ^{14} CH₄ observations could likely provide useful information on fossil and biogenic CH₄ emissions on regional scales. Differences in the fossil fraction of added CH₄ are associated with differences in the slope between Δ^{14} CH₄ and CH₄ concentration. Deployment of Δ^{14} CH₄ observations in California could help to distinguish whether the current fossil fraction of CH₄ emissions in California is more consistent with EDGAR or GEPA. Continued observation of Δ^{14} CH₄ through 2030 could help to validate the reductions in fossil fraction of CH₄ emissions that are expected through current mitigation policies. Detectability of C_f, C_b, and F, and their changes over time, would benefit from improvements in measurement uncertainty in Δ^{14} CH₄. Simulated fossil fractions of excess CH₄ concentration differ at each site according to the spatial distribution of biogenic and fossil fuel emissions and according to atmospheric transport. General patterns in the spatial variation of fossil fraction of emissions are reflected in the fossil fraction of excess CH₄ concentration (Figure S4), suggesting that CH₄ and Δ^{14} CH₄ data alone could indicate errors in the regional fossil fractions of assumed emissions, particularly when compared to atmospheric simulations such as those we present here. More quantitative estimation of fossil and biogenic emissions would require an inversion system making use of CH₄ and Δ^{14} CH₄. Such an inversion system could be constructed using CH₄ and Δ^{14} CH₄ explicitly or using estimates of C_f and C_b based on CH₄ and Δ^{14} CH₄ measurements, similar to prior studies on CO₂ and Δ^{14} CO₂ (Basu et al., 2016; Fischer et al., 2017; Graven et al., 2018), resulting in observation-based estimates of fossil and biogenic CH₄ emissions for well-defined regions.

As an example of a more qualitative comparison between observations and simulations, we can apply the framework from section 2 to the Δ^{14} CH₄ observations made at Mount Wilson in August 2009 by Townsend-Small et al. (2012). Townsend-Small et al. (2012) made six measurements over 2 days, observing a range of 1,760–2,060 ppb in CH₄ and 262–344‰ in Δ^{14} CH₄. They concluded that the Δ^{14} CH₄ data supported the presence of some fossil CH₄ emissions in the Los Angeles Basin; however, they did not conduct a quantitative analysis of the Δ^{14} CH₄ data because they did not find a clear relationship between Δ^{14} CH₄ and CH₄ concentration. One of their samples with low CH₄ concentration also showed low Δ^{14} CH₄. Excluding this sample, comparisons of the other five samples show that Δ^{14} CH₄ decreased by approximately 2‰ per 10 ppb increase in CH₄. Comparison with the slopes calculated in section 2 above suggests that the fossil fraction of excess CH₄ was actually rather low in these samples, probably less than 25%. Our simulations for Mount Wilson show an interquartile range in fossil fraction of excess CH₄ that is 13% to 32% for GEPA emissions but 41% to 47% for EDGAR (Figure 3b). This suggests the data from Townsend-Small et al. (2012) may be more consistent with the fossil fraction in GEPA.

In the simulations for California, we analyzed potential Δ^{14} CH₄ observations made at nine sites every afternoon for an entire year, but it is unlikely that observations could be made with this frequency. Based on our results and consideration of the likely uncertainties in the method, Δ^{14} CH₄ measurements would be most useful for the sites and times of year with large additions of CH₄ and/or with large discrepancies in different estimates of the fossil fraction of emissions (Figure 3, Peischl et al., 2013; Wennberg et al., 2012). In California, these sites include the Los Angeles-South Coast region (MWO, CIT, and SBC) and the Southern Central Valley (ARV). Wintertime measurements would likely enable more precise determination of fossil fractions than in other seasons because pollution events are stronger in winter (Jeong et al., 2016). In addition to these relatively polluted sites, measurement sites that can characterize background air composition in Southern-Central California are also needed (e.g., SIO and VTR).

Our simulations including nuclear power plant ¹⁴CH₄ emissions suggest that nuclear influences on Δ^{14} CH₄ in California can sometimes be large, particularly in Southern California (Figure 7). These results suggest that nuclear emissions can be important not only in regions with high densities of nuclear power plants such as in Europe (Eisma et al., 1995; Levin et al., 1992) but also in other regions with one or two pressurized water reactor sites. To better quantify the nuclear power plant emissions and their effect on Δ^{14} CH₄ in California, measurements of the ¹⁴C emissions from each nuclear site are needed. Currently, U.S. nuclear power plants are required to estimate their ¹⁴C emissions according to standard guidelines but not to measure their ¹⁴C emissions, unlike some other countries. Implementation of the measurement and reporting of ¹⁴C emissions at Diablo Canyon and Palo Verde nuclear power plants, particularly with monthly or higher temporal resolution, would improve the application of Δ^{14} CH₄ measurements in California. As the main influence on Δ^{14} CH₄ was from Diablo Canyon, the potential shutdown of Diablo Canyon in 2025 would greatly improve the application of Δ^{14} CH₄ measurements in California.

The approach for investigating CH_4 emissions using $\Delta^{14}CH_4$ that we outline here could be implemented with other techniques that use stable isotope or trace gas observations (Jeong et al., 2017; Peischl et al., 2013; Townsend-Small et al., 2012; Wennberg et al., 2012). Observations of $\Delta^{14}CH_4$ could help to quantify regional-scale trace gas emission ratios or stable isotopic signatures in fossil CH_4 sources and how these change over time. Observations of $\Delta^{14}CH_4$ could also be combined with satellite remote sensing measurements and spatially resolved inverse CH_4 emissions estimates based on satellite CH_4 data (Jacob et al.,

2016) to provide constraints on regional fossil fractions in CH_4 emissions. Implementation of regionalscale $\Delta^{14}CH_4$ observations together with new or existing stable isotope, trace gas, and satellite observation networks in relatively well-instrumented regions like California would provide a testbed for applying multiple constraints and identifying best practices in deploying and interpreting different measurements.

6. Conclusions

Observations of radiocarbon in atmospheric CH₄ presently provide a main constraint on the global fossil fraction of CH₄ emissions, but they have not been developed to examine CH₄ sources at regional scales. We present a general framework for interpreting regional-scale atmospheric Δ^{14} CH₄ observations and suggest that the uncertainty in estimating regional fossil-derived and biogenic CH₄ is likely dominated by the measurement uncertainty in Δ^{14} CH₄ and the uncertainty in background CH₄ concentration. Simulations of CH₄ and Δ^{14} CH₄ in California using EDGAR versus GEPA emissions estimates show substantial differences related to the generally higher fossil fraction in EDGAR. Projections of potential changes in CH₄ emissions for 2030 suggest that mitigation will tend to reduce the fossil fraction, resulting in flatter atmospheric Δ^{14} CH₄ cH₄ slopes, compared to a BAU scenario. Simulations suggest influences on Δ^{14} CH₄ in California from ¹⁴CH₄ emissions from the Diablo Canyon and Palo Verde nuclear power plants are small on average but should be considered in interpretation of Δ^{14} CH₄ observations.

References

- Andrews, A. E., Kofler, J. D., Trudeau, M. E., Williams, J. C., Neff, D. H., Masarie, K. A., et al. (2014). CO₂, CO, and CH₄ measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: Instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts. *Atmospheric Measurement Techniques*, 7(2), 647–687. https://doi.org/10.5194/amt-7-647-2014
- Basu, S., Miller, J. B., & Lehman, S. (2016). Separation of biospheric and fossil fuel fluxes of CO₂ by atmospheric inversion of CO₂ and ¹⁴CO₂ measurements: Observation system simulations. *Atmospheric Chemistry and Physics*, *16*(9), 5665–5683. https://doi.org/10.5194/acp-16-5665-2016
- Bergamaschi, P., Karstens, U., Manning, A. J., Saunois, M., Tsuruta, A., Berchet, A., et al. (2018). Inverse modelling of European CH₄ emissions during 2006–2012 using different inverse models and reassessed atmospheric observations. *Atmospheric Chemistry and Physics*, 18(2), 901–920. https://doi.org/10.5194/acp-18-901-2018
- Bloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder, R., Worden, J. R., et al. (2017). A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0). *Geoscientific Model Development*, 10(6), 2141–2156. https://doi.org/10.5194/gmd-10-2141-2017
- Brophy, K., Graven, H., Manning, A. J., White, E., Arnold, T., Fischer, M. L., et al. (2018). Characterizing uncertainties in atmospheric inversions of fossil fuel CO₂ emissions in California. *Atmospheric Chemistry and Physics Discussions*, 2018, 1–44. https://doi.org/10.5194/ acp-2018-473
- California Air Resources Board (2017a). California Greenhouse Gas Emission Inventory—2017 Edition, California Air Resources Board. Retrieved from http://www.arb.ca.gov/cc/inventory/data/data.htmRep
- California Air Resources Board (2017b). California's 2017 climate change scoping plan. California Air Resources Board. Retrieved from https://www.arb.ca.gov/cc/scopingplan/scoping_plan_2017.pdfRep
- California Air Resources Board (2017c). Short-Lived Climate Pollutant Reduction Strategy, California Air Resources Board. Retrieved from https://www.arb.ca.gov/cc/shortlived/meetings/03142017/final_slcp_report.pdfRep
- Chanton, J. P., Bauer, J. E., Glaser, P. A., Siegel, D. I., Kelley, C. A., Tyler, S. C., et al. (1995). Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands. *Geochimica et Cosmochimica Acta*, 59(17), 3663–3668. https://doi.org/10.1016/0016-7037(95)00240-Z
- Emissions Database for Global Atmospheric Research (2011), EDGAR Greenhouse Gas Emissions Inventory v4.2 FT2010. Retrieved from http://edgar.jrc.ec.europa.eu/index.php
- Eisma, R., Vermeulen, A. T., & van der Borg, K. (1995). ¹⁴CH₄ emissions from nuclear power plants in northwestern Europe. *Radiocarbon*, 37(2), 475–483.
- Electric Power Research Institute (2010). Estimation of carbon-14 in nuclear power plant gaseous effluents, Electric Power Research Institute Technical Report 1021106. Palo Alto, CA Rep.
- Etiope, G., Lassey, K. R., Klusman, R. W., & Boschi, E. (2008). Reappraisal of the fossil methane budget and related emission from geologic sources. *Geophysical Research Letters*, 35, L09307. https://doi.org/10.1029/2008GL033623
- Fischer, M. L., Parazoo, N., Brophy, K., Cui, X., Jeong, S., Liu, J., et al. (2017). Simulating estimation of California fossil fuel and biosphere carbon dioxide exchanges combining in situ tower and satellite column observations. *Journal of Geophysical Research: Atmospheres*, 122, 3653–3671. https://doi.org/10.1002/2016jd025617
- Garnett, M. H., Hardie, S. M. L., Murray, C., & Billett, M. F. (2013). Radiocarbon dating of methane and carbon dioxide evaded from a temperate peatland stream. *Biogeochemistry*, 114(1–3), 213–223. https://doi.org/10.1007/s10533-012-9804-2
- Graven, H., Allison, C. E., Etheridge, D. M., Hammer, S., Keeling, R. F., Levin, I., et al. (2017). Compiled records of carbon isotopes in atmospheric CO₂ for historical simulations in CMIP6. *Geoscientific Model Development*, 10(12), 4405–4417. https://doi.org/10.5194/gmd-10-4405-2017
- Graven, H., Fischer, M. L., Lueker, T., Jeong, S., Guilderson, T. P., Keeling, R. F., et al. (2018). Assessing fossil fuel CO₂ emissions in California using atmospheric observations and models. *Environmental Research Letters*, *13*(6), 065007. https://doi.org/10.1088/1748-9326/aabd43

Acknowledgments

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement 679103), and from a European Union FP7 Career Integration Grant. The authors are grateful to Arlyn Andrews and the CarbonTracker-Lagrange team for making the footprints available. Kieran Brophy assisted with CarbonTracker-Lagrange footprints. Simulations are available as supporting information in Table S2.

- Graven, H. D. (2015). Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. Proceedings of the National Academy of Sciences of the United States of America, 112(31), 9542–9545. https://doi.org/10.1073/pnas.1504467112
- Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sheng, J., Sun, K., Liu, X., et al. (2016). Satellite observations of atmospheric methane and their value for quantifying methane emissions. *Atmospheric Chemistry and Physics*, 16(22), 14,371–14,396. https://doi.org/10.5194/acp-16-14371-2016
- Jeong, S., Cui, X., Blake, D. R., Miller, B., Montzka, S. A., Andrews, A., et al. (2017). Estimating methane emissions from biological and fossil-fuel sources in the San Francisco Bay Area. *Geophysical Research Letters*, 44, 486–495. https://doi.org/10.1002/2016GL071794
- Jeong, S., Hsu, Y.-K., Andrews, A. E., Bianco, L., Vaca, P., Wilczak, J. M., & Fischer, M. L. (2013). A multitower measurement network estimate of California's methane emissions. *Journal of Geophysical Research: Atmospheres*, 118, 11,339–11,351. 2013JD019820, https:// doi.org/10.1002/jgrd.50854
- Jeong, S., Newman, S., Zhang, J., Andrews, A. E., Bianco, L., Bagley, J., et al. (2016). Estimating methane emissions in California's urban and rural regions using multitower observations. *Journal of Geophysical Research: Atmospheres*, 121, 13,031–13,049. https://doi.org/ 10.1002/2016JD025404
- Jeong, S., Zhao, C., Andrews, A. E., Bianco, L., Wilczak, J. M., & Fischer, M. L. (2012). Seasonal variation of CH₄ emissions from central California. Journal of Geophysical Research, 117, D11306. https://doi.org/10.1029/2011JD016896
- Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., et al. (2013). Three decades of global methane sources and sinks. *Nature Geoscience*, 6(10), 813–823. https://doi.org/10.1038/ngeo1955

Kunz, C. (1985). Carbon-14 discharge at three light-water reactors. Health Physics, 49(1), 25-35.

- Lassey, K. R., Etheridge, D. M., Lowe, D. C., Smith, A. M., & Ferretti, D. F. (2007). Centennial evolution of the atmospheric methane budget: What do the carbon isotopes tell us? *Atmospheric Chemistry and Physics*, *7*, 2119–2139.
- Lassey, K. R., Lowe, D. C., & Smith, A. M. (2007). The atmospheric cycling of radiomethane and the "fossil fraction" of the methane source, Atmos. *Chemical Physics*, 7, 2141–2149.
- Levin, I., Bösinger, R., Bonani, G., Francey, R. J., Kromer, B., Münnich, K. O., et al. (1992). Radiocarbon in atmospheric carbon dioxide and methane: Global distribution and trends. In R. E. Taylor, A. Long, & R. S. Kra (Eds.), Radiocarbon after four decades: An interdisciplinary perspective (pp. 503–518). New York: Springer.
- Levin, I., Kromer, B., Schmidt, M., & Sartorius, H. (2003). A novel approach for independent budgeting of fossil fuel CO_2 over Europe by $^{14}CO_2$ observations. *Geophysical Research Letters*, 30(23), 2194. https://doi.org/10.1029/2003GL018477
- Lowe, D. C., Brenninkmeijer, C. A. M., Manning, M. R., Sparks, R., & Wallace, G. (1988). Radiocarbon determination of atmospheric methane at Baring Head, New Zealand. *Nature*, 332(6164), 522–525.
- Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Turner, A. J., Weitz, M., Wirth, T., et al. (2016). Gridded National Inventory of U.S. Methane Emissions, Environmental Science & Technology, 50(23), 13,123–13,133. https://doi.org/10.1021/acs.est.6b02878
- Manning, A. J., O'Doherty, S., Jones, A. R., Simmonds, P. G., & Derwent, R. G. (2011). Estimating UK methane and nitrous oxide emissions from 1990 to 2007 using an inversion modeling approach. *Journal of Geophysical Research*, 116, D02305. https://doi.org/10.1029/ 2010JD014763
- Miller, J., Lehman, S., Wolak, C., Turnbull, J., Dunn, G., Graven, H., et al. (2013). Initial results of an intercomparison of AMS-based atmospheric ¹⁴CO₂ measurements. *Radiocarbon*, 55(03), 1475–1483. https://doi.org/10.1017/S0033822200048402
- Miller, S. M., Wofsy, S. C., Michalak, A. M., Kort, E. A., Andrews, A. E., Biraud, S. C., et al. (2013). Anthropogenic emissions of methane in the United States. Proceedings of the National Academy of Sciences of the United States of America, 110(50), 20,018–20,022. https://doi. org/10.1073/pnas.1314392110
- Nakagawa, F., Yoshida, N., Sugimoto, A., Wada, E., Yoshioka, T., Ueda, S., & Vijarnsorn, P. (2002). Stable isotope and radiocarbon compositions of methane emitted from tropical rice paddies and swamps in southern Thailand. *Biogeochemistry*, 61(1), 1–19. https://doi.org/ 10.1023/A:1020270032512
- Peischl, J., Ryerson, T. B., Brioude, J., Aikin, K. C., Andrews, A. E., Atlas, E., et al. (2013). Quantifying sources of methane using light alkanes in the Los Angeles basin, California. Journal of Geophysical Research: Atmospheres, 118, 4974–4990. https://doi.org/10.1002/ jgrd.50413

Potter, C., Klooster, S., Hiatt, S., Fladeland, M., Genovese, V., & Gross, P. (2006). Methane emissions from natural wetlands in the United States: Satellite-derived estimation based on ecosystem carbon cycling. *Earth Interactions*, 10(22), 1–12. https://doi.org/10.1175/EI200.1

Quay, P. D., King, S. L., Stutsman, J., Wilbur, D. O., Steele, L. P., Fung, I., et al. (1991). Carbon isotopic composition of atmospheric CH₄: Fossil and biomass burning source strengths. *Global Biogeochemical Cycles*, 5(1), 25–47. https://doi.org/10.1029/91GB00003

Stuiver, M., & Polach, H. A. (1977). Discussion: Reporting of ¹⁴C data. Radiocarbon, 19(3), 355–363.

- Townsend-Small, A., Tyler, S. C., Pataki, D. E., Xu, X., & Christensen, L. E. (2012). Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of "fugitive" fossil fuel emissions. *Journal of Geophysical Research*, 117, D07308. https://doi.org/ 10.1029/2011JD016826
- Turnbull, J. C., Rayner, P., Miller, J., Naegler, T., Ciais, P., & Cozic, A. (2009). On the use of ¹⁴CO₂ as a tracer for fossil fuel CO₂: Quantifying uncertainties using an atmospheric transport model. *Journal of Geophysical Research*, 114, D22302. https://doi.org/10.1029/ 2009JD012308
- van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., et al. (2011). The representative concentration pathways: An overview. *Climatic Change*, 109(1–2), 5–31. https://doi.org/10.1007/s10584-011-0148-z
- Verhulst, K. R., Karion, A., Kim, J., Salameh, P. K., Keeling, R. F., Newman, S., et al. (2017). Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project—Part 1: Calibration, urban enhancements, and uncertainty estimates. *Atmospheric Chemistry and Physics*, 17(13), 8313–8341. https://doi.org/10.5194/acp-17-8313-2017
- Vogel, F. R., Levin, I., & Worthy, D. E. (2013). Implications for deriving regional fossil fuel CO₂ estimates from atmospheric observations in a hot spot of nuclear power plant ¹⁴CO₂ emissions. *Radiocarbon*, 55(2–3), 1556–1572.
- Wahlen, M., Tanaka, N., Henry, R., Deck, B., Zeglen, J., Vogel, J. S., et al. (1989). Carbon-14 in methane sources and in atmospheric methane: The contribution from fossil carbon. *Science*, 245(4915), 286–290. https://doi.org/10.1126/science.245.4915.286
- Wennberg, P. O., Mui, W., Wunch, D., Kort, E. A., Blake, D. R., Atlas, E. L., et al. (2012). On the sources of methane to the Los Angeles atmosphere. *Environmental Science & Technology*, 46(17), 9282–9289. https://doi.org/10.1021/es301138y
- Zazzeri, G., Acuña Yeomans, E., & Graven, H. D. (2018). Global and regional emissions of radiocarbon from nuclear power plants from 1972 to 2016. Radiocarbon, 1-15. https://doi.org/10.1017/RDC.2018.42