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1  | INTRODUCTION

Drug development is a highly inefficient process with failures of 
many drugs due to toxicity or lack of efficacy. On average, it takes 
around 10 years for a new pharmaceutical compound to enter the 
market and costs approximately US $2.6 billion.1 The majority 
of drug failures in clinical trials occur due to the low capability of 
existing preclinical models to predict the toxicity of compounds.2 
Although the majority of potential drug candidates entering drug 
development are identified during initial in vitro stages of drug me-
tabolism investigations and drug discovery,3 a high portion of the 

compounds producing toxic metabolites are not identified early 
enough. Some compounds deemed to be successful in in vitro drug 
metabolism studies perform well on animal models but fail in the last 
stages of clinical trials.4,5 There continues to be a critical need to en-
hance our understanding of drug metabolism and to help eliminate 
toxic compounds early in the drug development pipeline.

Liver cells play a major role in drug metabolism studies in drug 
development. Conventional and emerging in vitro methods used 
in metabolism studies are based on mimicking the action of drug 
metabolizing enzymes (DMEs) (an important central group of liver 
proteins).6 DMEs are divided into two major groups of phase I and 
phase II metabolizing enzymes.7 Phase I enzymes (Cytochrome P450 
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and flavin- containing monooxygenases (FMOs)) serve to make drug 
compounds more soluble as the majority of drugs come in a lipophilic 
form. These enzymes are involved in the metabolism of the vast ma-
jority of pharmaceuticals (~75% of all marketed drugs).8 After a drug 
goes through a phase I enzyme- catalysed conversion, its metabo-
lite enters the phase II drug metabolism cycle driven by one of the 
phase II enzymes (UDP- dependent glucuronosyltransferases (UGT), 
sulfotransferases (SULTs), N- acetyltransferases (NATs) and glutathi-
one S- transferases (GSTs)). Phase II enzymes increase the solubility 
of drug metabolites in water and facilitate their subsequent excre-
tion. In contrast to their phase I counterparts, phase II enzymes are 
used and studied less in drug testing assays, because they catalyse a 
smaller range of substrates.

Predicting drug metabolism outcomes driven by the liver en-
zymes and toxicity of a pharmaceutical or a chemical using improved 
cell- based methods has attracted much attention. Currently, in vivo 
bioactivity of drugs is predicted using physiologically based pharma-
cokinetic animal models.9- 11 However, a poor correlation between 
animal data and human outcomes has been observed due to the sub-
stantial species- specific differences in drug metabolism pathways, 
pharmacokinetics and toxicity targets.12,13 Additionally, due to the 
cost and ethical concerns over animal models, in vitro cultured cells 
have widely been used as an alternative to animal models,14,15 and as 
a screening tool before the in vivo models.16 However, in vitro cell 
models have major limitations such as tedious sample preparations 
for separating interfering matrix compounds (proteins, lipids, salts 
and endogenous compounds) and low accuracy results. Additionally, 
they are often limited in representing cell function and physiology 
accurately, which leads to an insufficient translation of preclinical 
tests to clinical trials.

Microphysiological systems such as organ- on- a- chip platforms 
have been proposed as a new generation of in vitro models for drug 
candidate screening in the preclinical phase of drug development.17 
These cell- based 3D platforms with microchannels, fabricated 
using engineering techniques such as microfluidics, are seeded with 
human organ cells. By allowing the dynamic flow of cell media over 
cell environment, these platforms aim to mimic closely the anatomy, 
physiology and functionality of a human organ and can allow im-
proved drug metabolism study outcome.

Among the organ- on- a- chip platforms, liver- on- a- chip (LOC) and 
LOCs coupled with other organ- on- a- chip (multi- organ) platforms 
have emerged due to their potential to better predict in vivo re-
sponse to the pharmaceutical compounds. The early identification 
of toxic metabolites using these platforms could cut down the costs 
of drug testing and reduce the number of animal models.

The number of LOC devices with varying complexities and var-
ious applications (liver disease modelling, liver functionality stud-
ies, drug screening) is growing every year. Consequently, in recent 
years, several comprehensive reviews have outlined LOC chip de-
vice fabrication and advances in research and market in stand- alone 
reviews18- 20 and as part of reviews on microfluidic chips emulating 
different human organs (organs- on- a- chip).21- 23 However, reported 
reviews have focused on a wide range of applications of LOC 

platforms and various aspects. In this contribution, we review LOC 
platforms and multi- organ systems developed over the past few 
years that allow understanding of drug- induced metabolic responses 
relevant	 to	 the	acceleration	of	drug	development.	We	particularly	
focus on those platforms employed for the assessment of drug hep-
atotoxicity, prediction of liver injury induced by drug- drug interac-
tions, as well as the multi- organ platforms studying the liver- other 
organ crosstalk and the effects of liver metabolism on drug efficacy 
and toxicity for organ systems.

2  | LIVER- ON-A- CHIP(LOC)PLATFORMS

Liver is the most important organ in drug metabolism, being a target 
for drug-  and chemical- induced toxicity.17 Since the majority of drug 
metabolism occurs in the liver, most in vitro ADME (adsorption, dis-
tribution, metabolism, excretion) and toxicity testing are based on 
liver cells. Additionally, the liver plays an important role in carbohy-
drate, protein and lipid metabolism, the synthesis and secretion of 
blood proteins, and the detoxification of blood.18

Perfused microphysiological platforms such as liver- on- a- chip 
(LOC) platforms have attracted wide attention as an alternative to 
traditional in vitro models. Various microfluidic LOC systems have 
been developed to emulate human metabolism using diverse mi-
crofabrication techniques based on hepatocytes,24- 26 rat or human 
liver microsomes,27 and embedded human tissue samples.28 Using 
engineering techniques such as microfluidics, the applied medium 
flow can be controlled very carefully and can mimic blood flow in 
vessels.29 Additionally, the composition of the medium can easily 
be altered during the course of an experiment, and more physio-
logical medium- to- cell ratios can be achieved due to small system 
volumes.30 Moreover, metabolites can reach higher concentrations 
due to small system volumes of microchannels rendering online de-
tection easier. This is in contrast to metabolites produced in well- 
plate experiments where metabolites can be substantially diluted 
due to the larger well volumes. In microphysiological systems, the 
metabolite- containing medium can be directed to other cells lo-
cated elsewhere on the same chip. To model a correctly functional 
liver in an in vitro microphysiological system, biotransformation 
enzymes must be expressed that allow for studying the parent 
drug and its metabolite production. LOC platforms aim to mimic 
closely the anatomy, physiology and functionality of the liver using 
various sources of biotransformation enzymes. Therefore, by 
combining microfluidics with tissue engineering, the complexity 
of organ architecture and drug metabolism in vivo can be better 
mimicked.31,32

The LOC systems can be integrated into laboratories as a form 
of preclinical testing that better predicts human experimentation in 
vitro.33 The chips normally contain either single cultures of hepato-
cytes, two- dimensional or 3D co- cultures of hepatocytes with several 
other hepatic non- parenchymal or other stromal cells, hepatocyte 
spheroids, or organoids formed by mono-  or co- cultures and intact 
liver slices.17,34 Furthermore, they allow automated analytics such as 
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monitoring of pH, temperature, waste removal, nutrient supply, fluid 
pressures and shear stress in culture compartments.35

3  | PLATFORMSFORDRUGTOXICITY
ASSESSMENT/DRUG-DRUGINTERACTION
(DDI) ANALYSIS

The liver plays a principal role in the digestion, metabolism and de-
toxification of xenobiotic compounds.36 Drug- induced liver injury 
(DILI), which leads to liver failure and drug attrition,37 is the major 
cause of the withdrawal of approved drug compounds from the 
market.38 Therefore, the need for developing an in vitro model with 
higher reproducibility of in vivo liver environment is staggering, and 
microfluidic liver- on- a- chip (LOC) platforms have gained popularity 
in the research in the domain of drug toxicity assessment.

One of the ultimate uses of liver- on- a- chip (LOC) platforms is the 
high throughput screening of pharmaceutical compounds. In recent 
years, there have been several state- of- the- art platforms used for the 
application, which are summarized in Table 1. For example, Bircsak 
et al., employed the OrganoPlate LiverTox platform (Figure 1A) in its 
pilot screening to test 159 drug compounds with known hepatotox-
icity and rate them according to Toxicological Prioritization values.38 
The platform has the potential to predict immune- mediated hepa-
totoxicity by co- culturing iPSC- derived hepatocytes with THP- 1 
Kupffer- like immune cells and HMEC- 1 endothelial cells (Figure 1A).

A handful number of LOC platforms have been applied to in-
vestigate	drug	 toxicity	 and	DILI.	 For	 example,	 Jang	et	 al	 began	 to	
investigate the mechanisms of an inflammatory response in immune- 
mediated DILI in susceptible individuals as well. This ability of the 
platforms to take the immune system into account may increase 
concordance between initial hepatotoxicity findings and observed 
clinical	 toxicity.	Moreover,	 Jang	 et	 al.37 propose to use Liver- Chip 
in investigating the human relevance of drug toxicity responses in 
animals by conducting parallel tests on several species- specific plat-
forms. Food and Drug Administration (FDA) in partnership with a 
company Emulate investigated the concordance of the Liver- Chip 
platforms with in vivo and in vitro studies in drug toxicity testing.39 
For this purpose, a hepatotoxin diglycolic acid (DGA) was used, and 
the concordance was assessed in terms of cell viability via observing 
cell morphology, LDH and caspase 3/7 assays, as well as hepatotox-
icity by monitoring albumin and urea levels. As a result, the platform 
provided more physiologically valid data due to the presence of the 
flow and survival signals from LSECs. However, some morphological 
features seen in in vivo studies could not be reproduced, and it was 
concluded that the inclusion of other non- parenchymal cell types 
(Kupffer cells, stellate cells) would allow a more accurate representa-
tion of responses to drug toxicity.39

Another important aspect to be covered by drug metabolism 
studies are drug- drug interactions (DDIs) that occur due to modu-
lation of one drug's ADME properties by co- administration of an-
other drug compound.40 Lohasz et al. employed a gravity- driven 
microfluidic system with 3D microtissues to analyse DDIs between 

anticancer prodrugs cyclophosphamide and ifosfamide with antiret-
roviral ritonavir. Due to the major role of hepatic metabolism in DDIs, 
the system incorporated human liver microtissues (hLiMTs) in addi-
tion to tumour microtissues (TuMTs) which represent a drug target. 
DDIs were confirmed by metabolite concentration measurements, 
as well as measurements of TuMTs size and diameter. The study con-
cludes that the described system can be used in early preclinical pre-
dictions of DDIs and altered to incorporate various tissues.40

Among the studies employing primary hepatocytes for drug me-
tabolism studies is the work done by Choi and colleagues, who pro-
pose flow- based concave microwell arrays to co- culture primary rat 
hepatocytes and hepatic stellate cells (HSCs) (Figure 1B). The het-
erospheres formed as a result of a co- culture demonstrated higher 
CYP activity than hepatospheres upon treatment with acetamino-
phen, and the experiments with repeated exposure of the spheroids 
to acetaminophen and isoniazid show more stable IC50 values in het-
erospheres. These results suggest that the system is an optimized 
tool for drug toxicity studies, and due to improved metabolic com-
petence is suitable for investigating drug- drug interactions (DDIs).36

4  | LIVER- ON-A- CHIPPLATFORMSBASED
ONIMMORTALIZEDCELLLINES

Cell source is an important aspect in the development of liver- on- a- 
chip (LOC) platforms used for drug metabolism applications. In gen-
eral, primary hepatocytes (PH) remain to be the gold standard for 
the prediction of drug toxicity responses. However, while primary 
hepatocytes can provide accurate results due to their physiological 
relevance, there are problems with their extraction, donor- to- donor 
variability, and de- differentiation, which negatively affect the repro-
ducibility of the results.41,42 In the development of microphysiologi-
cal platforms researchers often prefer immortalized cell lines due to 
their stability and ease of handling.

In comparison with primary cells, cell lines have lower function-
ality and weaker reflection of the susceptibility of human liver cells 
to injury caused by drug toxicity and interactions.41,42 Deng et al., 
however, through careful construction of a 3D liver sinusoid- on- a- 
chip (LSOC) incorporating four immortalized cell lines (HepG2, LX- 
2, EAhy926, U937), were able to propose an alternative to primary 
hepatocyte- based models with comparable results in testing hepa-
totoxicity caused by drug- drug interactions (Figure 1C).

LOC systems employing immortalized cell lines (eg HepG2, 
Huh7, HepaRG), notwithstanding their less powerful functionality, 
are very valuable for early- stage drug development due to their 
high proliferation and extensive characterization.42 LOC platforms 
seeded with immortalized cell lines are being used in research set-
tings to conduct toxicity and metabolism studies.39,43,44 For ex-
ample, the ‘Homunculus’ LOC device based on HepaRG spheroids 
was employed to test HIF prolyl hydroxylase inhibitors adaptaquins 
that show promising results in in vivo haemorrhagic stroke models. 
Cytochrome P450 (CYP450) enzyme isoforms responsible for com-
pound metabolism were identified, and the study confirmed the 
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suitability of the optimized adaptaquin analogs tested for further 
preclinical studies.44 Liu et al. conducted a pharmacological inves-
tigation of carbohydrate- based drug ginsenoside compound K (CK) 
using single as well as coupled or multi- organ chips (Figure 1D). After 
liver chip experiments, it was revealed that against the hypothesis 
that CK is mainly metabolized by intestinal microbiota, the liver could 
also contribute to the process. These results could be attributed to 
the flow conditions, under which HepG2 cells were able to metab-
olize CK more readily. Also, the dynamic and more physiologically 
valid conditions in these microphysiological systems increased cell 
tolerance to CK, suggesting that in vivo toxicity may be milder than 
in in vitro static cultures.44

Overall, the potential of liver- on- a- chip platforms in drug safety 
and toxicity testing was reinforced by several studies.45- 47 Corrado 
et al. developed a microfluidized liver system featuring HepG2 mi-
crotissue precursors, which were selected over HepG2 spheroids 
in the process of development. Following the assessment of the 
detoxification potential of the platform by ethanol- induced toxic-
ity tests, this platform was deemed applicable for alcoholic disease 
mechanisms research, drug toxicity studies and integration into 
multi- organ MPSs.47 Another study by Freyer et al. proposed the 
use of a microscale 3D liver bioreactor for hepatotoxicity studies 
based on an extensive investigation of the dose- dependent effects 

of acetaminophen administration into the system. Among the tested 
parameters were lactate production, ammonia release, levels of in-
flammatory factors (PGE2, IL- 6), as well as histological and immu-
nohistochemical evaluation and expression of genes for relevant 
CYPs.45 The authors, however, highlight the importance of the inclu-
sion of liver non- parenchymal cells in correct proportions to increase 
the sensitivity for drug toxicity.45 Foster et al.46 present an extensive 
assessment of a Liver- Chip system for use in drug toxicity studies. 
The study investigated the platform's sensitivity to known hepato-
toxic drugs acetaminophen (APAP) and fialuridine (FIAU) by employ-
ing various functionality (albumin) and injury (α- GST and miR- 122) 
biomarkers, as well as drug metabolite quantification. Moreover, the 
CYP activity profile of the platform was created, and based on all 
data obtained, the utility of Liver- Chip models for improved hepato-
toxicity risk assessment was confirmed.

Apart from imitating healthy liver physiology, Lu et al. propose 
to use a model emulating liver tumour microenvironment (TME) for 
pharmacological studies (Figure 1E). The platform is a biomimetic 3D 
liver tumour- on- a- chip, which is based on a decellularized liver ma-
trix (DLM) integrated with gelatin methacryloyl (GelMA) and HepG2 
cells.48 This platform allows for improved imitation of the liver tu-
mour microenvironment and biophysical cues due to the presence of 
important ECM components from DLM, which is beneficial for more 

F IGURE 1 Liver- on- a- chip platforms for drug toxicity assessment/drug- drug interaction (DDI) analysis  
(A) OrganoPlate LiverTox culture set- up and cell culture. Reprinted from Ref. [38], under the terms of the Creative Commons CC- BY licence. 
Copyright 2021.  
(B) Concave microwell array poly- dimethylsiloxane (PDMS) plates seeded with cells. Reproduced from Ref. [36], under the terms of the 
Creative Commons Attribution License. Copyright 2020.  
(C) Schematic diagram of 4 kinds of cell lines seeded in the LSOC microdevice. Reproduced from Ref. [41], with permission from AIP 
Publishing. Copyright 2019. D, Illustration of the multi- organ- on- a- chip. From top to bottom, each layer contains Caco- 2, HUVEC, HepG2 
and HK- 2, respectively. Reprinted from Ref. [44], Copyright 2020, with permission from Elsevier. E, Schematic of the DLM- based liver 
tumour- on- a- chip and its application for drug toxicity testing. Reproduced from Ref. [48], with permission of The Royal Society of Chemistry
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accurate results in drug toxicity studies.48 The study tested both the 
gold- standard acetaminophen and anticancer model drug sorafenib. 
Being an imitation of the TME, the platform would especially allow 
for pharmacological testing of anticancer drugs. Additionally, novel 
hepatoma cell line- based models, such as the LSOC proposed by 
Deng and colleagues, have the potential to compensate for the 
limitations of cell lines and to serve as an alternative to primary 
hepatocyte- based models in drug toxicity studies.41

5  | MULTI- ORGANPLATFORMS
INTEGRATINGLOC

While	 liver-	on-	a-	chip	 (LOC)	platforms	are	 a	promising	 tool	 for	drug	
toxicity studies, their integration into coupled or multi- organ- on- a- 
chip or body- on- a- chip systems would allow predicting physiological 
responses to drug administration even more precisely by recapitulat-
ing organ- to- organ interaction. Multi- organ- on- a- chip systems would 
emulate physiological states and drug effects modulated by multi- 
organ crosstalk.20 Moreover, this technology allows for the investiga-
tion of the off- target toxicity of pharmaceutical compounds and the 
identification of toxic by- products of drug metabolism by the liver. 
State- of- the- art multi- organ platforms integrated with LOC used for 
drug metabolism applications are also summarized in Table 2.

Among human organs, the kidney carries out critical metabolic 
and endocrine functions and has an important role in xenobiotic 
clearance, waste excretion, and fluid and electrolyte reabsorp-
tion.49,50 Therefore, it is particularly vulnerable to drug- induced 
toxicity. Liver metabolism actively contributes to the changes in 
nephrotoxicity, releasing toxic/nontoxic drug metabolites and 
changing compound bioavailability and plasma concentrations.49,50 
Drug- induced nephrotoxicity being associated with a high propor-
tion of adverse effects and drug withdrawal, some multi- organ- on- 
a- chip studies focused on developing coupled liver/kidney chips.49,50 
Li et al. used an integrated liver- kidney chip device to assess hepatic 
metabolism- dependent nephrotoxicity of ifosfamide (IFO) and ve-
rapamil (VER). Upon metabolism in the liver, IFO is converted into 
toxic metabolites, while renal toxicity and biological availability 
of VER are significantly reduced. These effects were successfully 
demonstrated in the described model by comparing cell viability, 
LDH leakage and renal permeability parameters in single- organ 
chips with the integrated liver- kidney chip.49 Similarly, another study 
developed a two- organ- chip integrating liver spheroids and proximal 
tubule barriers.50 The study was able to investigate the effects of 
repeated- dose administration of Cyclosporine A (CsA) as well as its 
combination with rifampicin (RFP) simultaneously on two organs.50 
The importance of integrating liver spheroids was that RFP is able 
to induce hepatic enzymes and transporter activity to mitigate the 
toxicity of CsA. Moreover, the platform was identified as promising 
in detecting morphology, histopathology, drug metabolism and non-
invasive toxicity biomarkers in pharmacological studies.

Similar to investigating nephrotoxicity, cardiotoxicity is also of 
importance due to many known cases of drug withdrawals from the 

market caused by cardiovascular side effects and cardiotoxicity.51,52 
A heart- liver organ- on- a- chip system would allow studying drug car-
diotoxicity induced by hepatic metabolism and identifying effective 
yet safe metabolites of toxic compounds.51 As in nephrotoxicity 
studies, the presence of a liver component in coupled organs- on- 
a- chip was able to induce cardiotoxic effects of cyclophosphamide, 
while alleviating terfenadine toxicity, as evidenced by electrical and 
mechanical activity of the heart component containing iPSC- derived 
cardiomyocytes.51 The pharmacokinetic studies employing quantifi-
cation of CYP activities and metabolite tracking by HPLC- MS were 
conducted as well. Another study by Yin et al.52 was able to sim-
ilarly demonstrate hepatic metabolism- dependent cardiotoxicity 
of antidepressant drug clomipramine using a hiPSC- derived multi- 
organoid- on- chip system (Figure 2A).

The respiratory system is directly exposed to various aerosols 
and airborne pathogens, and also serves as a route of administra-
tion for inhalation medications.53 Although initially absorbed in the 
lung and partially metabolized by lung CYP enzymes, inhaled com-
pounds undergo major metabolic processes in the liver, which gives 
rise to new metabolites.53,54 Therefore, reported lung/liver- on- a- 
chip platforms focus on the investigation of the toxicity of inhaled 
substances and the protective effect of the liver granted by the im-
itation of organ crosstalk.53,54 Bovard and colleagues demonstrated 
a lung/liver- on- a- chip integrating normal human bronchial epithelial 
(NHBE) cells on an air- liquid interface (ALI) and HepaRG spheroids. 
In this study, the toxicity of carcinogenic aflatoxin B1 (AFB1) was 
reduced in the presence of HepaRG spheroids. Schimek et al. used 
a HUMIMIC Chip3plus (TissUse GmbH, Berlin, Germany) platform 
to co- culture bronchial MucilAir culture and HepaRG + primary 
human hepatic stellate cells (HHSTeC) spheroids and attained similar 
results. The protective activity of HepaRG spheroids is attributed 
to their ability to convert AFB1 to aflatoxin Q1 (AFG1), a less toxic 
metabolite, while NHBE ALI culture is only able to metabolize AFB1 
into two toxic metabolites AFB1- 8,9- epoxide and aflatoxin M1- 8,9- 
epoxide.53,54 However, neither of the studies quantified the pres-
ence of parent drug and its metabolites; therefore, this conclusion is 
not experimentally verified.

Drug metabolism and toxicity evaluation can be improved by 
modelling enterohepatic circulation (circulation of drugs/metab-
olites between liver and small intestine) as well as first- pass me-
tabolism, which can be achieved by combining intestine-  and 
liver- on- a- chip systems.55,56 Moreover, enterocytes with their ac-
tive influx and efflux transporters and metabolic enzymes inter-
fere with drug absorption, while absorbed compounds and their 
metabolites further travel to the liver through the portal vein.56,57 
These compounds and metabolites may cause damage on the level 
of the small intestine, as well as further on after transportation to 
the liver.56 Several studies investigating these mechanisms devel-
oped intestine/liver microphysiological systems.55- 57 Marin and col-
leagues demonstrate intestine/liver Two- Organ- Chip platform to 
imitate intravenous and oral administration of acetaminophen, as 
well as the drug's pharmacokinetic characterization. Dynamic con-
ditions in this 2- OC were able to reproduce absorption (intestine) 
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and metabolism (liver) phases for APAP, although slower than in 
vivo.57 It was also noted that the liver component of the platform 
was more sensitive to APAP toxicity. This was attributed to the fact 
that although the drug is absorbed in the intestine, the metabolism 
into toxic metabolites happens in the liver. Hepatic cytotoxicity was 
the result of the production of metabolite N- acetyl- p- benzoquinone 
imine (NAPQI), glutathione depletion caused by which was exper-
imentally proven.57 Another group successfully recapitulated the 
first- pass metabolism using Intestine- Liver- On- Chip (InLiver- OC).55 
In this model, the protective role of the intestine component on 
hepatic damage was verified by lower lipid drop formation, reduced 
ROS expression and overall functionality of the liver component in 
comparison with single Liver- OC.55 Although the compound em-
ployed in this investigation was ethanol, it is suggested that the 
model has the potential to imitate the first- pass metabolism of 
drugs and other xenobiotics. Chen et al. also propose a pumpless 
GI tract- liver system integrating primary human intestinal epithe-
lial cells (hIECs) and HepG2 C3A liver cells, which due to increased 
CYP activity of a liver component, tight junctions with authentic 
transepithelial electric resistance (TEER) values, and good barrier 

functionality for GI component, as well as the easy operation would 
serve as an improved tool for drug toxicity studies.

Another domain of interest is the toxicity and metabolism assess-
ment of anticancer therapies due to their inherent toxicity, narrow 
therapeutic index and the high likelihood of a combination of anti-
cancer therapies with medication for other conditions or prescrip-
tion of additional anticancer therapies.40 McAleer et al.58 describe a 
pumpless reconfigurable multi- organ- on- a- chip for the investigation 
of on- target efficacy and off- target toxicity of anticancer drugs and 
their metabolites. Primary human hepatocytes were co- cultured in 
this platform either with cancer- derived bone marrow cell lines or 
with vulva cancer line, breast cancer line and iPSC- derived cardio-
myocytes. In the first case, the system was treated with imatinib or 
diclofenac, where imatinib was able to target cancer cell lines with 
a minimum effect on the liver. Diclofenac, however, was chosen 
to demonstrate off- target hepatotoxicity, which was successfully 
demonstrated by the experimental data.58 Moreover, the study was 
able to detect CYP 3A4 and CYP 2C9 induction not previously de-
scribed in the literature. The second configuration mainly focused on 
demonstrating off- target cardiotoxicity of tamoxifen and verapamil 

F IGURE 2 Multi- organ platforms integrating Liver- on- a- Chip devices (A) Liver- heart organoids- on- chip device. Design and schematic 
overview of the experimental procedures. Reproduced from Ref. [52], with permission of The Royal Society of Chemistry. B, Human- on- 
a- chip system. Reprinted from Ref. [60], with permission from American Chemical Society, Copyright 2019. C, First- pass multi- organ chip 
system. Reproduced from Ref. [56], with the permission from Springer Nature, Copyright 2020
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but also confirmed the role of the liver in metabolizing tamoxifen 
to produce its active metabolite 4- hydroxytamoxifen. Miller et al.59 
proposed a multi- organ microfluidic platform with a breathable lung 
chamber to assess and compare curcumin intravenous delivery and 
inhalation therapy for breast cancer treatment. The platform in-
cluded liver, lung, breast cancer components and liver components 
consisting of HepG2 C3A cells.59 Via urea synthesis assays, the 
study was able to demonstrate that inhalation therapy could induce 
higher metabolism rates and increase urea production.59

Several studies demonstrate more complex MPSs integrating 
three, six or seven organs.56,60- 64	Wang	and	colleagues	employed	a	
multi- organ human- on- a- chip integrating seven interacting MPSs: 
brain, pancreas, liver, lung, heart, gut, endometrium and a mixer 
chamber emulating systemic circulation (Figure 2B). The platform 
was used to create an extensive metabolite profile and metabolom-
ics of tolcapone, a drug used in Parkinson's disease management. The 
study identified 12 metabolites and reactions responsible for their 
generation.60 This suggests that such multi- organ platforms involv-
ing a liver component are suitable for comprehensive drug metabo-
lism investigations and have the potential in the domain of analytical 
chemistry. Another group reported two studies involving 3- organoid 
(liver, heart, lung) and 6- organoid (liver, heart, lung, endothelium, 
brain, testis) multi- tissue organ- on- a- chip platforms.63,64 In these in-
vestigations, the panel of FDA- recalled drugs, as well as anticancer 
drugs capecitabine and ifosfamide, were screened. Among ten drugs 
recalled from the market, bromfenac, tienilic acid and troglitazone 
demonstrated hepatotoxicity.64 In the same study, it was demon-
strated that the platforms without liver organoids present were not 
able to metabolize capecitabine and cyclophosphamide and there-
fore escaped cytotoxicity caused by their metabolites. Similarly in 
the second study, there was a decrease in viability of lung and heart 
organoids in the 3- tissue system involving the liver upon administra-
tion of capecitabine, which proves that liver organoid metabolized 
the drug into its toxic active metabolite 5- fluorouracil (5- FU).63 In the 
6- tissue system, ifosfamide administration results in neurotoxicity 
(reduced brain organoid viability) in the presence of liver organoid, 
again proving that the drug was metabolized into its toxic metabolite 
chloracetaldehyde due to hepatic P450 metabolic activity. Herland 
et al. employed multi- organ- chip emulating the first- pass metabo-
lism to create an in silico drug metabolism pharmacokinetic model 
to perform an in vitro/in vivo translation (IVIVT). The study created 
two- channel lung- liver- kidney and bone marrow- liver- kidney chips 
fluidically coupled through vascular endothelium- lined channels and 
incorporating arteriovenous (AV) reservoir mimicking systemic cir-
culation (Figure 2C). The PK profile of orally administered nicotine 
and PK/PD parameters for intravenous administration of cisplatin 
was modelled employing the system. The recreation of endothelial- 
parenchymal tissue interface due to the presence of two channels, 
lined by organ- specific parenchymal cells and vascular endothelium, 
as well as successful in silico modulation of drug absorption by poly- 
dimethylsiloxane polymer and organs not incorporated into the chip, 
allowed for an IVIVT approach highly optimized for drug PK/PD 
modelling.56 Overall, these studies propose a more physiologically 

relevant platform that models a complex and integrated response 
to drug administration generated by organ crosstalk. The potential 
of organ- on- a- chip technology itself is promising, and it is estimated 
to	reduce	R&D	costs	per	new	drug	by	10%-	26%.65 However, despite 
the much progress in the development of the individual and multi- 
organ platforms, the platforms need to prove reproducible, robust 
and capable of high throughput screening for the technology to re-
place traditional drug development methods.

6  | CONCLUSION

Microphysiological platforms have the potential of creating more ef-
fective alternatives to conventional methods in drug development. 
Among such platforms, liver- on- a- chip (LOC) devices as well as 
multi- tissue organ- on- a- chip platforms offer new approaches in pre-
dicting drug toxicity during preclinical testing. LOC and multi- organ 
LOC models have numerous advantages over two- dimensional or 3D 
structure such as more accurate simulation of delivery and penetra-
tion of drug compounds, capability to be integrated with analytics 
and sensors.

Due to their ability to generate the human- relevant response that 
can potentially better predict the toxicity of a tested drug compound 
than traditional in vitro methods, liver- on- a- chip (LOC) platforms 
with different complexities, throughputs, and cell sources have 
been developed and used in research and industry (Roche, Takeda 
Pharmaceutical, AstraZeneca).66 LOC has numerous advantages 
over two- dimensional systems such as more accurate simulation of 
delivery and penetration of drug compounds, capability to be inte-
grated with analytics and sensors. Additionally, the continuous flow 
in LOCs allows monitoring the changes in drug concentration at pre- 
defined time intervals, mimicking effectively oral dose exposures.

Liver- on- a- chip integration into the multi- organ platforms en-
ables to produce even more physiologically relevant models for drug 
toxicity assessment and evaluate off- target drug toxicity in parallel 
with hepatotoxicity studies. The growth and advancement of fabri-
cation tools and techniques have had a positive impact on the com-
plexity of developed LOC models (OrganoPlate Livertox, Liver- Chip, 
HUMIMIC devices) and multi- organ platforms. Novel easy- to- build 
LOC systems are compatible with automated systems38 and allow 
noninvasive biomarker assessment.50 These platforms are compa-
rable to traditional 2D platforms in terms of adaptability to high 
throughput screening settings and have an upper hand over the 
low- throughput animal models.38 In particular, pumpless or rocker 
platform- based systems have the potential for high throughput ap-
plications due to their low costs and ability of a rocker platform to 
sustain a number of LOC units simultaneously.62

However, despite the advancements of LOC models, they have 
limitations in reproducibility of results and difficulty in mapping the 
obtained results to existing measurement techniques. For instance, 
primary human hepatocytes, through the most physiologically rele-
vant cell type, demonstrate high lot to lot and donor- to- donor vari-
ation and potential to de- differentiate, which has a negative effect 
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on reproducibility.38,41 Moreover, since current microscopes are not 
suited for the organ- on- a- chip applications due to these platforms’ 
design and set- up, image acquisition and quantification require the 
development of new methods and technologies, especially for high 
throughput settings.67 Overcoming the current limitations and im-
provements in LOC systems is required to achieve acceptance by 
regulatory bodies and adoption of this technology.
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