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Purpose of review: To provide an overview of the underlying neurobiology of tobacco

smoking in schizophrenia, and implications for treatment of this comorbidity.

Recent findings: Explanations for heavy tobacco smoking in schizophrenia include

pro-cognitive effects of nicotine, and remediation of the underlying pathophysiology

of schizophrenia. Nicotine may ameliorate neurochemical deficits through nicotine

acetylcholine receptors (nAChRs) located on the dopamine, glutamate, and

GABA neurons. Neurophysiological indices including electroencephalography,

electromyography, and smooth pursuit eye movement (SPEM) paradigms may be

biomarkers for underlying neuronal imbalances that contribute to the specific risk of

tobacco smoking initiation, maintenance, and difficulty quitting within schizophrenia.

Moreover, several social factors including socioeconomic factors and permissive

smoking culture in mental health facilities, may contribute to the smoking behaviors

(initiation, maintenance, and inability to quit smoking) within this disorder.

Summary: Tobacco smoking may alleviate specific symptoms associated with

schizophrenia. Understanding the neurobiological underpinnings and psychosocial

determinants of this comorbidity may better explain these potential beneficial effects,

while also providing important insights into effective treatments for smoking cessation.

Keywords: schizophrenia, nicotine, tobacco, neurobiology, nicotinic acetylcholine receptor

INTRODUCTION

The high rates of tobacco use in the schizophrenia (SZ) population are widely recognized, but
the underlying neurobiological factors contributing to this comorbidity are not fully understood.
Rates of tobacco smoking are between 45 and 88% in SZ compared to <16% of the general
population (1, 2). In this review, we aim to highlight the recent literature on the latter category
of neurobiological determinants and discuss some potential treatment targets.

The high prevalence of smoking in SZ is maintained in large part by resistance to quitting (3);
quit rates from an American nationally representative sample range from 10 to 27.2% for those
with psychotic disorders compared to 42.5% in the general population (4). Additionally, relapse
rates pose a common challenge in delivering cessation treatments, but there is some indication
that longer courses of pharmacological treatments could reduce the possibility of relapse (2).
Unfortunately, these high smoking rates come with a cost, and smokers with SZ are at higher risk
for tobacco-related morbidity and mortality; people with SZ have ∼25 years of shortened lifespan,
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with 53% of this being related to tobacco-smoking conditions
(5–7). One population-based study in the United States (U.S.)
found that among individuals with SZ, cardiovascular disease,
lung cancer, and respiratory diseases such as chronic obstructive
pulmonary disease and pneumonia contributed to the most
deaths (8). It is clear from the evidence that reducing smoking
rates has the potential to drastically change mortality rates and
improve outcomes for these patients.

ETIOLOGY OF TOBACCO SMOKING IN SZ

Many explanations have been proposed for the higher prevalence
of smoking in persons with SZ. In this section, we briefly review
some of these important factors before highlighting current
findings on the neurobiology of this comorbidity. These major
factors include increased craving in SZ, modulating negative
symptoms, pro-cognitive effects of nicotine, and genetic factors
(3). In addition, we compare the self-medication hypothesis with
the addiction vulnerability hypothesis for tobacco use in SZ.

It has been proposed that due to the pathophysiology of
SZ, these individuals may have an enhanced experience of
the reinforcing effects of nicotine (3, 9). This idea has been
corroborated with a study that compared smokers with SZ to
non-psychiatric control smokers in an abstinence condition;
they found that the SZ group reported stronger cravings and
withdrawal symptoms and had a shorter time to smoking lapse
compared to the control group (10). This effect wasmoderated by
negative affect and withdrawal symptom severity (10). Another
study using an animal model produced lesions in the ventral
hippocampus, a region associated with SZ, and found increased
reinforcing effects and drug-seeking behavior for nicotine (11).

There appears to be a link between the enhanced reinforcing
effects of nicotine and the role that negative affect has on
increasing the smoking rate in SZ. This may be due to the
deficits in reward processing and alterations in reward-related
brain circuitry that is characteristic of negative symptoms in SZ
(12, 13). In an fMRI study of smokers with SZ compared to
control smokers, researchers found that both groups had brain
reactivity to smoking cues, but SZ group had reduced brain
reactivity to neutral cues, and that this effect was related to
negative symptoms (14). This finding indicates that the enhanced
addictive properties of nicotine in SZ is not due to a stronger
reactivity to nicotine-related cues, but rather may be related to
the underlying negative symptomatology (14). A recent study
using a cognitive assessment of reward learning in smokers found
a negative correlation between general reward responsiveness
and intensity of nicotine craving (15). This finding suggests
that individuals with negative affect and a dysfunctional reward
circuit, such as those with SZ,may bemore susceptible to nicotine
addiction (15). Together, these findings indicate that increased
negative symptomatology may play a role in the enhanced
susceptibility to smoking in SZ, yet does not reveal the full
picture.

Pro-cognitive Effects of Nicotine in SZ
Another key etiological factor to consider is the potential pro-
cognitive effects that nicotine has on SZ; nonetheless there

have been mixed findings in this field. For instance, much of
the epidemiological research surrounding this comorbidity has
found no effect or worsened cognition within chronic smokers
with SZ (16–19). However, lack of control for time since last
cigarette may result in nicotine withdrawal-related cognitive
impairment (20–22) and may explain some of these negative
findings as the participants were likely to be experiencing
significant smoking deprivation. Table 1 has been included
below to illustrate the variety of study methodologies examining
the pro-cognitive effects of smoking and how each study
accounted for the duration since last cigarette. However, studies
that carefully control for time since last cigarette have found
that smoking produces cognitive deficits in SZ, particularly in
working memory, visual learning, and attention (3, 23, 24, 31).
In laboratory studies where nicotine is acutely administered
or acute overnight abstinence and reinstatement paradigms are
used (thereby avoiding any confounding effects of nicotine
withdrawal), smoking groups have shown marked improvement
for attention, workingmemory, pre-pulse inhibition, visuospatial
working memory, processing speed, and verbal learning and
memory(23, 24, 26, 28–37).

Studies have also compared cognitive performance between
non-smoking and smoking patients with SZ. These studies
account for the level of nicotine in the participant’s system by
allowing frequent smoke breaks so as to avoid inducing a state
of withdrawal (25, 26). Non-smokers revealed significantly worse
cognitive deficits, particularly in verbal memory (25, 26).

Interestingly, this effect is specific to those with schizophrenia,
as no such finding was observed in patients with major
depression, bipolar disorder or non-psychiatric controls (25, 26).
Furthermore, individuals categorized as ultra-high-risk (UHR)
for developing psychosis may also demonstrate this effect (27).

Other studies employed cognitive testing in both satiated and
abstinent states and demonstrated that smokers with SZ show
improvements in various cognitive domains (28–30, 33, 38).
These studies are shown inTable 1. A satiated state was produced
by administering nicotine throughout the study session with a
patch, gum, or nasal spray, providing the benefit of acute nicotine
exposure (28–30, 32); however, these were regular smokers.
There are few studies examining acute nicotine administration
in non-smokers, due to the nature of tobacco use disorder and
the all-or-nothing tendency for people to be regular smokers
or non-smokers. The few studies that have examined nicotine
administration in non-smokers found an overall improvement in
attention following nicotine administration and a specific effect
at improving cognitive outcomes in the SZ participants (23,
39). Nonetheless, nicotine administration improves cognitive
outcomes in SZ individuals, this may account for the increased
frequency and severity of tobacco use in SZ and also the
perseverance of tobacco use disorder in this population (40).

There are two primary theories proposed to explain the
pro-cognitive effects of nicotine in SZ, and the relationship
to the increase prevalence of smoking in SZ. First, the self-
medication hypothesis proposes that individuals with SZ choose
to smoke to alleviate the clinical symptoms and cognitive
deficits that are characteristic of the illness as well as the side
effects of antipsychotic medications (41). Many of the studies
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TABLE 1 | Cognitive Effects in Acute vs. Chronic Smokers with SZ.

Study Study design Control for time since last cigarette Findings

(16) Cross-sectional No control for last cigarette = cognition

No significant differences in cognitive outcomes between smokers

and non-smokers with first-episode SZ

(17) Cross-sectional Last cigarette an hour prior to testing ↓ cognition

Treatment-resistant SZ smokers performed worse on

problem-solving cognitive domain compared to smokers. Other

cognitive domains were not different between the groups.

(18) Cross-sectional No control for last cigarette ↓ cognition

Current smokers with SZ or bipolar disorder had worse composite

cognitive function compared to non-smokers.

(19) Cross-sectional No control for last cigarette = cognition

No significant differences in cognitive outcomes between smokers

and non-smokers with first-episode SZ

(23) Prospective human

laboratory study

Deprived of cigarettes for 2 h and given either nicotine or

placebo-containing gum

↓ cognition

Attention was significantly improved in non-smokers compared to

smokers with SZ after nicotine administration.

(24) Cross-sectional Last cigarette an hour before testing, cognition

administered 2 h in, allowed smoke breaks with 30min

interval before re-initiating cognitive testing

↓ cognition

Visual learning significantly improved in non-smokers compared to

smokers.

(25) Cross-sectional Frequent smoke breaks (smokers never abstinent for

>30min)

↑ cognition

Sustained attention, processing speed, response inhibition were

significantly improved in smokers compared to non-smokers with

SZ. No differences in non-psychiatric controls.

(26) Cross-sectional Frequent smoke breaks (smokers never abstinent for

>30min)

↑ cognition

Verbal memory was significantly increased in smokers compared

to non-smokers with SZ.

(27) Cross-sectional No control for last cigarette ↑ cognition

Processing speed, spatial working memory, and visual learning

was significantly improved in smokers compared to non-smokers

with SZ.

(28) RCT of haloperidol x

nicotine

Overnight abstinence with randomized dose of nicotine

patches

↑ cognition

Nicotine lead to a dose-related reversal of haloperidol-induced

cognitive impairments in memory and reaction time.

(29) Placebo controlled

crossover for cigarettes

and nicotine nasal

spray in current

smokers

Administration of nicotine nasal spray or placebo nasal

spray, and high nicotine cigarette and denicotinized

cigarette.

↑ cognition

Nicotine in nasal spray lead to significant improvement on a spatial

organization task, verbal memory, and reaction time in SZ. Both

cigarettes lead to improvement on spatial organization task.

(30) Placebo controlled

crossover with nicotine

and placebo patch

Withdrawn from tobacco and given nicotine patch or

placebo patch

↑ cognition

Improved performance on n-back (working memory and selective

attention) task in SZ smokers vs. non-smokers and worsened

performance in control smokers vs. non-smokers

(31) Cross sectional–3

conditions

3 test conditions—baseline, overnight abstinence, and

1 h after reinstatement with no more than 15min

smoking deprivation

↑ cognition

Impaired visuospatial working memory (VSWM) during overnight

abstinence in SZ, improved VSWM and CPT upon reinstatement

in SZ.

(32) Cross sectional–3

conditions

3 test conditions—baseline, overnight abstinence, and

3 h nicotine patch

↑ cognition

Reaction time was significantly increased in the nicotine patch

condition and worse in the abstinence condition in SZ.

(33) Cross sectional–2

conditions

2 test conditions—after overnight abstinence, normal

smoking behavior (No control for last cigarette)

↑ cognition

VSWM was significantly increased in the smokers with SZ

compared to healthy controls

(34) Cross sectional No control for last cigarette ↑ cognition

Divided attention was significantly increased in the smoking

condition and worse in the abstinence condition in SZ.

examining the procognitive effects of nicotine lend support to
the theory, but others have refuted this theory. For example,
one group found that it was a stronger tendency for those
with SZ to experience withdrawal when abstinent that led to

cognitive deficits and that blood nicotine concentration did
not affect performance when compared to healthy controls
(42). In response to these challenges identified with the self-
medication hypothesis, researchers have developed an alternate
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theory to explain the heightened prevalence of smoking in SZ
which is termed the addiction vulnerability hypothesis (43). This
theory proposes that it is due to genetic, neurobiological, and
environmental factors that are inherent to the SZ diagnosis that
make these patients susceptible to smoking (43). Understanding
the unique factors contributing this vulnerability can provide
us with novel treatments targeting smoking cessation in this
specific population, in particular, building our knowledge about
the underlying neurotransmitter systems and brain circuitry is
essential (44).

Neurobiological Determinants of Tobacco
Smoking in Schizophrenia
Nicotine
Nicotine, the addictive component in tobacco cigarettes, binds
to nicotinic acetylcholine receptors (nAChRs), which are
endogenously expressed in the human brain and influenced
by the native agonist, acetylcholine (45). nAChRs are a
heterogeneous family of ion channels, that are expressed on
various cellular regions of both excitatory and inhibitory
neurons, allowing for modulation of neurotransmitters (45, 46).
The composition of the nAChRs is a variety of subunits which
define the receptors’ actions and properties (47). The most
common high-affinity nAChRs include receptors consisting of
two α4 subunits, two β2 subunits, and an undefined fifth subunit
(48). Single nucleotide polymorphisms (SNPs) found on the
CHRNA4 gene coding for the α4 subunit has been associated with
nicotine dependence (49–51). Another important nAChR type to
consider is that of the α7 receptor, which consists entirely of α7
subunits. SNPs located on the receptor coding gene CHRNA7,
has been associated with both SZ diagnoses (52, 53) and nicotine
dependence (54). Notably, there are two nicotinic acetylcholine
receptors (nAChR) subtypes linked to cognition: high-affinity
α4β2 and low-affinity α7 nAChRs (45, 55). High-affinity nAChRs
are sensitive to nicotinic antagonists such as mecamylamine
(56), and mediate nicotine reinforcement and cognition (36, 57),
whereas low-affinity nAChRs are less nicotine-sensitive.

Dopamine, norepinephrine, serotonin, glutamate,
aminobutyric acid (GABA) and opioid peptides are
neurotransmitter systems influenced by nAChRs (58). The
neurobiological phenotype of SZ involves dysfunction of similar
neurotransmitters, such as the dopaminergic, glutamatergic
and GABAergic systems, as well as overarching dysfunction of
cortical and subcortical communicative circuitry. Developmental
and genetically predisposed abnormalities observed in the
prefrontal and hippocampal regions in individuals with SZ may
facilitate neural circuitry dysfunction, promoting a vulnerability
toward addiction, such as tobacco use disorder (59). The
neurobiological abnormalities of SZ will be discussed after which
the corresponding effects of nicotine will be supplemented in
order to provide insight into this prevalent comorbidity.

Pathophysiology of SZ and Nicotine Effects
The following section describes the role of each neurotransmitter
system on both nicotine addiction and schizophrenia. An overall
summary and simplification of these effects is illustrated with
Figure 1.

Dopaminergic Dysfunction
The dopamine (DA) hypothesis for SZ features the imbalances
in dopaminergic neurotransmission throughout the brain, such
as presynaptic abnormalities of DA neurons that are described
in both SZ and high-risk populations (60, 61). DA dysfunction
influences both cortical and subcortical circuitry, facilitating
symptomatology of SZ differentially. Subcortical regions in the
brain have been associated with increased dopaminergic activity,
leading to over-stimulation of D2 receptors (62, 63). Hyper-
dopaminergic activity in subcortical regions, specifically in the
associative striatum, has been associated with positive symptoms
of SZ, including psychosis (61, 64–66). Cortical regions, however,
have been linked with dampened dopaminergic activity. This has
been investigated through various functional imaging studies,
demonstrating an under-stimulation of D1 receptors in the
frontal regions of individuals with SZ (67). Additionally, in vivo
findings of decreased dopaminergic activity in the dorsolateral
prefrontal cortex has been associated with cognitive impairment
severity, such as worsened working memory, as well as negative
symptom severity (68–71). Treatment that targets dopamine
dysfunction, the most pervasive form of medication for SZ
(targeting dopamine D2 receptors), has proven to aid with
positive symptoms; however, in individuals who lack substantial
dopaminergic dysfunction, this treatment does not robustly align
with symptom improvement (61, 72).

Glutamatergic and GABAergic Dysfunction
A more recent hypothesis for SZ pathology involves
glutamatergic dysfunction, involving the hypofunction of
N-methyl-D-aspartate (NMDA) receptors of which glutamate,
the major excitatory transmitter in the brain, binds (73, 74).
Supported by genetic convergence, brain tissue analysis and brain
imaging studies (74–76), the glutamatergic theory offers a unique
conceptualization that encompasses the widespread deficits
observed in SZ (73). For example, NMDAR antagonists, such
as phencyclidine and ketamine, correlate with the emergence
of both negative and positive symptoms as well as general
neuropsychological and sensory deficits associated with SZ in
contrast to amphetamine, a dopamine receptor agonist, which
is mostly associated with inducing the positive symptoms of
the disorder (73). NMDA receptors influence the majority
of input, output and interneuronal cortical projections and,
therefore, have a diffuse influence on brain function (77). In
SZ, glutamatergic dysfunction due to NMDAR abnormalities
has been noted in regions within the limbic system, the
hippocampus and the dorsolateral prefrontal cortex (78–81).
NMDAR activity is also important in considering the functioning
and maintenance of the brain’s main inhibitory transmitter -
aminobutyric acid (GABA) (82). Deficits in GABA synthesis
(deficits in glutamic acid decarboxylase (GAD)-67, which aids
GABA synthesis) have been denoted throughout the cortex of
individuals with SZ (83). Decreased functioning of GABAergic
interneurons has been posed to contribute to cognitive
impairment in SZ by means of decreased synchronization in
neuronal cortical activity (84). Specifically, the hypofunctionality
of NMDARs in SZ has been proposed to lead to dysfunctional
GABAergic transmission (85). Dampened activity of NMDARs
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FIGURE 1 | Excessive dopaminergic activity has been proposed within subcortical regions in individuals with SZ, and is associated with positive symptoms of SZ.

Conversely, a hypo-dopaminergic state has been postulated in the cortical regions, and is associated with cognitive deficits and increased negative symptoms.

NMDAR abnormalities found in SZ contribute to both hypo-glutamatergic activity and hyper-GABAergic activity, and leads to cognitive dysfunction. Individuals with SZ

have reduced expression of nAChRs which leads to altered nicotinic cholinergic transmission, which may contribute to cognitive dysfunction. When nicotine is

administered through tobacco smoking, these deficits may be partially attenuated. First, nicotine binds directly to nAChRs that are located in mesolimbic

dopaminergic pathways, which increases its expression and contributes to reduction in negative affect in response to smoking-related cues. In addition, nicotine binds

to α7 and α4β2 receptors on glutamatergic and GABAergic neurons in the prefrontal cortex, attenuating deficits found in SZ and enhancing cognition.

at GABAergic interneurons disrupts and reduces inhibitory
control over cortical activity as well as the overall synchrony
of gamma oscillations, leading to clinical disruptions in SZ
(86).

Additionally, NMDARs, which influence both glutamate and
GABA, highly influence dopamine synthesis and transmission
(75, 87). Glutamate, stimulated by NMDARs, regulates dopamine
neurons that project from the ventral tegmentum area (VTA)
toward the nucleus accumbens (NAc) or the prefrontal cortex
(PFC), as well as GABA neurons that also play a role in regulating
dopamine neurons (88). Dysfunction within the glutamatergic
system in SZ has been proposed to facilitate the dopaminergic
dysfunction linked to cognitive disruptions of the illness (87, 89).
Additionally, presynaptic dopamine released both subcortically
and within the frontal regions of the brain are influenced by
inhibitory GABA interneurons, therefore disruption in GABA
signaling via NMDAR abnormalities has also been linked to
abnormalities in dopamine signaling (73, 90, 91).

DA, GLU, GABA, and Nicotine
Nicotine modulates dopaminergic transmission in both
subcortical and cortical regions. Primary dopaminergic
projections involve transmission from the VTA toward the
NAc; major components of reward circuitry in addiction
of which nicotine enhances through this pathway (92, 93).
Nicotine is able to influence dopamine’s activity by directly
binding nAChRs on dopaminergic projections sourced in the
VTA as well as by regulating glutamate and GABA activity,
which excites and inhibits dopaminergic activity, respectively
(94). Specifically, nicotine binds to the α7 receptors along
glutamatergic neurons, stimulating their activity and enhancing
NMDAR function, which together enhances dopaminergic
neuronal activity (94). Nicotine also binds α4β2, a high-
affinity receptor along GABA neurons, which, with chronic
nicotine use, become desensitized, therefore dampening the
inhibition on dopaminergic transmission from the VTA to
the NAc, while α7, low-affinity nAChRs on glutamatergic
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neurons are less prone to desensitization, therefore continue
to enhance dopamine transmission (94, 95). Nicotine directly
binds nAChRs along dopamine neuronal cells, facilitating
burst firing and increased dopamine activity directly (96),
which, combined with enhanced glutamatergic tone, leads
to an overall increased level of dopamine transmission and
release in the NAc that supports the reinforcing effects of
nicotine (97).

It has been posed that nicotine leads to increases in
dopamine levels within prefrontal regions through direct and
indirect (GABA and glutamate influences) enhancement of
dopaminergic activity that makes up for the lowered dopamine
D1 stimulation and ensuing cognitive deficits observed in SZ
(44, 67, 98). Nicotine facilitates increased dopamine in the
cortex similarly to observations in subcortical regions in that
the drug binds high-affinity nAChRs on dopamine neurons
that project from the VTA, but in this case toward the cortex,
and binds low-affinity receptors on excitatory glutamatergic
neurons projecting toward the prefrontal cortex (99, 100). The
reported beneficial effects that nicotine influences in the frontal
cortex have been proposed to be largely due to its effects
on the α7 nAChR subunit, although there is some evidence
surrounding α4b2 receptor subunit activity leading to improved
higher cognition (98). Because GABA contains many α7 as
well as α4b2 nAChRs, nicotine could counteract the deficits
observed in GABAergic transmission in SZ and the coinciding
prefrontal dysfunction by stabilizing cortical inhibition through
enhancing interneuronal activity and frontal gamma oscillations
(3, 83, 101–103).

naChRs and Nicotine
Additionally, SZ involves the dysregulation of both high-
and low-affinity nAChRs (98, 104). Studies have shown that
individuals with SZ have a reduction in nAChRs expression
throughout brain regions that are central to higher cognitive
functioning (105). Additionally, it has been found that chronic
nicotine use leads to nAChR receptor desensitization and
inactivation during stages of withdrawal, which are reactivated
upon overnight abstinence (3, 106, 107). Clinically, this pattern
of receptor desensitization may explain the phenomenon where
smokers prefer the first cigarette in the morning, and why
cognitive deficits are present during periods of withdrawal (106).
However, in the SZ population, this pattern of desensitization
and resensitization may have a different presentation due to the
decreased expression of nicotinic receptors, which may account
for their increased severity of tobacco addiction (108).

SZ has also been linked genetically to the CHRNA7 gene,
a potential site of genetic heritability, which codes for the α7
subunit of nAChRs (109). Individuals with SZ who smoke have
exhibited improvements in their cognition, highlighting the
potential benefits of stimulating this receptor in this population
(26, 29). For example, nAChR agonists and antagonists, such
as varenicline and mecamylamine, have been used in various
smoking cessation and treatment trials in which the results
further support the cognitive improvements observed in smokers
with SZ (31, 36, 110). Additionally, levels of CHRNA7 protein
and mRNA became comparable to non-psychiatric smokers
following smoking in SZ (53). Overall, nAChR dysfunction

may influence the aberrant signaling of glutamate, GABA, and
dopamine of which nicotine use may partially alleviate (3).

Circuitry Dysfunction
It is posed that each transmitter system, including dopamine,
glutamate, GABA and cholinergic neuronal transmission,
incorporates a circuit, supported by genetic risk, that facilitates
a risk for SZ presentation (61, 111). The dysfunction within
SZ and nicotine’s influence on these abnormalities do not
exist in isolation. The combination of abnormal dopamine
neurotransmission and nAChR signaling, along with imbalances
in glutamate and GABA transmission, which influences the
former dysfunctions, may lead to the widespread deficits and
symptoms observed in SZ (3). Nicotine stimulates nAChRs,
which are situated along glutamatergic and GABAergic neurons.
Nicotine, therefore, may modulate glutamate-GABA interactions
and normalize excitation-inhibition influences over dopamine
signaling and communication within the brain through
improving baseline nAChR-stimulation dysregulated in SZ.
The influence nicotine has on the transmission and general
circuitry in SZ has been shown to alleviate certain symptomatic
characteristics and cognitive deficits, as described above, which
may place this population at an enhanced risk to developing
tobacco use disorder.

Tobacco Use and Antipsychotic Medication
Cigarette smoking has been found to increase activity of the liver
enzyme, cytochrome P450 1A2 (CYP 1A2), which in turn break
down drugs in the body, including antipsychotic medications
such as olanzapine and clozapine (112). As a result, there is
reduced concentration of these antipsychotics in medicated SZ
smokers, which predictably leads to a reduction in side effects,
motivating further use (113) (supporting the self-medication
hypothesis). An important implication of the reduction in
antipsychotic medication is the potential for worsened symptoms
of psychosis (114), to account for this, researchers of a meta-
analysis study have indicated that smokers with SZ should be
prescribed antipsychotics at a dose double that of non-smokers
(115).

Biomarkers of Vulnerability
P50 Suppression and Mismatch Negativity
P50 suppression is an electroencephalographic measure of
cortical inhibition that follows a second tone that is presented
500ms after an initial tone (116). SZ, as well as the pathological
and heritable characteristics of the disorder, is associated with
the sensory gating deficit of diminished suppression (117–119).
This deficit has been genetically linked to polymorphisms found
on the promoter region of the CHRNA7 coding gene for the α7
nAChR subunit, as well as decreased function of the α7 nAChR
(120–122). It is thought that GABAergic neurotransmission
within the hippocampal region, which is dysfunctional in SZ,
mediates the production of P50 suppression, therefore may
contribute to this population’s sensory deficit (123). Nicotine,
through its influence on nAChRs and the downstream effects,
has been shown to remediate the deficits in P50 suppression
for this population (35, 124, 125). Moreover, nAChR agonists
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also show improvements in cognitive functioning, including P50
suppression (126).

MMN is a neurophysiological test that quantitatively and
temporally measures central auditory functioning or, more
specifically, the neuronal processing in response to an auditory
“oddball paradigm,” which involves the intervention of a
deviant stimulus within sequential auditory tones (127, 128).
From clinically high-risk to chronic classifications of SZ, this
population exhibits reductions in MMN amplitudes based on
frontocentral electroencephalographic recordings that are shown
across all dimensions of auditory deviance (127–130). This deficit
has been linked to NMDAR dysfunction, which correlates to
the glutamatergic hypothesis of SZ pathology (119, 131, 132).
Nicotine seems to enhance the duration of MMN amplitude,
facilitating improvement in this neurophysiological deficit (119,
133, 134).

Pre-pulse Inhibition (PPI)
PPI is an electromyography measure of eye blink responses (i.e.,
one’s eye muscle movement) to a startling auditory tone. If a
“prepulse” tone occurs before the main auditory stimulus, one’s
blinking response is attenuated; however, individuals with SZ
exhibit a deficit in this gating response (135, 136). This deficit
has been associated with CHRNA3 polymorphisms, relating to
nAChR dysfunction that is characteristic of SZ, and observed as
heritable within this population (137–140). Nicotine has been
noted to improve this deficit in smokers with and without
SZ (137, 141, 142). Furthermore, abstinence related deficits in
SZ (vs. non-psychiatric controls) were ameliorated by smoking
reinstatement and blocked by nAChR antagonist, mecamylamine
(143), suggesting that nAChR stimulation may remediate PPI
deficits in SZ.

Smooth Pursuit Eye Movement
Smooth pursuit eye movement (SPEM) tasks involve the
measurement of saccades, which are eye movements toward
a target stimulus, as well as anti-saccades, which involves the
movement away from a stimulus. Individuals with SZ have
more intruding saccades to the extent of being described as a
heritable characteristic of the diagnosis (144–147). Nicotine has
shown to influence this measurement by improving the reliability
of saccadic measures in individuals with SZ, but not in non-
psychiatric controls, by potentially lowering the hyperactivation
in regions facilitating this response and improving cortical
inhibitory control (148–152).

PSYCHOSOCIAL DETERMINANTS OF
TOBACCO ADDICTION IN
SCHIZOPHRENIA

There are a variety of psychosocial factors that increase the
vulnerability of individuals with SZ to develop and sustain
tobacco addictions. Individuals with SZ tend to be of lower
socioeconomic status compared to general population, which is
associated with an increased likelihood of smoking initiation and
a decreased likelihood of smoking cessation (153, 154). These

individuals often have fixed, government-assisted income and
may spend close to 30% of this income on cigarettes (155).

Elements of the mental health system itself may make
individuals afflicted with SZ more vulnerable to smoking. There
is a longstanding and pervasive smoking culture in mental
health institutions that tolerates and even encourages tobacco
consumption (156). Although, the smoking culture impacts all
people with mental illness, SZ patients are particularly likely
to be exposed, as they receive treatment largely in institutions
and mental health settings (5). In fact, 80% of light smokers
and 57% of moderate smokers have actually been found
to increase their cigarette consumption following psychiatric
admission (157). Despite the fact that programs to treat tobacco
addiction in inpatient settings have been shown to be effective,
mental health staff are reluctant to treat nicotine dependence
in psychiatric patients and counseling for smoking cessation is
rarely provided (156, 158, 159). Moreover, they are hesitant to
ban cigarette smoking in institutions because of concern over
patient resistance, infringing on patients’ right to smoke and
potential negative effects of smoking cessation on treatment
outcomes (160, 161). Despite this common concern, inpatient
psychiatric facilities that have implemented smoking bans, have
demonstrated positive outcomes and had far fewer problems than
anticipated (162, 163).

TREATMENT IMPLICATIONS

The advantage of broadening our understanding about the
underlying neurobiology of this comorbidity is that it may lead to
more novel, targeted treatments to be developed. In this section,
we will briefly discuss some new developments in the area of
treating smokers with SZ. Some major advancements in this
field have been drugs targeting nAChRs and the potential for
neuromodulation.

Currently, the most commonly studied and accepted
treatments for this population in the order of effectiveness have
been varenicline, bupropion and nicotine replacement therapy
(NRT) (164). Varenicline acts as a partial agonist at the α4β2
nAChR, while buproprion acts at several targets including at
the norepinephrine-dopamine receptors and at the nicotinic
receptor (165, 166). Pharmacological treatments for smoking are
more effective than any behavioral treatments in this population,
and maintenance treatment is also an important way to prevent
relapse in SZ (164). However, although varenicline has been
found effective at reducing overall smoking in SZ, it has not
been found to compensate as a cognitive enhancer (167). This
is consistent with the findings of a recent meta analysis that
determined α7-nAChRs as ineffective treatments for improving
cognitive and negative symptom outcomes in SZ based on 8
RCTs (168). Additionally, cessation rates in patients with SZ
remain significantly lower than those of the general population,
and it is evident that a more holistic treatment strategy is
required (164).

Neuromodulation is a promising new treatment modality
which may have considerable promise for smokers with SZ (169).
For example, repetitive transcranialmagnetic stimulation (rTMS)
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delivers high-frequency magnetic fields to a targeted area of the
brain (e.g., dorsolateral prefrontal cortex), stimulating neurons in
that region and altering the brain circuitry. One study conducted
in our lab found that a short course of rTMS was not effective at
reducing craving in an overnight abstinence condition in patients
with SZ (170). However, three other studies examined rTMS
delivered over a longer course (10, 21, and 28 days, respectively)
and found significant improvements on cigarette consumption
and craving, but these effects dissipated over time (3, 171, 172).
While the mechanism behind the impact of rTMS on nicotine
addiction has not be fully elucidated (173), one hypothesis is that
rTMS directed to the dorsolateral prefrontal cortex (169) reduces
drug craving experienced by the user (174–176) (3. SZ Res.).
Another neuromodulation method is transcranial direct current
stimulation (tDCS), which provides a weaker electrical current
over a longer duration to the brain, modulating neural firing
without producing stimulation of neurons (177). A recent RCT
of tDCS delivered in 5 sessions over 21 days in smokers with SZ
found significant improvements on several cognitive deficits, but
no improvements on cigarette use and craving outcomes (178).
The findings within the field of neuromodulation are promising,
but further studies are needed to corroborate these techniques as
an effective treatment for smoking in SZ.

CONCLUSIONS

In summary, it is evident that the comorbidity of SZ and
cigarette smoking is widespread, and that the underlying

neurobiological factors are complex. Research on these

factors is contributing to the development of treatment
strategies that may help to reduce smoking and in turn
the high mortality rates that arise due to the high smoking
prevalence in this population. It is also important to
consider a holistic approach because although neurobiology
plays a large role in this comorbidity, etiological factors
for smoking are multifaceted and all things must be
considered. Further research and discussion should
continue, and it is important that clinicians work against
stigma and toward promoting education about high
smoking rates as a specific vulnerability for individuals
with SZ.
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