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Glossary

Chondrogenesis: the process by which cartilage is developed.

Early endosome: the early form of endosomes after the dissociation of the

clathrin coat. Early endosomes are enriched in PtdIns(3)P and RAB5 and

canonical early endosomes are characterized by the recruitment of early

endosome antigen 1 (EEA1), a protein required for homotypic endosomal

fusion.

Late endosome: also known as multivesicular bodies (MVBs), they are mainly

spherical, lack tubules, and contain many closely packed luminal vesicles.

Markers include RAB7, RAB9, and PtdIns(3,5)P2.

Phosphoinositides (PtdIns): phospholipids that can be phosphorylated at

multiple sites on their inositol ring, this gives rise to various phosphoinositide

species. Phosphoinositide kinases and phosphatases reversibly regulate the

formation of these species.

Scaffold and adaptor protein: a protein that binds and colocalizes two or more
Endocytosis participates in downregulating incoming
signals, but ‘signaling endosomes’ may also serve as
physical platforms for crosstalk between signaling
pathways. Here, we briefly review the role of endosomes
in signaling crosstalk and suggest that endosome-
associated scaffold proteins mediate this crosstalk. In
addition, using a proteome-wide in silico approach – in
which we analyze endosome-binding properties and the
capacity of candidates to recruit signaling proteins from
more than one distinct pathway – we extend the list of
putative crosstalk-mediating endosomal scaffolds.
Because endosomal crosstalk may be an important
systems-level regulator of pathway communication,
scaffold proteins that mediate this crosstalk could be
potential targets for pharmacological intervention and
synthetic engineering.

Endosomes
Endocytosis is a cellular process by which cell surface
components and extracellular molecules are internalized
into lipid vesicles called endosomes (Box 1). Endocytosis
has long been considered an effective mechanism to down-
regulate cellular signaling events by internalizing recep-
tors or ligand–receptor complexes [1,2]. However,
increasing evidence suggests that endocytosis can also
contribute actively to signaling, which has led to the
signaling endosome hypothesis [3–6]. Endosomes can reg-
ulate the localization of signaling complexes either by
spatially restricting signaling activity to particular loci
in the cell or by acting as vesicular carriers, propelled by
molecular motors, to transport signaling proteins to cellu-
lar locations that are unreachable by diffusion [7]. Endo-
somes can also isolate signaling components and prevent
unwanted signaling interactions. This strategy is likely to
occur in the regulation of, for example, glycogen synthase 3
beta (GSK3-b), a promiscuous kinase that has numerous
phosphorylation targets in distinct pathways, including
WNT, Hedgehog, epidermal growth factor (EGF)/mito-
gen-activated protein kinase (MAPK), and transforming
growth factor beta (TGF-b) signaling. Sequestering GSK3-
b into endosomes plays an essential role in the WNT
pathway in Xenopus, because this step prevents the phos-
phorylation and subsequent proteasomal degradation of
b-catenin, a key component of the pathway [8]. Recently, it
was suggested that imprisoning GSK3-b may also be
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essential for insulating it from other signaling pathways
such as Hedgehog or TGF-b, thereby preventing the phos-
phorylation and subsequent degradation of specific signal-
ing components [9].

A signaling endosome also serves as a ‘meeting ground’
for signaling components [10]. Signaling enzymes or other
signaling effectors such as GTPases and their regulators or
even transcription factors are often specifically localized to
endosomes through endosome-associated adaptor and scaf-
fold proteins (see Glossary). Thus, the endosome membrane
facing the cytoplasm forms a physical platform for signaling
complex assemblies where endosomal scaffolds can facili-
tate signaling reactions between the recruited components,
similarly to the general role of scaffolds in the plasma
membrane and in the cytoplasm [11]. For example, in the
EGF/MAPK pathway, the MP1–p14 scaffold complex, an-
chored to the late endosomal membrane by the p18 protein
[12], localizes MEK1 to late endosomes and promotes the
phosphorylation of ERK1 and ERK2 kinases [13]. The MP1/
p14/p18 scaffold complex is also known as the LAMTOR1-3
complex. A recent proteomic study in p14�/�mouse embry-
onic fibroblasts identified 31 proteins whose regulation was
p14 dependent [14]. In addition, the MP1/p14/p18 scaffold
complex recruits the mTORC1 complex via Rag GTPase
proteins to lysosomes on stimulation with amino acids. This
‘Ragulator’ complex enables activation of mTOR by its
lysosomal activator, the Rheb GTPase in human cells
[15]. Another example for the role of endosomal scaffolds
is SARA, an endosome-specific scaffold that can enhance
TGF-b signaling by bringing the TGF-b receptor and its
phosphorylation targets, SMAD2 and SMAD3, into close
proximity, as shown in cultured hamster cells [16].
members of a catalytic pathway.
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Box 1. The endocytotic pathway

Endocytosis, the cellular process of internalizing transmembrane

receptors and extracellular cargo, occurs through many routes. The

most extensively studied endocytic pathway is clathrin-mediated

endocytosis, in which internalization is mediated by the formation of

clathrin-coated pits that bud off to form clathrin-coated vesicles

(CCVs). Receptors can also be brought to the inside of the cell by

myriad clathrin-independent mechanisms [79]. After the dissociation

of the coat, vesicles form the early endosome, which is the primary

sorting station along the endocytic pathway. By pinching off from the

elongated tubules of the early endosome, recycling endosomes can

carry the internalized receptors back to the plasma membrane.

However, ubiquitylated receptors are recognized by the early ESCRT,

which sorts receptors to the late endosomal/multivesicular body

compartment that ultimately fuses with lysosomes, resulting in the

degradation of receptors.

RAB proteins and PtdIns species are the main molecular signs that

define the identity of different endosomal compartments (Figure I).

They can easily be modified by different proteins, including PtdIns

kinases and phosphatases, allowing the dynamic control of endosomal

spatial distribution [42]. The plasma membrane is characterized by

PtdIns(4,5)P2, which has an important role in forming clathrin-coated

vesicles through its specific interaction with AP-2. After pinching off the

plasma membrane, the vesicles start to increase in PtdIns(3)P content, a

characteristic of early endosomes. Through the action of phosphoino-

sitide kinases, multivesicular bodies/late endosomes become enriched

in PtdIns(3,5)P2. Through specific protein domains, these PtdIns species

enable the specific binding of proteins, including adaptors and

scaffolds. Binding to PtdIns(3)P occurs through FYVE domains and

PX domains, while PH domains may interact with PtdIns(3)P on

endosomes as well as with PtdIns(4,5)P2, PtdIns(3,4)P2, and

PtdIns(3,4,5)P3 regions of the plasma membrane [80]. Binding to

PtdIns(3,5)P2 can be achieved via the PROPPIN domain [81]. Similarly,

RAB proteins bind to their specific effector proteins, but the PtdIns

content of the membrane can influence the affinity of their binding.

Ear ly endo some

Ear ly endo some

Late e ndo some

Nucleus

APPL

EEA1

WIPI49(?)  

PtdIn s(4,5 )P2

PtdIn s(3,5 )P2

PtdIn s(3)P

Clathrin
coated
vesicle

PROPPIN  dom ain

FYVE an d PX
domains 

some spec ifi c
PH domains

TRENDS in Cell Biology 

Figure I. Phosphoinositide-specific binding of proteins to distinct endosomal populations. The change of phosphoinositides (PtdIns) on endosomes is reflected in their

protein composition, because their associated protein factors often bind to endosomal membranes via modular domains (e.g., PH, FYVE, PX, or PROPPIN) that can

specifically interact with distinct forms of PtdIns. Note that WIPI49 is one of the few PROPPIN domain-containing proteins and we hypothesize that it could bind to the

membrane of late endosomes, though experimental validation is needed to prove its late endosomal localization.
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Likewise, a further endosome-specific  adaptor, Endofin,
facilitates SMAD4 phosphorylation in human cell culture
[17].

Scaffold proteins can not only facilitate signal transduc-
tion within a pathway, but are also known to regulate
interactions between different signaling pathways at the
plasma membrane or in the cytoplasm [18]. This type of
interaction, where the interacting proteins function in dis-
tinct signaling pathways, is generally referred to as ‘cross-
talk’ [19]. In many species, the scaffold protein AXIN
mediates crosstalk between multiple pathways in the cyto-
plasm [20]. For instance, different WNT pathway compo-
nents (e.g., DVL, CKIe, GSK3-b) have been shown to
modulate the activation of JNK and p38 cascades in the
EGF/MAPK pathway through interacting with AXIN
[20,21]. Interestingly, on WNT-induced signaling, GSK3-b,
DVL, and AXIN have been shown to localize to the cell
membrane as well as to endosomes following internalization
448
of the b-catenin destruction complex [22,23]. AXIN also can
integrate TGF-b and WNT signals; it functions as a negative
regulator of WNT and a positive regulator of TGF-b pathways
[24]. Recent studies highlighted some of the scaffolds that
appear to mediate crosstalk on the surface of endosomes. For
example, the endosomal scaffold protein APPL can facilitate
crosstalk between AKT and GSK3-b kinases, which are key
components of insulin and WNT pathways, respectively [25].
The endosomal scaffold EEA1 can mediate crosstalk between
EGF/MAPK and insulin pathways by connecting p38 and
AKT [26]. Hepatocyte growth factor-regulated tyrosine ki-
nase substrate (HGS), another endosomal scaffold, was re-
cently shown to mediate crosstalk between the TGF-b and
EGF/MAPK pathways [27]. Here, using an in silico approach,
we propose additional scaffolds that have the potential to
mediate crosstalk on endosomes, and suggest that these
endosomes can serve as a physical platform specifically to
mediate signaling crosstalk (Figure 1a).
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Figure 1. Endosome-associated adaptors/scaffolds mediate signaling specificity, localization, and crosstalk. Green color shows scaffold proteins; orange and yellow

shows scaffold-interacting proteins; brown shows endosome-related proteins; blue arrows represent crosstalk; white arrows represent other post-translational

modifications; black squares represent output functions. (a) Crosstalk between two pathways may be localized to endosomes as physical platforms through crosstalk

mediating scaffolds that bind to the endosome. EL denotes Endosome Localization domains (Box 1). (b) In zebrafish embryos, the endosomal adaptor APPL mediates

crosstalk between glycogen synthase 3 beta (GSK3-b) and AKT, but is not required for TSC2 activation by AKT. (c) On angiotensin-II signaling, early endosome antigen 1

(EEA1) recruits signaling components to endosomes and mediates the crosstalk between p38 and AKT. (d) In bone morphogenetic protein (BMP) signaling, the endosomal

scaffold hepatocyte growth factor-regulated tyrosine kinase substrate (HGS) facilitates the crosstalk between SMADs and the TAK1 kinase. This phosphorylation event is

HGS dependent.
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Signaling crosstalk
In general, signaling crosstalk is an interaction between
components of multiple signaling pathways. Here, we define
‘crosstalk’ as a physical interaction between proteins of two
(or more) distinct signaling pathways. However, we note
that, in genetics, the term crosstalk is sometimes used to
denote transcriptional connections between genes function-
ing in different pathways. Although historically pathways
have been viewed as discretely linear, with the advent of
network biology it became evident that these pathways are
densely interconnected via signaling crosstalk. The impor-
tance of crosstalk is apparent if we consider that, in contrast
to the wide variety of signaling functions and the macro-
scopic and microscopic diversity of living forms, the number
of signaling pathway types is relatively low (a few dozen)
[28,29]. Because the number and combinations of transduce-
able signals are limited, crosstalk between pathways can
create novel input/output combinations. Having more
input/output combinations increases the possible ways that
signaling information can flow within the cell, which con-
tributes to allowing more diverse phenotypes. Thus, cross-
talk plays an important role in, for example, developmental
processes, regeneration, immune response, and stress ad-
aptation [30–33]. Malfunction of crosstalking proteins (e.g.,
IRS1, JNK1) can cause major systems-level diseases, such
as cancer or diabetes [34,35]. During tumorigenesis, for
instance, rewiring of signaling networks is achieved by
the alteration of crosstalking proteins (e.g., change in
ERK–GSK3-b crosstalk) [34,36,37]. Consequently, pharma-
cological targeting of crosstalking proteins could be an
important strategy in the future [38–40].

Previously, we examined eight biochemically and
evolutionarily defined signaling pathways important in
development (EGF/MAPK, insulin, TGF-b, Notch, WNT,
Hedgehog, JAK/STAT, and NHR pathways) and found that
crosstalk can occur between any two of these pathways
449
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[40]. Thus, theoretically, all of these pathways can influ-
ence each other. This phenomenon, which is supported by
experimental observations of the high number of crosstalk
possibilities within the insulin pathway, raises serious
regulatory problems for the cell [35]. Thus, crosstalk must
be precisely regulated to prevent ‘leaking’ or ‘spillover’ [41].
This can be achieved using different insulating mecha-
nisms; for example, via scaffolding proteins or compart-
mentalized reactions [18,41]. Here, we suggest endosomes
as one means to facilitate crosstalk (Figure 1a).

Crosstalk mediated by endosomal scaffolds
Considering the known dynamic and spatial role of endo-
somes in signaling, we argue that those endosomes that
possess scaffolds capable of connecting proteins from differ-
ent pathways can localize, isolate, and modulate pathway
interactions. Accordingly, we term these endosomes ‘cross-
talk endosomes’. Scaffold proteins can be recruited to these
endosomes by binding to endosome-specific phosphoinosi-
tides (PtdIns) and endosome-related proteins (Box 1) [42].
Different PtdIns lipid compositions enable the specific bind-
ing of proteins through specific protein domains (Box 1). In
the following, we present three endosome-associated scaf-
folds with known roles in mediating crosstalk.

The earliest group of early endosomes is characterized
by the scaffold protein APPL. Numerous studies in recent
years have provided striking examples of how endosomally
localized APPL regulates the crosstalk specificity of AKT.
For example, APPL is important in crosstalk between the
insulin and WNT signaling pathways because it interacts
directly with AKT (an insulin pathway member) and GSK3-
b (a WNT pathway member) on endosomes [25]. AKT is a
signaling hub and regulates various cellular functions such
as cell survival, growth, proliferation, and metabolism; thus,
its output signals must be specifically regulated. The role of
APPL in AKT signaling in zebrafish embryos was examined
and revealed that endosomal APPL1 is required for specific
mediation of the phosphorylation of GSK3-b, but not of other
substrates of AKT, during development [25] (Figure 1b).
Similarly, APPL1–AKT signaling was specifically required
for survival of stomach/duodenum and pancreas progenitor
cells in Xenopus laevis embryos [43]. In addition, the cross-
talk-mediating role of APPL was recently identified in adi-
ponectin signaling, although we note that this crosstalk has
not been explicitly described as localized to endosomes [44].
Here, APPL can simultaneously bind the TGF-b pathway
member TAK1 and the EGF/MAPK member MKK3 to facil-
itate p38 activation and specify adiponectin signaling [44].

In canonical EEA1 early endosomes, a novel function of
EEA1 is as a scaffold in angiotensin-II induced AKT acti-
vation, which induces hypertrophy of vascular smooth
muscle cells [26]. On angiotensin-II stimulation, colocali-
zation and immunoprecipitation experiments showed that
AKT interacts with EEA1, which promotes its phosphor-
ylation by recruiting kinases such as p38 of the EGF/
MAPK pathway [26] (Figure 1c). Because the downregula-
tion of EEA1 inhibited AKT phosphorylation [26], we
assume that EEA1 is important for mediating this cross-
talk between the EGF/MAPK and insulin pathways [26].

The HGS (HRS) scaffold protein has recently been
shown to play a role in bone morphogenetic protein
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(BMP) signaling (a specific subtype of the TGF-b pathway)
during mouse embryogenesis [27]. Signal transduction
downstream of BMP receptors occurs mainly by SMAD
proteins that form complexes and transmit signals to the
nucleus. In vertebrate embryogenesis, in addition to
SMAD signaling, TAK1/p38 phosphorylation is also re-
quired to transduce BMP signals [27]. TAK1 serves as a
multi-pathway protein that transduces the BMP signal to
the MAPK signaling pathway [45]. HGS is proposed to play
a key role in simultaneously promoting TAK1/p38 and
SMAD phosphorylation by scaffolding the TAK1 and
SMAD1/5/8 complexes on endosomes [27] (Figure 1d).

Given these examples and the findings presented above,
we propose that the major mediators of crosstalk on endo-
somes are the endosome-associated scaffold proteins. Are
there more crosstalk-mediating scaffolds on endosomes
awaiting discovery?

Additional endosomal scaffolds: do they also mediate
crosstalk?
Based on the presented examples, we collected information
on domain compositions, protein interactions, and path-
way memberships (Table S1 in the supplementary materi-
al online) to identify scaffold proteins capable of mediating
crosstalk on endosomes (Box 2). There are three ways a
scaffold protein can be endosome associated: (i) it binds the
endosomal membrane; (ii) it binds an endosomal protein;
or (iii) it binds another scaffold that is already bound to the
endosome (i.e., indirect or scaffold complex member). Ac-
cordingly, we found and classified 76 endosome-associated
scaffolds based on their binding properties (see Figure I in
Box 2).

Next, we examined the pathway memberships of signal-
ing proteins interacting with endosome-associated scaf-
folds to select those that connect interacting proteins
from more than one pathway (Box 2) and identified 49
potential crosstalk-mediating endosomal scaffolds. (In Ta-
ble S2a in the supplementary material online, we list these
scaffolds, their endosome association type and the signal-
ing pathways to which these scaffolds are directly con-
nected. In Table S2b in the supplementary material online,
all supporting protein–protein interaction network data
are presented, showing the interactions between the endo-
somal scaffolds and their partner proteins from different
pathways. Note that the partner proteins of a scaffold are
interacting (crosstalking); thus, a scaffold and its partners
form an interaction triangle.) Interestingly, among these
49 crosstalk-mediating endosomal scaffolds, we found four
(GRB1, CCNE1, SARA, AXIN1) that were potentially ca-
pable of connecting proteins from five different pathways
(JAK/STAT, Notch, WNT, TGF-b, and the RTK pathway,
which contains insulin and EGF/MAPK cascades), indicat-
ing that endosomal crosstalk via these scaffolds can have
important systems-level effects (Table 1a subset of Table
S2b in the supplementary material online).

Two examples: AXIN and SARA
We briefly present two scaffolds, AXIN and SARA, which
were found in our analysis and could potentially be med-
iators of crosstalk on endosomes. Both are known scaffolds,
but a crosstalk-mediating function is known only for AXIN,



Box 2. Identification of crosstalk mediating endosomal scaffolds

To list scaffold proteins capable of mediating crosstalk on endo-

somes, we used a list of known and potential scaffolds from [82], a list

of endosome-related proteins based on Gene Ontology cellular

compartment annotation [47], and a list of endosomal membrane-

binding domains from [80].

First, we used the PFAM protein domain resource [83] to select

scaffolds that contain endosomal membrane (phosphoinositide–lipid)

binding domains (FYVE, PX, PH, PROPPIN domains) (listed in Table S1a

in the supplementary material online). Because some PH domains may

bind only the plasma membrane, we selected only those PH domain-

containing proteins that are known to be endosome related (according

to Gene Ontology and UniProt annotation [47,84]). To further identify

endosome-associated scaffolds we applied the HPRD, BioGRID, and

STRING protein–protein interaction (PPI) resources [46,48,49] to select

scaffolds that could bind endosome-related proteins (listed in Table

S1b in the supplementary material online). Next, we defined three

overlapping classes for the identified 76 endosome-associated scaf-

folds based on their binding properties (Figure I): (i) scaffolds bind to

endosomal membrane; (ii) scaffolds bind to endosome-related pro-

teins; and (iii) indirect endosomal scaffolds bind to directly binding

scaffolds (from class ii). Interestingly, only the HGS scaffold has both

endosomal membrane and endosome-related protein binding proper-

ties. This indicates that HGS has multiple possibilities to bind

endosomes and this binding can be highly regulated by the lipid and

protein composition of the endosomes.

Finally, using the PathwayLinker web service [85], we examined the

pathway memberships of the signaling proteins that interact with

endosome-associated scaffolds. PathwayLinker examined the first

neighbor interactors (protein partners) of each scaffold based on the

interaction data from HPRD, BioGRID, and STRING [46,48,49] and then

acquired pathway membership data for the protein partners from the

SignaLink, KEGG, and Reactome pathway resources [40,86,87]. The

resulting protein–protein interaction network data showing the interac-

tions between the endosomal scaffolds and their partner proteins from

different pathways are shown in Table S1c in the supplementary material

online). We examined seven biochemically and evolutionarily different

pathways (EGF/MAPK, insulin, JAK/STAT, Notch, WNT, TGF-b, Hedge-

hog) that are known to be important in development and in diseased

states [28]. Importantly, crosstalk identification can be possible only if the

connecting pathways are well defined. Biochemically based, evolutio-

narily related pathway grouping (such as presented in [28]) allows

crosstalk analysis and avoids artificial pathway constructs and false-

positive crosstalk. (Although in the literature the insulin and EGF/MAPK

pathways are often separated, according to [28] and with the aim of

minimizing false-positive crosstalk in this analysis, we defined the highly

overlapping insulin and EGF/MAPK pathways as a single RTK pathway.)

Filtering scaffolds that connect interacting proteins from different

pathways allowed us to identify 49 crosstalk-mediating endosomal

scaffolds (listed in Table S2a in the supplementary material online).

The supporting PPI dataset (Table S2b in the supplementary material

online) contains 395 scaffold-mediated crosstalks among 157 signal-

ing proteins. We selected only those crosstalks where the interacting

proteins had no mutual pathway memberships to obtain clear

crosstalking protein pairs. This was important in the case of

interacting multi-pathway proteins (proteins functioning in more

than one pathway). Because of this strict filtering, 18 endosomal

scaffolds (such as HGS) have been excluded from the short list of 49

clear crosstalk-mediating scaffolds. (The complete list without filter-

ing can be found in Table S1c in the supplementary material online).

We note that this is only a list of potential scaffolds capable of

mediating crosstalk on endosomes; further in-depth experimental

validation is needed to confirm these results.
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Figure I. Overlapping classes and lists of the 76 endosome-associated scaffolds based on their binding properties. In humans, we identified 10 scaffolds that can bind to

endosomal membrane (blue), 20 scaffolds that bind to endosome-related proteins (red), and 16 indirect endosomal scaffolds that interact with directly binding

endosomal scaffolds (green). In addition, 29 scaffolds can bind both to endosome-related proteins and to directly binding endosomal scaffolds (red–green overlap).

Only one scaffold hepatocyte growth factor-regulated tyrosine kinase substrate (HGS) can bind both the endosomal membrane and endosome-related proteins (blue–

red overlap). Scaffolds that are mentioned in the main text are highlighted.
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Table 1. Selected examples of predicted endosomal scaffolds and their crosstalking protein partners

Scaffolda Scaffold partner protein 1 Scaffold partner protein 2

Name Pathway Name Pathway

AXIN1 TSC2 RTK PPP2CA TGF, WNT

TSC2 RTK SMAD2 TGF, WNT

CTNNB NOTCH, WNT SMAD7 TGF

DVL1 NOTCH, WNT SMAD7 TGF

PIAS1 NOTCH, JAK/STAT SMAD7 TGF

CCNE1 RB2 TGF CCND3 WNT, JAK/STAT

RBL1 TGF HDAC1 NOTCH

RB2 TGF HDAC1 NOTCH

BRCA1 NOTCH E2F4 TGF

CCND3 WNT, JAK/STAT CDKN1B RTK

GRB1 CTNNB NOTCH, WNT FLT JAK/STAT

INSR RTK VAV NOTCH, JAK/STAT

JAK2 JAK/STAT ABL NOTCH, RTK

EGFR RTK, JAK/STAT CTNNB NOTCH, WNT

50 more crosstalking partners for GRB1 are found in Table S2b in the supplementary material online

SARA ALK5 TGF, RTK, JAK/STAT CTNNB NOTCH, WNT

CTNNB NOTCH, WNT SMAD7 TGF

ALK5 TGF, RTK, JAK/STAT MYL NOTCH

aFor the complete list of the 49 predicted endosomal scaffolds able to mediate crosstalk, see Table S2b in the supplementary material online, where the proteins also contain

hyperlinked UniProt ACs.
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whereas endosomal localization is known only for SARA.
Based on our compilation, we hypothesize that both scaf-
folds can be localized on endosomes and may mediate
crosstalk by interacting directly with components of mul-
tiple pathways.

AXIN was previously described as a master scaffold for
multiple signaling pathways [20]. Besides its distinct roles
in the WNT, TGF-b, and EGF/MAPK (p38 and JNK) path-
ways, AXIN has integrative and crosstalk functions [20].
Until now, however, AXIN had not been shown to be
associated with endosomes. Using the HPRD, BioGRID,
and STRING protein–protein interaction resources, we
examined AXIN interactor proteins and selected those
that are known to localize at the endosome based on their
Gene Ontology annotation [46–49]. This analysis indicat-
ed a yeast two-hybrid screen [50] that shows with medium
confidence that AXIN can bind Endophilin A2 (encoded by
SH3GL1), an SH3-domain-containing endosomal protein.
In addition to the role of Endophilin family members in the
formation of endocytic vesicles, they may also interact
with signaling proteins [51–53]. The interaction of Endo-
philin A2 with AXIN may allow this latter multi-pathway
scaffold to be localized to endosomes and thus the endo-
some membrane could serve as a physical platform for
AXIN-mediated pathway crosstalk (Figure 2a). We note
that many of the assumptions of this model, which is based
on data mining, need to be explicitly tested experimental-
ly. We also note, however, that AXIN has recently been
proposed to localize to endosomes through an internalized
WNT receptor complex [9].

As described above, SARA is an endosome-specific scaf-
fold important in TGF-b signaling because it binds
SMAD2 and SMAD3 [16]. However, a yeast two-hybrid
screen in mammalian cells showed that SARA also binds
b-catenin, a key protein of the WNT pathway [54], but the
functional role of this interaction has not been identified.
b-catenin had already been found in endosomal fractions
452
in human embryonic kidney cells and was associated with
another endosomal scaffold, APPL1 [55,56], suggesting
that endosomes could modulate b-catenin signaling.
Moreover, in COS cells (kidney cells, African green mon-
key) SMAD3 was found to interact with b-catenin, result-
ing in increased protein stability by protecting b-catenin
from degradation and increased transcriptional activity
by facilitating the nuclear translocation of b-catenin dur-
ing chondrogenesis [57]. Together, these observations
suggest that endosomally localized SARA may connect
SMAD3 and b-catenin and affect the dynamics of the
TGF-b and WNT pathways. Colocalization of SMAD3
and b-catenin on the endosome-bound SARA scaffold
may alter the cytoplasmic degradation rate of b-catenin
such that it could more efficiently enter the nucleus
(Figure 2b). Again, we note that the colocalization of
SMAD3 and b-catenin on endosomes must be experimen-
tally validated and the crosstalk-facilitating function of
SARA also needs to be explicitly tested.

Engineering synthetic endosomal crosstalk
It well established that, for a systems-level understanding
of signaling network behaviors, one needs to address the
dynamic and spatial aspect of cellular signaling to under-
stand how information is dissipated from the cell mem-
brane across the cytoplasm towards the nucleus [58].
Therefore, similar to how researchers previously made
great advances in controlling the dynamic aspect of indi-
vidual signaling pathway outputs by using artificially
modified natural protein scaffolds [59], we propose that
the endosomal membrane facing the cytoplasm could be an
invaluable physical platform to facilitate crosstalk in a
spatially controlled fashion. Endosomes traverse the cell
as they move inwards from the cell membrane toward the
nucleus and their outer membrane is a unique surface
to initiate artificial connections between signaling
components.
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The reconstruction-based approaches of synthetic biol-
ogy could be used, for example, to modify natural scaffolds
to enable them to form novel protein–protein or protein–
lipid interactions and observe whether this changes their
crosstalk activity [60]. The localization of a protein scaffold
directly or indirectly to endosomes may be mediated by
endosomal membrane-interacting domains. These
domains bind to distinct phosphoinositide species, which
are characteristic of the membranes of different endosome
populations; for example, the PX domain binds PtdIns(3)P
(Box 1). Thus, the capacity of scaffolds to facilitate physical
interactions between two proteins, and the ability of endo-
somal membranes to act as physical dynamic platforms,
can be united to colocalize crosstalk-mediating agents in
time and space [11,61]. This strategy may be useful for
probing the significance of different crosstalk mechanisms
relying on the spatial aspect of intracellular signaling (i.e.,
the influence of the spatial localization of signaling com-
plexes on the activity of a pathway interaction).

The EGF receptor is an example of a signaling compo-
nent known to yield different outcomes based on the spatial
localization of its activity. Signals emanating from inter-
nalized EGF receptors located on the endosome membrane
en route to an internal destination can have different
outcomes compared with signals initiated by activated
EGF receptors at the plasma membrane [62,63]. Therefore,
because of the numerous deactivating mechanisms (e.g.,
phosphatase activity on protein kinases) and the long
distances that signals travel within the cell – especially
in highly polarized cells such as neurons with long axons –
endosomes that are actively moved across the cytoplasm
could play an essential role in ensuring that weak crosstalk
signals eventually exert their effect [64]. In some
instances, spatial localization of active signaling receptors
between the plasma membrane and the endosome can
result in opposite physiological outputs. For example, on
stimulation, the tumor necrosis factor (TNF) receptor-1
signals from the plasma membrane and promotes survival
via nuclear factor kappa B (NFkB) [65]. However, inter-
nalization of TNF receptor-1 to endosomes disables NFkB
activation and stimulates caspase-8, leading to apoptotic
cell death. Thus, internalization and altered localization of
the signaling complex provide a key switch mechanism
between two different signaling responses [65]. Specula-
tively, the endosome membrane may be exploited as a
spatial ruler of distance between the plasma membrane
and the nucleus, because the lipid and protein composition
of the endosomal membrane changes as the endosome
moves inward from the early endosomal populations near
the plasma membrane to late endosomes near the nucleus
(see Figure I in Box 1). Early versus late endosomal
membrane-binding synthetic scaffolds could be used to
physically link artificially modified/designed signaling
components (e.g., kinases/phosphatase, GTPases, pro-
teases) at different distances along the plasma mem-
brane–cytoplasm axis.

More specifically, transcription factors, which are nor-
mally the terminal players in signaling pathways, may
utilize distance-based control to modulate the strength and
duration of the signal and communication with other path-
ways; transcription factors activated far from the nucleus
(e.g., at early endosomes) may be inactivated before reach-
ing the nucleus, whereas those that are activated in close
proximity to the nucleus (e.g., at late endosomes) have a
better chance of entering the nucleus in their active form.
Thus, an important function of endosomes may be the
spatiotemporal regulation of transcription factor activa-
tion. For instance, on interleukin (IL)-6 induction, endo-
some-mediated signaling crosstalk can occur between ERK
(EGF/MAPK pathway) and STAT3 (JAK/STAT pathway),
which facilitates STAT3 interaction with its transcription-
al co-activators CBP and p300 [66]. Because ERK1/2
453



Box 3. Technical challenges in studying crosstalk

endosomes

Despite the prevalent use of fluorescent techniques to study

signaling complexes in vivo, there are some major difficulties in

studying endosomal signaling and crosstalk [88]. It requires the

combined detection of signaling endosome characteristics (such as

size, motility, localization, protein, and lipid composition) as well as

the analysis of subsequent signaling interactions. Quantitative

proteomic studies will be essential to elucidate the full complexity

of endosomal compartments. However, the isolation of distinct

endosomal populations poses a major challenge. It is also difficult

to establish whether signaling complexes localized to endosomes

transmit signals or are merely en route to the lysosome for

degradation. Furthermore, it is difficult to distinguish signaling

events elicited from the plasma membrane from endosome-specific

signaling. New microscopy-based fluorescent techniques that can

detect signaling molecules in real time are likely to bring us closer to

answering the following important questions.

� Can we detect the dynamics and the signaling effect of crosstalk

endosomes?

� How are the components of crosstalk endosomes assembled? Is

there a coordinated regulatory system to prepare crosstalk

endosomes?

� Are there specific populations of crosstalk endosomes? How does

the motility and half-life of the endosome and its distance from

the nucleus determine its role in signaling?
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phosphorylation occurs in late endosomal structures,
which localize close to the nucleus, this endosome-associ-
ated crosstalk maximizes the transcriptional activity of
STAT3 [66]. Furthermore, the distance of STAT3-contain-
ing endosomes (often called sequestering endosomes) from
the nucleus could determine the duration of the signal
[67,68]. Endosomes may also aid in the transport of weak
signals, exemplified by HGF-induced cMet signaling,
where endosomal trafficking is required for the STAT3
signal to reach the nucleus, in contrast to the strong
ERK1/2 signal which is not dependent on endocytic traf-
ficking [69]. Similarly, late endosomal structures (i.e.,
multivesicular bodies) play a positive role in NFkB signal-
ing by sequestering IkB (inhibitor of NFkB) in the Dro-
sophila Toll pathway [9,70]. In vivo genetic experiments in
Drosophila have confirmed that endocytic trafficking mod-
ulates the strength of the transcriptional signal [71,72].
Therefore, with synthetic manipulation of transcription
factor–endosome associations, we could potentially modu-
late and specifically facilitate the spatial properties, activ-
ity, and possible interactions of transcription factors, such
as STAT3 or NFkB.

Concluding remarks
Specificity, strength, and localization are key properties in
interpathway communication. Their precise regulation can
be maintained by signaling endosomes serving as physical
platforms for signaling pathway crosstalk. Based on this,
we coined the term ‘crosstalk endosome’ and assume that
endosome-associated scaffold proteins may be the principle
components mediating the interaction of different pathway
components. Regulating the expression of endosomal scaf-
folds is likely to be an important mechanism for cells to
control signal transduction pathways. Therefore, mutation
or changes in the expression of endosomal scaffolds may
have pathological effects, as demonstrated in a newly
identified primary immunodeficiency syndrome in which
a point mutation in the 30 untranslated region (UTR) of the
p14 gene resulted in decreased expression of the p14 late
endosomal scaffold [73]. Impairment of retrograde neuro-
trophin signaling is likely to cause ‘vesicular traffic jams’
that have been linked to various neurodegenerative dis-
eases. Indeed, accumulation of the Ab42 protein in early
endosomes is a feature of Alzheimer’s disease, and TrkA
signaling and transport are dependent on huntingtin-as-
sociated protein 1, implicating that defects in endosomal
signaling contribute to the development of neurodegener-
ative diseases [74]. Despite their key regulatory role, there
are only a few dozen genetic alterations of endocytic genes
that have been linked to malignancies [75]. Among them,
overexpression of Rab5a, a canonical marker of early endo-
somes, is observable in lung cancer and hepatocellular
carcinoma [76,77]. Also, HGS and other components of
the endosomal sorting complex required for transport
(ESCRT) machinery are misregulated in various cancers
[78].

Future studies will reveal whether endosomal crosstalk
is a widespread phenomenon or applies to only a limited
number of signaling systems. It is intriguing to speculate
that ‘crosstalk endosomes’ may constitute a specialized
population of endosomes; however, detecting the dynamics
454
and signaling effects of crosstalk endosomes faces several
technical challenges (Box 3). Engineering synthetic endo-
somal crosstalk may be one useful way of testing the
relevance of this phenomenon. If our assessment is correct,
the next few years will see the clarification of crosstalk
mechanisms, the experimental discovery of more crosstalk
mediating scaffolds, and illumination of the spatial aspect
of intracellular signaling – particularly the role of endo-
somes in this process.

Acknowledgments
We are grateful for the technical help of Dávid Fazekas, for discussions
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