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Abstract

Background: Functionality, controllability and cosmetics are the key issues to be addressed in order to accomplish
a successful functional substitution of the human hand by means of a prosthesis. Not only the prosthesis should
duplicate the human hand in shape, functionality, sensorization, perception and sense of body-belonging, but it
should also be controlled as the natural one, in the most intuitive and undemanding way. At present, prosthetic
hands are controlled by means of non-invasive interfaces based on electromyography (EMG). Driving a multi
degrees of freedom (DoF) hand for achieving hand dexterity implies to selectively modulate many different EMG
signals in order to make each joint move independently, and this could require significant cognitive effort to the
user.

Methods: A Principal Components Analysis (PCA) based algorithm is used to drive a 16 DoFs underactuated
prosthetic hand prototype (called CyberHand) with a two dimensional control input, in order to perform the three
prehensile forms mostly used in Activities of Daily Living (ADLs). Such Principal Components set has been derived
directly from the artificial hand by collecting its sensory data while performing 50 different grasps, and
subsequently used for control.

Results: Trials have shown that two independent input signals can be successfully used to control the posture of a
real robotic hand and that correct grasps (in terms of involved fingers, stability and posture) may be achieved.

Conclusions: This work demonstrates the effectiveness of a bio-inspired system successfully conjugating the
advantages of an underactuated, anthropomorphic hand with a PCA-based control strategy, and opens up
promising possibilities for the development of an intuitively controllable hand prosthesis.

Background
In the last thirty years several examples of robotic hands
have been developed by research or industry, some
designed to mimic the human hand in its manipulation
dexterity and functionality, some aimed at achieving bet-
ter anthropomorphism and cosmetic appearance [1].
Great research effort has been focused on the design of
both articulated articulated end-effectors and smart dex-
terous anthropomorphic hands, for humanoid robotics
and prosthetics. An exhaustive summary of the various
approaches and solutions is given in [2] and [1].
An advanced neuro-controlled prosthetic hand

bi-directionally interfaced with a human being should
address both functional and cosmetic issues; it should
be dexterous enough to allow the execution of Activities

of Daily Living (ADLs), and include proprioceptive and
exteroceptive sensors for the delivery of consciously per-
ceived sensory feedback [3]. Market available myoelec-
tric hand prostheses [4-6] are instead similar to rough
pincers [7], having just one (open/close the hand) or
two (prono/supinate the wrist) degrees of freedom
(DoFs), therefore poor manipulation capabilities. They
are controlled by means of electromyographic (EMG)
signals picked up from the residual muscles by surface
electrodes, amplified and processed to functionally oper-
ate the hand [8-10]. Also the recently commercialized
multi-fingered I-Limb prosthesis (Touch EMAS Ltd.,
Edinburgh, UK) [11] is controlled using a traditional
two-input EMG scheme where all fingers open/close
simultaneously.
The communication interface between the user and

the machine is the technological bottle-neck [12] which
explains why current hand prostheses are very simple
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from a biomechanical point of view, even if more
sophisticated solutions would be possible. Still nowadays
there is no way to easily interface the amputee with the
multi-DoF dexterous prostheses developed in the past
decades (e.g. the Southampton-REMEDI [13], the RTR
II [14], the MANUS [15], the Karlsruhe hands [16], the
SmartHand [17], the IOWA hand [18]), since it requires
either too many independent control signals or a con-
troller able to compensate for the limited bandwidth of
the source signal.
As a matter of fact, increasing the number of DoFs (i.

e. dexterity) means either that the system should take
care of carrying out the grasp with some level of auto-
matism, as in the SAMS [10,13,19], or that the user
should learn how to correctly and selectively modulate
different muscular contractions so as to move each
prosthesis joint independently (as in [20,21]). In all
cases, a certain level of shared-control between the
user’s intention and the automatic controller is required,
as formally introduced by [22]. If the control relies on
the automatic controller of the prosthesis, this must
include a high number of sensors and intelligent control
algorithms to achieve the grasp; on the other hand, if
the control system is based on user’s intentions decoded
from bio-signals extracted by an appropriate interface,
(possibly) complex EMG processing algorithms and a
high level of training for the user may be required,
which could cause fatiguing burden [23]. This could
potentially induce the subject to reject the prosthesis,
particularly when the amputation is mono-lateral and
he/she can supply with the healthy limb to his/her
motor deficiency.
An innovative shared-control strategy could be

achieved by observing and mimicking the natural bio-
mechanical behaviour. As several studies in the neuro-
physiology literature report, low-dimensional modules
formed by muscles activated in synchrony - also called
“muscular synergies” - are used by the human nervous
system to build complex motor output patterns during
motor tasks [24,25]. In 1997/8 Santello and Soechting
reported a series of interesting experimental results on
the analysis of human hand grasping postures [26,27],
demonstrating that such synergies exist also in hand
postural data, which can thus be described in a reduced
dimensionality space [26-30].
This concept has been exploited with the aim of con-

trolling robotic grippers and dexterous hands by means
of a lower-dimension input space, in a limited number of
works. Brown and Asada explored the concept of biome-
chanical synergies and how they can be applied to a 17
DoFs robot anthropomorphic hand, by mechanically
implementing Principal Components Analysis (PCA)
and using common patterns of actuation called eigenpos-
tures [31]. Ciocarlie et al. [32] used PCA to design an

automatic grasp planning system for integration into the
control system of a prosthetic arm and hand driven by
cortical activity. Ciocarlie, Goldfeder and Allen [33,34]
applied the eigengrasp concept to 5 dexterous hand vir-
tual models (and to a real three-fingered gripper) and
derived a grasp planning algorithm. Tsoli and Jenkins
[35] compared several different dimensionality reduction
techniques used to extract 2D non linear manifolds from
human hand motion data and drive the DLR/HIT robotic
hand [36]; they also showed how it could be controlled
simply using a 2 DoFs input signal like the mouse pointer
position [37]. Rossel et al. [38] used the SAH hand [39]
and the concept of principal motion directions to reduce
the hand workspace dimension.
In the present work a control method based on PCA

(preliminary introduced in [40] and [41]) and its imple-
mentation in a 16-DoFs underactuated hand (the Cyber-
Hand prototype [3]) are presented. The developed
strategy allows to achieve a dimension reduction of the
control both algorithmically (using PCA) and also
mechanically (by means of underactuation). By this way,
two independent input signals can be used to drive the
hand and to make it grasp different objects representing
the prehensile grasping forms mostly used in ADLs. A
direct interaction between the user and the robot hand
is made possible by combining the user input signals
and the matrix which operates the transformation
between the input 2D space and the 16-dimensional
hand DoFs space. By this way, fingers are somehow
directly moved by the user’s intention, albeit each single
joint position cannot be actively controlled. The final
joints configuration is in the end achieved thanks to the
hand underactuated mechanism.
The feasibility of exploiting such a control method for

achieving real stable grasps is shown here on an anthro-
pomorphic, underactuated prosthesis for the first time.
This paper first of all describes the underactuated hand
used, the proposed PCA-based control algorithm and
particularly how the PCs matrix has been ad-hoc built
collecting data from the CyberHand sensors, in order to
operate dimensionality reduction. The employment of
this control strategy in driving the hand during the
most typical grasps in ADLs is then presented. Different
working conditions have been considered, in order to
test the algorithm feasibility both simulating EMG user-
generated control signals (more realistic noisy inputs)
and in the ideal case. The results obtained performing
different grasping trials are finally described and
discussed.

Methods
The robot hand
The human-sized robot hand used is a stand-alone ver-
sion of the CyberHand prototype [3]. It consists of five
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underactuated anthropomorphic fingers based on
Hirose’s soft finger mechanism [42], which are actuated
by six DC motors. Five of them are employed for fingers
flexion/extension; thus, each finger has 1 degree of
actuation (DoA) and 3 DoFs, since it is composed of
three phalanxes. One more motor drives the thumb ab/
adduction, which makes a total amount of 16 DoFs [3].
The CyberHand is able to perform the three main func-
tional grasps defined in Iberall’s & Arbib’s grasp taxon-
omy [43] and shown in Figure 1: power, precision and
side opposition (lateral) grasps.
The fingers of the CyberHand comprise three pha-

lanxes connected by hinge joints and on the hinge axes
are assembled idle pulleys. A tendon is wrapped around
each pulley from the base to the tip. The tendon is
fixated at the fingertip and runs around the idle pulleys
in the joints (metacarpophalangeal, MCP; proximal-
interphalangeal, PIP; distal-interphalangeal, DIP). When
the tendon is pulled, by means of a linear slider actuated
by a DC motor, the phalanxes flex starting from the
base to the tip. When the motor releases the cable, tor-
sion springs in the joints extend the finger. The

CyberHand fingers thus exploit a differential mechanism
that is based on elastic elements and mechanical stops.
When the finger moves idling (that is, without contact-
ing any object), the kinematics of such an underactuated
finger depends on the length of the links/phalanxes, on
the radii of the pulleys and on the stiffness of the joint
torsion springs. These parameters have been chosen to
obtain an anthropomorphic appearance (also while mov-
ing) and a stable tip-to-tip pinch based on biological and
neuroscience studies [44,45]. In case of object contact,
the finger wraps automatically around the object exert-
ing a uniform force: when a phalanx touches the object,
thanks to the idle pulleys, the cable can be further
pulled, flexing the more distal phalanx (cf. Figure 2).
The main drawback of this mechanism is that each fin-
ger joint can not be actively and independently
controlled.
The hand contains position (encoders integrated in

the motors) and tendon tension sensors (able to mea-
sure the grasp force [46]), that can be read externally by
means of a standard RS232 bus and an implemented
communication protocol. The control is embedded in

Figure 1 Power, precision and lateral grasp. The CyberHand performing the three main grasps as defined by [43]. A) Power grasp: all palmar
surfaces of the fingers (as well as the palm) are involved and the thumb is in opposition to other fingers. B) Precision grasp: thumb, index and
middle fingertips are involved with the thumb in opposition space. C) Lateral grasps: the thumb opposes to the volar aspect of the index.

Figure 2 CyberHand fingers structure. Conceptual scheme of the underactuated mechanism of the CyberHand finger based on Hirose’s soft
finger [42].
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the hand in a 8-bit microcontroller-based hierarchical
architecture (Microchip Inc. microcontrollers) and trig-
gered by external commands from the communication
bus. According to the serial communication protocol,
the set-point positions for each finger are encoded using
8 bits, i.e. from 0 (finger completely extended: all joint
angles = 0 deg) to 255 (finger completely flexed: all joint
angles = 90 deg).

PCA-based control algorithm
The PCA algorithm [47] allows to convert an original
data set into a new space where dimensions are uncor-
related; it can be briefly summarized as follows. If we
suppose to have a (N × M) dataset matrix, where N is
the dimension of the original amount of data and M is
the dimension of each datum, its covariance matrix is a
(M × M) matrix whose eigenvectors are the PCs, and
their respective eigenvalues are the PCs weights (i.e. the
amount of explained variance). The PCs can then be
ordered in descending order according to their weights
and used to constitute the columns of the PCs matrix
(M × M). Therefore, by multiplying the original dataset
by this matrix, a new (N × M) dataset is obtained,
where rows/data are uncorrelated. Moreover, if the last
PCs have a very low weight, they can be neglected (i.e.
set to zero), obtaining a new dataset with reduced
dimensionality, if compared to the original one.
Consequently, the PCA approach can be used for

dimensionality reduction, just inverting its algorithm
(explained above) and neglecting the less significant
(low weight) PCs [41]. For example, when working with
a M-DoFs hand and a specific postures data set, we
obtain M PCs constituting the M columns of the PCs
matrix, once ordered according to their weight. If we
suppose that only the two first PCs are significant,
2 inputs (In1 and In2), which represent the two principal
hand DoFs in the new space, can be coupled to the first
two PCs and remapped to the hand original M DoFs
using the PCs matrix obtained from experimental data:
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here the output vector consists of the desired M-DoFs
of the hand. The remaining components of the input
vector, which are to be multiplied by the last PCs, are
set to zero, in order to neglect the less significant PCs
contribution.
This strategy could be exploited with a myoelectric

hand prosthesis, where only few signals are available for

control, but dexterity is desirable. By employing this
“inverse PCA” algorithm, all DoFs of a dexterous robotic
hand may be controlled in synergy by means of a simple
two-signals control interface, e.g. two independent EMG
channels tapped from the residual limb.
In a previous work, this control method had been

firstly tested onto a virtual-reality model of a 15 DoFs
hand [40]. Simulations of hand movement were per-
formed employing a real human hand PCs matrix avail-
able from Santello et al. [26], and the 2-DoFs mouse
signal was assumed as the input control signal. The con-
troller received the x y real time coordinates of the
mouse pointer over the monitor screen, properly cali-
brated into In1 and In2 range values (found in [26]), and
finally, multiplying by Santello’s PCs matrix, the virtual
hand instantaneous movements were calculated and vir-
tually performed.
Wishing to employ the same control principle to drive

a real robotic hand, like the CyberHand, all the
described experimental procedure must be reproduced,
entirely working with the artificial hand. To this aim, in
order to control the six actuators of the CyberHand, a
specific PCs matrix has been built just using the Cyber-
Hand prototype. The 29 objects listed in Table 1, and
reflecting in their different shape and distribution the
percentage of different grasps used in ADLs [48], were
firmly grasped by the CyberHand and the 6 position
values read from motor encoders have been used to
constitute each record of the data-set (a (50 × 6) matrix,
where 50 is the number of performed trials and M = 6
is the dimension of data).
The obtained new matrix allows to calculate the

6 motor set-point positions (6 elements output vector in
eq. (1)). Only the first two PCs have been considered
significant (accounting for more than 90% of the data
variance) and used subsequently to drive the hand (the
remaining four PCs have been multiplied by a zero
input).

Two-inputs control interface
As a proof of concept, two independent signals like the
mouse vertical and horizontal position signals have been
used to modulate the two first PCs with the aim of
demonstrating that they can be employed to achieve sig-
nificant hand dexterity.
In order to experimentally test the potentiality of this

control approach onto a real multi-DoF underactuated
hand, a C written application for bi-directionally interfa-
cing with the hand was implemented using LabWindows
CVI (National Instruments Corp., Austin, TX, USA).
The software, running on a standard PC and graphically
presented in Figure 3, generates In1 and In2 by acquiring
(sampling frequency 100 Hz) the mouse cursor coordi-
nates. It calculates the 6 set-point position values for
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the hand fingers by multiplying the two inputs for the
CyberHand PCs matrix and sends them to the hand by
means of the RS232 communication bus. Such program
is also used to sample and acquire tendon tension and
position sensors data.

Experimental protocol
To allow a more immediate interpretation, results in
this paper are presented with reference to the xy moni-
tor screen plane; this is equivalent to the In1 and In2
plane, since the two spaces are proportionally bounded.
Figure 4 shows a discrete xy grid and how the hand
behaves when varying In1 and In2, i.e. moving the
mouse pointer over different areas of the screen using
the computed PCs matrix. The map highlights that

some areas (i.e. some PCs combinations) are more func-
tional for certain grasp types rather than others. Gener-
ally, an excursion along the x axis (which is coupled
with PC1) principally influences fingers flexion/exten-
sion, whereas variations along the y axis (coupled with
PC2) mostly influence thumb abduction and slightly
make the other fingers flex/extend.
A neutral position area has been established in the left

bottom corner of the map. With the mouse cursor in
this area (a 15 × 15 pixels square area) the hand opens
shaping in a relaxed posture. This option is fundamental
for the application under investigation, as a grasp
usually starts from the hand being opened. The farthest
end area chosen is easily reached with a wide movement
of the mouse (or a strong contraction of the residual

Table 1 Grasped objects, used to constitute the CyberHand postures data-set

Object Shape Size [mm] Grasp Type

Paper roll Cylindrical Diam = 80; height = 100 Power grasp

Plastic cup Cylindrical Diam = 65; height = 90 Power grasp

Small plastic cylinder Cylindrical Diam = 36; height = 125 Power grasp

Medium plastic cylinder Cylindrical Diam = 41; height = 120 Power grasp

Big plastic cylinder Cylindrical Diam = 71; height = 120 Power grasp

Sponge Cylindrical Diam = 100; height = 36 Power grasp

Glue bottle Cylindrical Diam = 45; height = 130 Power grasp

Spray Cylindrical Diam = 50; height = 135 Power grasp

Twine roll 1 Cylindrical Diam = 106; height = 21 Power grasp

Twine roll 2 Cylindrical Diam = 40; height = 75 Power grasp

Tennis ball Spherical Diam = 65 Power & precision grasp

Plastic sphere 1 Spherical Diam = 40 Precision grasp

Plastic sphere 2 Spherical Diam = 49 Precision grasp

Plastic sphere 3 Spherical Diam = 59 Precision grasp

Fabric ball Spherical Diam = 70 Precision grasp

2 liters bottle Cylindrical Diam = 90 Power grasp

500 ml bottle Cylindrical Diam = 65 Power grasp

Boxes seal tape Empty cylinder Diam = 90; height = 50 Power & precision grasp

Felt tip pen Cylindrical Diam = 16; height = 130 Precision grasp

Plastic cube Cube L = 50 Precision grasp

CD Circular Diam = 120 Precision grasp

Electric adapter plug Cylindrical Diam = 41 Precision grasp

CDs pack Cylindrical Diam = 125; height = 70 Power grasp

Styrofoam sphere Spherical Diam = 90 Power & precision grasp

Cigarette pack Parallelepiped 20 × 55 × 85 Power & lateral grasp

Card box 1 Parallelepiped 103 × 58 × 45 Power grasp

Card box 2 Parallelepiped 103 × 45 × 40 Power grasp

Paperclips pack Parallelepiped 55 × 39 × 11 Lateral grasp

Business card Rectangular Height = 1 Lateral grasp (× 10)

Objects used to collect the data-set from the CyberHand for calculating the PCs matrix. Lateral grasps have been repeated 10 times (in order to obtain the
correct percentages values for power, precision and lateral grasps based on [48]), and some objects have been grasped using different hand configurations (i.e.
grasping the seal tape with the fingertips rather than leaning it against the hand palm, or holding the sphere with the hand fingertips rather than performing
a spherical grasp). The open-hand position has been included into the data-set (4 times).
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Figure 3 System block diagram. Mouse position values are acquired in real time and converted in six 8-bits position control commands for
the hand. Artificial sensors in the hand are available for grasp and prehensile capabilities analysis.

Figure 4 CyberHand postural behaviour. A grid representing hand postures distribution over the xy screen reference system (monitor screen
size is 1280 × 800 pixels, w × h). Circular yellow markers indicate those mouse pointer positions used to drive the hand until the corresponding
posture was reached. When the mouse is positioned in correspondence of the red marker, open hand configuration is obtained. The solid,
dotted and dashed-dotted lines delimit those areas in which respectively power, precision and lateral grasps can be achieved.
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muscles, considering a myoelectric controller) and does
not require a precise positioning (as e.g. with the neutral
area in the centre of the screen). Besides, the left bottom
corner corresponds to an almost opened hand posture
also when using the PCs matrix by itself.
The investigation on prehensile capabilities has been

focused on the three forms indicated by Iberall & Arbib
[43]. Three control objects have been used: a 500 ml
bottle as a prototypical power grasp (dimensions in
Table 1), a small sphere for the precision grasp, (cf.
Plastic sphere 1 in Table 1) and a credit card for the
side opposition/lateral grasp. The experiment consisted
in using the mouse for stably grasping the object, start-
ing with the hand in the relaxed-like position. The
mouse was moved along linear trajectories and once the
grasp was achieved, stable sensor values were collected
and the x, y pointer coordinates were noted down.
Stable grasp points were characterized in terms of:

- number of fingers actually involved in holding the
object;
- tendon tension summation, i.e. grasping force
[22,46].

This procedure was manually executed and repeated
(for each of the 3 objects/prehensile forms) in order to
qualitatively localize grasp areas and for these
grasp areas quantitatively represent the grasping force.
Figure 5 shows the three maps obtained on the xy
reference system, with color intensity based on the
tendon tension summation.
The maps in Figure 5 help to approximately evaluate

the direction along which grasp strength increases for
each grasp type, and how grip force changes when
moving along different directions in the neighborhood
of stable grasp points. Due to the mechanical config-
uration of the hand, for what concerns power and lat-
eral postures (partially form-closure grasps [49]), an
increase of the tendon tensions summation actually
represents an increase in resistance to slipping [22,50].
This is not true for precision grasps, for which high
tendon tensions summation values (high strength
grasp) could lead to roll-back phenomenon with conse-
quent loss of stability [51].
The possibility of exploiting the PCA based algorithm

for dexterous prosthesis grasp control has been finally
investigated as follows. The hand was used to grasp the
three objects and was driven by pre-computed rectilinear
trajectories on the xy monitor screen plane, simulating
user-generated input signals. Linear trajectories are desir-
able from an energy consumption point of view, as they
represent the shortest path between two points. Three
trajectories, one representative for each grasp, were gen-
erated using a Matlab (The MathWorks, Natick, MA,

USA) script, joining the open hand position - whose
coordinates are (0, 799) - to target positions (or consecu-
tive target positions for the precision grasp, cf. bold lines
in Figure 6a). In each case the trajectory crossed areas
with increasing tendon tension summation (as identified
by the graphs in Figure 5), while reaching the final target
point and grasping the prototypical object. In practice,
starting from the relaxed posture, the hand grasped the
objects (that were manually handled by a human
operator).
In order to simulate EMG user-generated control tra-

jectories, i.e. a more realistic condition, trials have been
conducted also using noisy input signals. White noise
with different amplitudes (a maximum of 50, 70 and
100 pixels added to both x and y position signals) was
generated with Matlab and added to the linear trajec-
tories described above (see for example Figure 6b).
Further trials have been performed imagining “worst-

case” user-generated trajectories, i.e. moving along “right
angle” trajectories (i.e. horizontal and vertical line seg-
ments), joining the initial rest position with the identi-
fied stable points (Figure 6a, thin lines).
All trajectories have been stored in text files and used

by the C program to continuously drive the robotic
hand (new posture sent every 100 ms). Each time a tar-
get point was reached (circular markers in Figure 6a),
the program was paused for about 2 seconds (thus stop-
ping new positions sending).
The pre-calculated trajectories have been used to

grasp the three prototypical objects held out by an
operator to the robotic hand. During the experiments
the hand was bind to its support platform and neither a
prosthetic arm nor any wrist DoFs were implied. Thus,
there was no way to perform any reaching movement
towards the object, which was held out by a human
operator in the artificial hand palm/fingers proximity,
where we expected the CyberHand to be able to grasp
it. The object was kept still and wasn’t released by the
operator until the robotic fingers closed and the Cyber-
Hand sustained it by itself. Twenty one trials for each
grasp type have been done, for a total amount of
63 grasp trials. Position and tendon tension signals were
acquired during the grasps and stored for data analysis.
The objective of this experimental setup was to under-

stand if the “inverse-PCA” algorithm, using the specifi-
cally-built PCs matrix, practically works when coupled
with an underactuated anthropomorphic hand. To this
aim, xy trajectories both with different levels of noise -
simulating the user-generated input signals - and ideally
linear have been used to drive the hand. Visible factors
like the tendon tensions summation trend during the
grasp have been considered for qualitatively assessing
the grasp and evaluate the hand behaviour in the con-
sidered conditions. The final objective of this work,
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Figure 5 Grasp type areas. Color-intensity maps representing the hand total tendons tension (i.e. grasp strength) distribution with respect to
the monitor screen reference system, while performing three different grasps: a) power, b) precision and c) lateral grasp. Each map has been
built recording tension values and the corresponding mouse xy position whenever a stable grasp has been achieved by the mouse-driven hand.
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indeed, is to develop a prosthesis easily controllable by
an amputee and not a robotic manipulator for which
many restricted precision requirements exist.

Results
Three objects, whose shapes represent most daily used
grasp types, have been grasped 21 times each using pre-
calculated trajectories with different levels of added
noise, for a total amount of 63 trials. The experiments
showed that the hand, using such control strategy, was
able to achieve stable grasps thanks to the PCs matrix
specifically calculated for the CyberHand. An analysis
on how tensions vary in the three considered prototypi-
cal cases, using the automatic ideal, noisy and “right-
angle” trajectories, has been performed and is here
presented. Graphs showing tensions variations and pic-
tures illustrating the hand behaviour have been reported
only for the more interesting precision grasp case.
Nevertheless, from here forth results obtained also while
performing power and lateral grasps in the considered
different conditions are described and commented.
Generally speaking, as expected the recorded tension

reaches a plateau every time the trajectory is kept con-
stant in time (that is when a stable point has been
reached), but with some delay with respect to the motor
pattern generation, and shows a slight overshoot before
settling. This last behaviour (also noticeable in Figure 7)
is caused by an high proportional constant (KP) in the
PID algorithm, purposely set in the embedded controller
in order to highlight such events.
For what concerns power grasp, the interpretation of

the 5 fingers tensions summation curve is almost
immediate: tension globally rises while the hand closes,
until reaching a stable posture (constant tension
pleateau).

The lateral grasp instead involves most of all thumb,
which opposes to the volar aspect of the index: when
the grasp force is sufficient, the object can be held
between the thumb and index fingers. Thumb ab/adduc-
tion plays a role in influencing the thumb tension trend
in time, causing tension oscillations; while the thumb is
pressing against the object, an ab/adduction movement
establishes a different thumb posture, with a consequent
variation of its tendon tension.
In tripod/precision grasps, only thumb index and mid-

dle fingers are involved and especially the first one
exerts the most of grip force, opposing to the other two
fingers.
Figure 7 shows characteristic curves obtained during a

typical precision grasp using predefined trajectories, but
the salient features they highlight (here discussed) may
be generalized for all the trials performed and for differ-
ent trajectories in the same grasp-area (cf. Figure 5).
Tensions summation (thick black line) steadily raises
once the sphere comes in contact with the fingers (first
arrow); then it is followed by a plateau, when a stable
grasp of the object is achieved and maintained for
almost 2 seconds. Since the object is spherical and has
a smooth surface, as the motors close much more the
fingers get tighter: instead of reaching a second stable
point (plateau), the contact is lost, the sphere slips away
due to roll-back phenomenon [51] and tension sudden
decreases (second arrow). A video sequence showing
the slippage occurrence, caused by roll-back phenom-
enon, is presented in Figure 8. In the trial here
described, the slip point occurs at a relatively high ten-
don tension summation value (about 60 N): this pro-
vides evidence for the existence of a significant stability
area also for the more difficultly achievable precision
grasps.

Figure 6 Pre-calculated grasping trajectories. Pre-calculated xy trajectories used to drive the hand in the 3 different grasping prehensile
forms. a) The three ideal linear trajectories (bold lines) and “right-angle” trajectories (thin lines) obtained moving along horizontal and vertical
line segments. b) Ideal (bold dashed line), noisy (70 pixels maximum noise amplitude, solid line) and “right-angle” trajectories (thin dashed line)
in the lateral grasp case.
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The described behaviours are obtained when the hand
is controlled by ideal linear trajectories in the monitor
screen reference system.
These same observations can be made when adding

noise to the trajectories, with different noise gains (a
displacement of 50 or 70 or 100 pixels at most).
Obviously, the hand ability to firmly grasp the objects
worsens while increasing noise amplitude. In all cases, a
stable grasp is in the end achieved, even if with some
delay and many more tension oscillations with respect
to the ideal case (see for example the coloured curves in
Figure 7, concerning precision grasp).

Stable grasps are obtained with some more difficulty
when using “right-angle” trajectories to drive the Cyber-
Hand motion. The hand behaviour remains almost
unchanged only during power grasps. On the other
hand, following such a path doesn’t allow to correctly
perform lateral grasps any more. Firm precision grasps
are obtained at lower tension values with respect to the
first trials (Figure 7, dotted curve, first plateau). For this
reason, when the hand is made to close more and more,
the spherical object slips away almost immediately after
the stable grasp point has been reached, justifying the
absence of the tension peak at ~8 seconds on the dotted

Figure 8 Precision grasp video sequence. Frame sequence showing the hand while performing a precision grasp with a spherical object. The
object is firstly held by the hand, but as fingers close more and more the sphere slips away and contact is lost due to roll-back phenomenon.

Figure 7 Tendons tension trend during precision grasp. Precision grasp using the CyberHand PCs matrix. Thumb, index and middle tendon
tensions summation trend is represented while following ideal and noisy trajectories. The thick black line refers to the ideal piecewise linear
trajectory in Figure 6a (bold solid line); thinner coloured curves refer to noisy trajectories (noise maximum amplitude is 50 pixels for the red
curve, 70 pixels for the green curve and 100 pixels for the cyan one). The dotted curve refers instead to the “right-angle” trajectory, and has
been rescaled in time to fit inside the graph. Arrows highlight the instants when contact with the object is achieved and then lost. Tensions are
calibrated in Newton using sensors characteristics.
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curve in Figure 7 (which is instead well visible on the
solid curves in the same figure).

Discussion
In carrying out the trials, the objective was to assess
whether the PCA-based control algorithm is successful
in driving an underactuated hand, like the CyberHand,
during the most typical grasps in ADLs [48], and this
issue is here discussed. Moreover, we aimed at under-
standing if the purposely created CyberHand PCs map
works well.
The PCs matrix, resulting from postural data collected

directly from the CyberHand, allows to obtain stable
grasps. Despite its reduced dexterity if compared to
the human hand, the robotic limb moves almost like the
simulated virtual hand previously presented by the
authors in [40]. Postures modulate in a gradual manner
in the two-dimensional PCs space (Figure 4); i.e., fingers
move without colliding, while switching between grasp
areas. This map is not subject-dependent and comple-
tely fits the CyberHand, reflecting its mechanism
dynamic and adaptive features. Driving the artificial
hand with its own PCs map makes it able to hold
objects firmly; moreover, the precision grasps area is
rather wide, easily reachable and almost overlapped to
the power grasps region (Figure 4 and 5). This latter
feature best reflects the adaptive mechanism behaviour:
the hand moulds itself in order to perform a cylindrical
grasp and conforms to the object it is grasping; with the
same PCs combination, if the object is small and only
the thumb, index, and middle fingertips are involved, a
precision grasp is achieved; if instead all fingers wrap
around the object, a power grasp is obtained. In both
cases, the CyberHand PCs matrix allows a well-
performed and stable enclosure of the object inside the
hand fingers and palm.
In order to perform a first approximation assessment

of the PCA-based algorithm feasibility when dealing
with the control of a real robotic hand, Santello’s PCs
matrix [26] was first of all used to drive the CyberHand.
The artificial limb (even if not able to perform any ab/
adduction movements) resulted to be almost correctly
drivable also with the map resulting from a human hand
dataset. A significant difference has been observed in the
hand behaviour when driven with Santello’s and our
map. The performed trials revealed that the former
facilitates lateral grasp-like hand configurations but
makes the hand not capable to perfectly wrap around
objects, being the thumb not completely adduced.
Moreover, the hand is not able to bring fingertips close
enough to steadily grip small objects in precision grasps.
Drawbacks are due to the application of a human hand
based mapping onto an underactuated system, which
mechanically only approximates the natural hand (joints

rotation axes placement, phalanxes length, etc.) but is
actually unable to perform all its complex manipulative
movements.
When using the new CyberHand PCs map, the first

two PCs better represent the most common grasping
positions, accounting for more than 90% of data var-
iance. Grips are more stable and characterized by well
defined hand joints configurations, probably only to the
detriment of a less gradual overall hand motion which
can be observed while varying the input signal into the
In1, In2 space (cf. eq. (1)). When using the CyberHand
map to perform the three considered grasps following
the ideal linear trajectories, tension data show only very
small fluctuations (e.g. Figure 7, thick black line). Each
time all the necessary fingers are involved in grasping
the object; even in precision grasps, both thumb, index
and middle fingers correctly play a significant role.
Further trials have demonstrated the feasibility of our

approach also in the presence of noisy inputs, used to
simulate a more real working condition (i.e. myoelectric
control). Even if adding random noise varying into the
range between 0 and 100 pixels (which is almost high, if
we consider the screen dimensions) to the original
x and y position signals, the hand is able to perform the
three prototypical grasps considered. Things change
when moving along cathets in “right-angle” trajectories;
following such a path, the hand movements appear to
much less gradually vary, especially when an abrupt
change from the horizontal to the vertical direction
occurs. Precision grasps are far less firm and much
more difficultly achievable; moreover, the hand is no
more able to correctly perform lateral grasps.
These results show that not only the hand target point

in the two inputs space influences grasp feasibility and
stability, but also the trajectory followed in order to
reach it and obviously the presence/absence of signifi-
cant noise over the inputs. Linear diagonal trajectories
are to be preferred to “right-angle” ones since they
allow to operate a more balanced mixture between the
contributions of the first input signal (In1, related to fin-
gers flexion/extension) and the second input (In2,
coupled to thumb ab/adduction movements).

Conclusions
In this paper a control algorithm based on PCA is pro-
posed for driving an underactuated prosthetic hand with
16 DoFs and 6 DoMs. The objective of this work has
been to verify such a control strategy feasibility in differ-
ent conditions, that is when driving the hand with ideal,
noisy and “worst-case” user-dependant control inputs.
Similarly to what Santello did in his experiments on

human hand postures [26], a new PCs matrix was
obtained directly collecting a data-set of the CyberHand
fingers positions from its motor encoders. In this case,
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the resulting two first PCs accounted for more than 90%
of the variance of motion. Thus, the PCs matrix was
used to drive the hand by means of a simple 2 channel
(DoFs) input signal, by just “inverting” the PCA algo-
rithm and coupling these first two PCs with the mouse
cursor x and y positions. Three objects based on Iber-
all’s and Arbib’s grasp taxonomy [43] were then chosen
to perform several grasping trials (power, precision and
lateral grasps) and to verify whether this method could
be applied to a real anthropomorphic, underactuated
robotic hand.
The hand postural behaviour (Figure 4) with respect

to the two inputs variation was evaluated during several
grasping trials. This analysis allowed to identify where
the two input signals result into a power, a precision or
a lateral grasp posture, as well as to experimentally
investigate positions to grasp objects in a more stable
way (i.e. stability in lateral and power grasps) and
in which directions fingers tendon tension increases
(Figure 5).
Results obtained driving the CyberHand with ideal lin-

ear xy trajectories show that it is actually able to reach,
correctly grasp (in terms of involved fingers, stability
and hand posture while shaping around the objects) and
hold objects tightly if driven with this PCA-based algo-
rithm. The feasibility of this approach has been demon-
strated evaluating the hand performances also in a more
real condition, that is in the presence of noisy input
control signals. Trajectories in the inputs space (i.e. cou-
plings of the two input signals), where abrupt changes
in the predominance of one of the input signals over
the other one do not occur, should preferably be fol-
lowed. Otherwise, grasps are achieved with much more
difficulty (sometimes grasps could even fail) and the
hand performances significantly worsen.
Perspective work would firstly imply the acquisition of

real efferent voluntary EMG signals picked up by surface
sensors, then processed in order to extract significant
intention-based features to be used as input signals. By
this way, it would be possible to create an advanced,
intuitive and biomimetic interface modulating PCs with
EMG, thus setting up a complete 2-channel controller
for a bio-inspired hand prosthesis, such as the
CyberHand.
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