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Abstract

Within systemic lupus erythematosus (SLE) patients can be divided into groups with and without central nervous system
involvement, the latter being subcategorized as neuropsychiatric systemic lupus erythematosus (NPSLE). While a number of
research groups have investigated NPSLE, there remains a lack of consistent application of this diagnostic criteria within
neuroimaging studies. Previous neuroimaging research suggests that SLE patients have reduced subcortical and regional
gray matter volumes when compared to controls, and that these group differences may be driven by SLE patients with
neuropsychiatric symptoms. The current study sought to compare measures of cortical thickness and subcortical structure
volume between NPSLE, SLE, and healthy controls. We hypothesized that patients with NPSLE (N = 21) would have thinner
cortex and reduced subcortical gray matter volumes when compared to SLE (N = 16) and control subjects (N = 21). All
subjects underwent MRI examinations on a 1.5 Tesla Siemens Sonata scanner. Anatomical reconstruction and segmentation
were performed using the FreeSurfer image analysis suite. Cortical and subcortical volumes were extracted from FreeSurfer
and analyzed for group differences, controlling for age. The NPSLE group exhibited decreased cortical thickness in clusters
of the left frontal and parietal lobes as well as in the right parietal and occipital lobes compared to control subjects.
Compared to the SLE group, the NPSLE group exhibited comparable thinning in clusters of the frontal and temporal lobes.
Controlling for age, we found that between group effects for subcortical gray matter structures were significant for the
thalamus (F = 3.06, p = .04), caudate nucleus (F = 3.19, p = .03), and putamen (F = 4.82, p = .005). These results clarify previous
imaging work identifying cortical atrophy in a mixed SLE and NPSLE group, and suggest that neuroanatomical abnormalities
are specific to SLE patients diagnosed with neuropsychiatric symptoms. Future work should help elucidate the underlying
mechanisms underlying the emerging neurobiological profile seen in NPSLE, as well as clarify the apparent lack of overlap
between cortical thinning and functional activation results and other findings pointing to increased functional activation
during cognitive tasks.
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Introduction

Neuropsychiatric systemic lupus erythematosus (NPSLE) is highly

prevalent in and increases significantly the morbidity and mortality

of patients with SLE [1,2,3,4]. In 1999, the American College of

Rheumatology developed 19 discrete neuropsychiatric syndromes

that comprised NPSLE, spanning both central (e.g., cerebrovascular

disease) and peripheral (e.g., neuropathy) nervous systems [5]. This

nomenclature has since been validated in several subsequent studies

of prospective patient cohorts [6,7,8,9,10]. However, no ‘‘gold

standard’’ currently exists by which to discriminate NPSLE with

high sensitivity and specificity despite a combination of behavioral

(e.g., cognitive dysfunction), radiological (e.g., ischemic changes), and

laboratory findings (e.g., cytokine production) [11].

A number of research groups have undertaken imaging of

NPSLE, with hope of providing much needed specificity of central

nervous system involvement within SLE. Overt lesions and

metabolic abnormalities observed with Magnetic Resonance

Imaging may occur in 25 to 75% of NPSLE patients and are

positively associated with disease severity, disease activity, age, and

neurologic events [12,13,14,15,16,17,18,19,20,21,22,23]. Lesions

identified on MRI are attributed to in situ thrombosis, vasculitis,

edema, hemorrhage, atherosclerosis, or atheroembolism [24]. In

the first prospective study to assess MRI and postmortem tissue in

NPSLE, Sibbitt et al. studied 14 subjects characterized by the

ACR nomenclature and case definitions for NPSLE [24]. The

findings of this study supported previous prevalence studies of

brain abnormalities in NPSLE, showing small punctate focal

lesions in white matter being the most common MRI finding

(100%), followed by cortical atrophy (64%), ventricular dilation

(57%), cerebral edema (50%), diffuse white matter abnormalities

(43%), focal atrophy (36%), cerebral infarction (29%), acute
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leukoencephalopathy (25%), and intracranial hemorrhage (21%)

[13,14,15,16,21].

Cerebral atrophy has been demonstrated repeatedly in SLE

using both Computed Tomography (CT) and Magnetic Reso-

nance Imaging (MRI). However, prevalence rates vary widely

due to different imaging modalities, different patient selection

criteria, and the prevalence of qualitative (as opposed to

quantitative) assessments [23,25,26,27,28,29,30,31,32,33,34]. To

date, only one study has attempted to use automated analysis

methods to assess cortical atrophy in SLE [35]. This group

studied eighty-nine patients diagnosed with SLE and used Voxel-

Based Morphometry (VBM) to assess gray and white matter

volume differences compared to forty-four healthy controls. They

specifically excluded two subjects with history of stroke. Patients

with active central nervous system involvement (48%) were

compared to those without such involvement using the ACR

guidelines [5]. Results indicated reduced gray matter volumes in

SLE patients compared to controls in frontal, occipital, and

temporal lobes as well as in limbic areas; patients with CNS

involvement (i.e., NPSLE) were driving this relationship, as SLE

patients without CNS involvement were not significantly different

from controls [35].

Cortical atrophy is apparent in SLE on standard CT and MRI

images, and volume differences have been demonstrated in

widely distributed brain regions using automated segmentation

techniques [35]. We sought to use a complementary, semi-

automated, segmentation technique that accurately measures

cortical thickness and specific subcortical structure volume

[36,37] as opposed to gray matter volume [38,39,40]. We assess

group cortical thickness and subcortical gray matter volume

differences between NPSLE, SLE, and age-and-gender matched

healthy volunteers. As the previous VBM study did not control

for age [35], we also aim to control for any contribution of age

effects on cortical thickness and subcortical gray matter

reductions in this cohort. We hypothesized that, after controlling

for age, patients diagnosed with NPSLE would have thinner

cortex and reduced subcortical gray matter volumes than patients

without NPSLE or control subjects.

Results

Demographic data
NPSLE, SLE, and Control subjects did not differ significantly in

terms of age (F = 1.31, p = 2.78; NPSLE = 39.2+/212.5;

SLE = 37.3+/212.6; controls = 33.2+/211.6), gender (%, %,

and % females, respectively) and premorbid intellectual function-

ing (F = .40, p = .67; NPSLE = 44.9+/27.1; SLE = 46.0+/28.0;

controls = 47.0+/27.09).

Clinical, laboratory and treatment features
Six NPSLE patients had past stroke (two had current stroke);

twelve patients had past TIA (three had current TIA); no patients

had past or current acute psychosis; four patients had past seizure

disorder (four had current seizure disorder); five patients had past

acute confusional state (one patient had current acute confusional

state); five patients had past moderate or severe cognitive

dysfunction (one patient had current moderate or severe cognitive

dysfunction). Overall, twenty-one patients demonstrated either

acute or past (or both acute and past) symptoms of NPSLE. Mean

SLEDAI score at the time of MRI scan was 13.9 (range 3–43;

SD = 11.2) for NPSLE and 9.1 (range 1–19; SD = 5.8) for SLE. At

the dates of MRI, 42 % of patients were on steroid use. Mean

SLICC/ACR DI scores were 4.4 (range 0–9; SD = 2.7) for NPSLE

and 2.1 (range 0–4; SD = 1.2) for SLE.

Cortical Thickness Differences
Because controls were somewhat younger than either patient

group, and all groups had a wide age range (18–60), we first

examined the effects of age on cortical thickness across the entire

sample. We found that age had a significant effect on cortical

thickness across the group, with decreasing thickness associated

with increasing age in numerous brain regions (p,.05 corrected

for multiple comparisons using FDR)(Figure 1). There were no

brain regions in which increased age was associated with increased

cortical thickness. Interestingly, NPSLE, SLE, and control subjects

had different slopes and intercepts in various regions where age

effects were observed, suggesting an interaction between disease

processes and age (Figure 2).

We next assessed cortical thickness differences between NPSLE,

SLE, and control groups, controlling for age. We first assessed

differences between NPSLE and controls, and found numerous

regions in which NPSLE patients had thinner cortices compared

to controls (p,.01 uncorrected). Regions which survived FDR

statistical correction (light blue) (p,.05), included the postcentral,

supramarginal, rostralmiddle frontal, and precuneus gyri in the left

hemisphere, and the inferior parietal and postcentral gyri in the

right hemisphere(Figure 3).

When SLE patients were compared to control subjects, there

were small scattered clusters in which patients had increased or

decreased cortical thickness. None survived FDR correction

(Figure 4).

We next assessed differences between NPSLE and SLE patients,

and found numerous regions in which NPSLE patients had

thinner cortices compared to SLE patients (p,.01 uncorrected).

Regions which survived FDR statistical correction (light blue)

(p,.05), included the rostralmiddle frontal, superior frontal,

superior temporal, inferior temporal, and lateral occipital gyri in

the right hemisphere (Figure 5). No regions survived FDR

correction in the left hemisphere.

Finally, we assessed subcortical gray matter differences between

groups, focusing on the hippocampus, amygdala, caudate nucleus,

putamen, and thalamus. Controlling for age, we found that

between group effects were significant for the thalamus (F = 3.06,

p = .04), caudate nucleus (F = 3.19, p = .03), and putamen

(F = 4.82, p = .005). Post hoc analyses showed that NPSLE subjects

had lower volumes compared to controls within the thalamus

(t = 2.53, p = .016) and putamen (t = 2.05, p = .05). No regions

were significantly different between SLE and control subjects in

post hoc analyses.

Discussion

We found that young patients with NPSLE had lower cortical

thickness in several regions of the brain compared to both SLE

patients without past or current NPSLE and normal controls.

These results clarify previous imaging studies showing cortical

atrophy in SLE [23,24,25,26,27,28,30,31,32,33,34,41,42,43].

Indeed, the only study using automated segmentation techniques

noted that ‘‘no difference between SLE patients without CNS

involvement and healthy controls was observed’’ [35]. This

conforms well with our data showing significant gray matter

reductions in NPSLE, but not SLE, compared to control subjects.

However, our study suggests that cortical thickness on MRI

separates patients with NPSLE from those without NPSLE and

healthy controls.

The regions in which we observed significant reductions of gray

matter in NPSLE compared to control subjects were within the

postcentral, supramarginal, rostralmiddle frontal, and precuneus

gyri in the left hemisphere, and the inferior parietal and

Cortical Thickness in NPSLE
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postcentral gyri in the right hemisphere. Regions in which NPSLE

patients differed from SLE patients included the rostralmiddle

frontal, superior frontal, superior temporal, inferior temporal, and

lateral occipital gyri in the right hemisphere and there was no

overlap in regions where NPSLE differed from SLE or controls. In

comparing the regions in which NPSLE differed from controls,

there appears to be commonality with those identified by

Appenzeller et al., [34], particularly the left precuneus. The

precuneus has been implicated in visuo-spatial imagery, episodic

memory retrieval, perspective taking, and the experience of

‘‘agency’’ [44]. Moreover, the precuneus has rich cortical and

subcortical connections [45] with other regions found to have

reduced cortical thickness in NPSLE including the thalamus [46],

inferior parietal lobule (i.e., supramarginal gyrus), and postcentral

gyri.

Subcortically, we found significantly reduced gray matter

volume in the thalamus, caudate, and putamen in NPSLE. the

thalamus of which was also found to be reduced in volume in the

prior VBM study [35]. Other studies have shown thalamus

abnormalities with measures of fractional anisotropy [47] and

glucose metabolism [48] in patients diagnosed with NPSLE and

SLE respectively. We did not find significant hippocampal size

reductions in our sample of NPSLE and SLE patients, as has been

previously reported [49], although our sample size is significantly

smaller than that reporting differences. However, our data suggests

that NPSLE patients had smaller hippocampi than SLE patients,

who had smaller hippocampi than controls. Futures studies with

larger samples should elicit significant differences as demonstrated

previously.

One significant difference between our study and the previous

VBM study was that ours included NPSLE patients suffering from

past or current cerebrovascular accident. Other imaging studies in

SLE have included patients with stroke [18,27,30,32], and there is

significant overlap between patients with antiphospholipid syn-

drome, stroke, and epileptic seizures [50]. As the incidence of

stroke in SLE has been found to be increased by a factor of 2.29 in

a population cohort [51], exclusion of these subjects in

neuroimaging studies would appear to limit generalizability of a

particularly debilitating neurological consequence of disease status.

Strengths of the current study include: 1) the relatively large

patient cohort, 2) the relative youth (,/ = 60 years) of the patient

cohort compared to previous studies, 3) whole brain as compared

to ROI analyses, 4) ease, reproducibility, and automaticity of

FreeSurfer methodology, and 5) the lack of differences between

SLE patients without NPSLE and controls strengthen the

specificity of our findings. A limitation of the study is the lack of

repeated measures of the acute NPSLE patients as they progress

through the acute phase of their disease. This would help to

establish whether therapy or disease characteristics predominated

over time in determining cortical and subcortical gray matter

Figure 1. Group comparison of cortical thickness relationships to age for the entire group of NPSLE, SLE, and control subjects
(N = 58). Images show clusters of lower (blue clusters) cortical thickness values related to age. Clusters are displayed in the range of p#.01 to
p#.0001 (color scale shows 2log (10) p-value). Top left = left lateral hemisphere; Bottom left = left medial hemisphere; Top right = right lateral
hemisphere; Bottom right = right medial hemisphere. Light blue regions indicate regions where age and cortical thickness were significantly related
(p,.05) corrected for multiple comparisons (FDR).
doi:10.1371/journal.pone.0009302.g001
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Figure 2. Scatterplot showing individual cortical thickness values (in millimeters) obtained from the left rostrofrontal cortex for the
sample. Red squares = NPLSE patients; Blue circles = SLE patients (blue circles); Black diamonds = control subjects, stratified by age. All three
groups show decreasing trends for cortical thickness in all significant regions (light blue in Figure 1).
doi:10.1371/journal.pone.0009302.g002

Figure 3. Group comparison of cortical thickness differences between NPSLE patients (N = 21) and control subjects (N = 21). Images
show clusters of lower (blue clusters) cortical thickness values controlling for age. Clusters are displayed in the range of p#.01 to p#.0001 (color scale
shows 2log (10) p-value). Clusters which survived FDR correction for multiple correction (p#.05 are encircled). Top left = left lateral hemisphere;
Bottom left = left medial hemisphere; Top right = right lateral hemisphere; Bottom right = right medial hemisphere.
doi:10.1371/journal.pone.0009302.g003
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thickness reductions. However, these extremely ill patients are

difficult to study repetitively in the acute setting, and these data

would have likely increased the differences between acute NPSLE

as compared to SLE patients or healthy controls. Future studies

will determine if patients can be subcategorized into more

tractable groups amenable to sensitive neuroimaging studies.

These results suggest that great care is needed when selecting

NPSLE patients to participate in neuroimaging studies. Patients

with NPSLE appear to have different cortical and subcortical gray

matter thinning characteristics than those SLE patients without

acute or past NPSLE symptoms (e.g., seizure, transient ischemic

attack, acute confusion). It is important to include NPSLE patients

in studies (including those with stroke), as well as to determine the

brain mechanisms involved in order to better target therapeutic

approaches designed to reduce mortality and morbidity.

What functional significance might these volume reductions

have for NPSLE? Previous functional studies have demonstrated

reduced glucose metabolism [52], yet increased functional

activation on motor [53] and working memory tasks [54] in

NPSLE. Researchers have hypothesized ‘‘increased neural re-

cruitment’’ in patient cohorts in which equivalent behavioral

performance is observed, in the presence of disease, designed to

limit the functional impact of neuronal injury [55]. Other studies

in normal cohorts of children have found decreased cortical

thickness associated with increased functional activations [56,57].

Indeed, some of the regions in which increased ‘‘neural

recruitment’’ were observed during functional imaging studies

included the precuneus and putamen [53] and inferior parietal

and frontal polar regions [54]: similar regions in which our study

found decreased thickness in NPSLE subjects compared to

controls. While quite preliminary in nature, these findings add

to an emerging body of literature suggesting that brain structure

and function might not increase and decrease in tandem, but

might reflect a complex interplay of excitatory and inhibitory

networks designed to optimize functional capacity while consum-

ing minimal resources [58]. Future research in NPSLE presents a

particularly fruitful patient group by which various hypotheses’

regarding the complex interplay of brain structure and function at

various stages of disease might be undertaken.

Methods

Sample
This study was conducted according to the principles expressed

in the Declaration of Helsinki, and was approved by the

Institutional Review Board of the University of New Mexico. All

subjects provided written informed consent for the collection of

samples and subsequent analysis. The sample consisted of thirty-

seven SLE patients, recruited from the Rheumatology Clinics of

the University of New Mexico, ranging in age from 18 to 60 (35

females). All subjects were diagnosed with SLE based on the 1997

update to the 1982 American College of Rheumatology Revised

Figure 4. Group comparison of cortical thickness differences between SLE patients (N = 16) and control subjects (N = 21). Images
show clusters of higher (red clusters) and lower (blue clusters) cortical thickness values controlling for age. Clusters are displayed in the range of
p#.01 to p#.0001 (color scale shows 2log (10) p-value). No clusters survived FDR correction for multiple correction (p#.05). Top left = left lateral
hemisphere; Bottom left = left medial hemisphere; Top right = right lateral hemisphere; Bottom right = right medial hemisphere.
doi:10.1371/journal.pone.0009302.g004
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Criteria for Classification of Systemic Lupus Erythematosus [59].

Twenty-one of the SLE patients had major NPSLE defined as

current or past stroke or transient ischemic attack (TIA), current or

past confusional state, moderate or severe cognitive dysfunction,

current or past seizures, or current or past psychosis. Sixteen

patients had SLE, but no current or past NPSLE.

These 2 groups of patients were compared to twenty-one

healthy controls (18 females). Participants were screened for

conditions that would prohibit undergoing an MRI scan (e.g.,

metal implant, orthodontic braces, severe claustrophobia).

Clinical Measures
The Systemic Lupus Erythematosus Disease Activity Index

(SLEDAI) [60] and Systematic Lupus International Collaborating

Clinics/America College of Rheumatology Damage Index

(SLICC/ACR DI) [61] were administered by an experienced

rheumatologist (WLS) to each patient. Clinical diagnosis of NPSLE

was defined by presence of past or current: stroke, transient ischemic

accident, psychosis, seizure disorder, confusional state, and/or

moderate or severe cognitive dysfunction. No SLE patients had any

past or current evidence of any of these clinical diagnoses.

Behavioral Measure
The Wide Range Achievement Test – 3rd Revision (WRAT-3)

Reading subtest, was used as a measure of premorbid cognitive

functioning. This measure requires subjects to read single words

with irregular phonetic spelling (e.g., colonel), and has been found

to be resistant to the effects of cognitive decline due to neurological

or psychiatric disease [62].

Image Acquisition and Processing
MR examinations were performed on a 1.5T Siemens Sonata

scanner using an 8-channel phased array head coil. Structural

imaging was obtained using a T1 coronal gradient echo sequence

[TE = 4.76 ms; TR = 12 ms; Voxel Size = 16161.5 mm; acqui-

sition time = 7:15]. Subjects’ heads were stabilized with tape

across the forehead and padding around the sides. For all scans,

each T1 was reviewed for image quality. Cortical reconstruction

and volumetric segmentation were performed with the FreeSurfer

image analysis suite, which is documented and freely available for

download online (http://surfer.nmr.mgh.harvard.edu/). The

methodology for FreeSurfer is described in full in several papers

[36,37,63,64,65,66,67,68,69,70,71]. For this paper, we are focused

on the cortical thickness results and volumes of select subcortical

structures. Procedures for the measurement of cortical thickness

have been validated against histological analysis [72] and manual

measurements [73,74]. The results of the automatic segmentations

were reviewed and any errors were corrected.

Statistical Analysis
To investigate the correlation between cortical thickness

measurements between groups (NPSLE, SLE, controls) we

Figure 5. Group comparison of cortical thickness differences between SLE patients (N = 16) and NPSLE patients (N = 21). Images show
clusters of lower (blue clusters) cortical thickness values controlling for age. Clusters are displayed in the range of p#.01 to p#.0001 (color scale
shows 2log (10) p-value). Clusters which survived FDR correction for multiple correction (p#.05 are encircled). Top left = left lateral hemisphere;
Bottom left = left medial hemisphere; Top right = right lateral hemisphere; Bottom right = right medial hemisphere.
doi:10.1371/journal.pone.0009302.g005
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performed a surface-based group analysis using tools within

FreeSurfer. First, the subjects’ surface was smoothed using a full-

width/half-maximum Gaussian kernel of 10 mm. This smoothing

was done so that all subjects in this study could be displayed on a

common template (an average brain as described at http://surfer.

nmr.mgh.harvard.edu/) in order to perform and visualize a group

analysis. Freesurfer’s mri glmfit was used to fit a general linear

model at each vertex in the cortex to perform between group

averaging and statistical inference on the cortical surface. The

design matrix consisted of three discrete groups, (NPSLE, SLE,

control), with age as a covariate; the slope used was different

offset/intercept, different slope (DODS). The contrast matrix used

investigated the average differences between cortical thickness,

while regressing out the effect of age, which was a two-tailed t-test,

with (NPSLE,SLE,control). We used similar statistical methods

that were used in prior thickness studies [58,75,76,77] to ascertain

surface-based group differences using the general linear model

tools within FreeSurfer. In order to correct for multiple

comparisons, we used False Discovery Rate (FDR) at p,.05.

We also show significant clusters at p,.01 uncorrected for

hypothesis generation in this initial study. Finally, we assessed

volumetric differences between groups for subcortical structural

regions including the hippocampus, amygdala, thalamus, caudate

nucleus, and putamen. Volumes were extracted from FreeSurfer

and analyzed with SPSS 13.0 using an ANCOVA controlling for

age. Group differences were assessed between NPSLE, SLE, and

controls using two-tail tests. Post hoc t-tests were used to determine

specific differences between groups (e.g., NPSLE vs. controls; SLE

vs. controls; NPSLE vs. SLE).
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