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Abstract

Background

Transcription factor (TF) regulates the transcription of DNA to messenger RNA by binding to

upstream sequence motifs. Identifying the locations of known motifs in whole genomes is

computationally intensive.

Methodology/Principal findings

This study presents a computational tool, named “Grit”, for screening TF-binding sites

(TFBS) by coordinating transcription factors to their promoter sequences in orthologous

genes. This tool employs a newly developed mixed Student’s t-test statistical method that

detects high-scoring binding sites utilizing conservation information among species. The

program performs sequence scanning at a rate of 3.2 Mbp/s on a quad-core Amazon server

and has been benchmarked by the well-established ChIP-Seq datasets, putting Grit

amongst the top-ranked TFBS predictors. It significantly outperforms the well-known tran-

scription factor motif scanning tools, Pscan (4.8%) and FIMO (17.8%), in analyzing well-doc-

umented ChIP-Atlas human genome Chip-Seq datasets.

Significance

Grit is a good alternative to current available motif scanning tools.

Author summary

Locating transcription factor-binding (TF-binding) site in the genome and identification

their function is fundamental in understanding various biological processes. Improve the

performance of the prediction tools is important because accurate TF-binding site predic-

tion can save cost and time for wet-lab experiments. Also, genome wide TF-binding site

prediction can provide new insights for transcriptome regulation in system biology per-

spective. This study developed a new TF-binding site prediction tool based on mixed
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Student’s t-test statistical method. The tool is amongst the top-ranked TF-binding site pre-

dictors, as such, it can help the researchers in TF-binding site identification and transcrip-

tional regulation mechanism interpretation of genes.

This is a PLOS Computational Biology Software paper.

1. Introduction

A DNA sequence motif is a short conserved pattern that can be coordinated by regulator pro-

teins, such as transcription factors (TFs). DNA sequence motifs represent functionally impor-

tant regions of the genome and are one of the basic units of molecular evolution that are

usually conserved among species [1]. Locating these motifs in the genome and understanding

their function is fundamental in building molecular models for biological processes such as

human diseases [2, 3]. Researchers often face the task of identification of putative binding sites

for TFs in whole genomes, termed “motif scanning” [4]. Over the past several decades, many

computational pipelines have been described that utilize position weight matrices (PWM) for

this task.

MAST searches DNA motifs against a database composed of short sequences and assigns a

score to each target sequence assuming that every motif occurs once [5]. MCAST uses a hidden

Markov model (HMM) to scan DNA sequences for regions comprising one or more of the

given motifs [6], whereas SWAN utilizes a log likelihood ratio (LLR) scoring system built by

training a two-state HMM on the background sequences [1]. FIMO computes a LLR score for

each position in a DNA sequence motif and converts this score to a q-value using dynamic

programming methods [7]. TRAP introduces a physical binding model to predict the relative

binding affinity of a transcription factor for a given sequence [8]. PWMScan scans sequence

motifs using Bowtie [9] or “matrix_scan”, which employs a conventional search algorithm

[10]. The Python-based program Motif scraper searches motifs specified as a text string using

IUPAC degenerate bases [11]. Several tools such as Toucan [12], OTFBS [13], and CREME

[14] count all matches in the target and control sequences and apply binomial statistics for

over-representation. Other tools such as Clover [15], PAP [16], oPOSSUM [17], Pscan [18],

and TFM_Explorer [19] scan sequence sets from co-regulated or co-expressed genes with TF

motifs, and assess motifs that are significantly over- or under-represented, to identify common

regulators of the sequence sets. WeederH was designed for discovering conserved TFBS and

distal regulatory modules in sequences from orthologous genes [20]. MatrixREDUCE predicts

functional transcription factor binding through alignment-free and affinity-based analyses of

orthologous promoter sequences in closely related species [21]. Table 1 summarizes motif

scanning parameters of 18 currently available tools.

To overcome the shortcomings of currently available tools as described below, a novel

motif-scanning algorithm “Grit” was developed that identifies genome-wide upstream TFBS

from a known collection of PWMs for promoters of orthologous genes without the need of

sequence alignment. This study addressed the question of finding significant associations

between TFs and orthologous gene sets by introducing a new computational framework that

uses mixed Student’s t-test statistics and adopts new ways of constructing promoter sequence

sets of orthologous genes. Its application to the human genome has yielded fruitful results,

demonstrating its desirability as a motif scanning tool.
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2. Design and implementation

2.1. Building putative promoter sets for orthologous genes

PWMs for TFs were obtained from the Jaspar database release 2020, referred here as JASPAR-

2020 [22], which comprises a collection of TF motifs for human species. The Ensembl Biomart

web tool release 100 [23] was used to extract the putative promoter sequences 2 kb upstream of the

transcript, for all genes in 294 genomes (S1 Table). The promoter set for orthologous genes used

for scanning of TFBS was built by first comparing the cDNA sequence from the target genome

(TG, human) with the cDNA sequence from the other 293 reference genomes (RGs, genomes

other than human) to identify the orthologous gene clusters, and consequently, put the 2 kb

upstream sequence of the orthologous genes together. The BLASTN parameter was “-word_size

11 -reward 2 -penalty -3 -gapopen 5 -gapextend 2 -evalue 1e-6”, and the BEST-to-BEST approach

based on the E-value (mutual best hit) was used to define orthologous gene pairs between the two

species. This promoter set was referred to as the “2K-set” and was available from the Grit website,

the promoter sequence for the TG in this set was referred to as the “TPS”. A random background

promoter sequences set was randomly selected from the 2K-set and named as “BPS”.

2.2. Statistical identification of TFBS in a target genome

First, we obtained a statistical score based on a component of HMM (Eq 1). The implementa-

tion of this raw score (RS) represented the ideals of existing statistical approaches [15].

RS ¼ ln
1

Ms

XMs

L¼1

Yw

k¼1

qðk; LkÞ

pðLkÞ
; 1 � s � l � wþ 1 ð1Þ

Table 1. Functionality of currently available motif scanning tools.

Tool Scan single

DNA

Scan multiple

DNAsa
Report single

p-valueb
Report multiple

p-valuec
Species

specific

Utilize conservation

information

Source code

available

Comparedd Release

date

MAST ✓ ✓ ✓ ✓ 1998

MCAST ✓ ✓ ✓ ✓ 2003

OTFBS ✓ ✓ ✓ 2003

CREME ✓ ✓ ✓ 2003

Clover ✓ ✓ ✓ ✓ ✓ 2004

Toucan ✓ ✓ ✓ 2005

PAP ✓ ✓ ✓ 2006

oPOSSUM ✓ ✓ ✓ 2007

TRAP ✓ ✓ ✓ 2007

WeederH ✓ ✓ ✓ ✓ 2007

MatrixREDUCE ✓ ✓ ✓ 2008

Pscan ✓ ✓ ✓ ✓ ✓ 2009

TFM_EXPLORER ✓ ✓ ✓ ✓ 2010

SWAN ✓ ✓ ✓ ✓ ✓ 2010

FIMO ✓ ✓ ✓ ✓ ✓ 2011

PWMScan ✓ ✓ ✓ ✓ 2018

Motif scraper ✓ ✓ ✓ 2018

Grit ✓ ✓ ✓ ✓ ✓ ✓ 2021

aDesigned to scan multiple sequence sets.
bReport p-value for target genome.
cReport p-value for multiple sequence sets.
dSelected for performance assessment.

https://doi.org/10.1371/journal.pcbi.1009773.t001
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The RS calculation represents repeated averaging of LLRs. RS represented the LLR for a

motif being present at one particular location in a sequence, where w was the width of the

motif, L denoted the location being considered, Lk was the nucleotide at position k within this

location, p(Lk) is the background probability of observing nucleotide Lk estimated from the fre-

quency of Lk in that sequence, and q(k, Lk) is the probability of observing nucleotide Lk esti-

mated from the frequency of the Kth location in the motif. The RS for a motif present in a

sequence with length l was the natural logarithm of the average of LRs taken over all locations

of s, where Ms was the number of locations in the sequence calculated as l–w + 1. Statistically

significant TFBS in the target genome are identified by a mixed Student’s t-test.

2.3. Theory of mixed Student’s t-test

We tested the significance of RS of a gene in the TG for a given motif assuming that the RSs for

the sequences in the 2K-set for this gene were normally distributed. We propose a new statisti-

cal approach that is an extension of the Student’s t-test, namely, the “mixed Student’s t-test”. A

slightly varied statistical approach from the canonical Student’s t-test was proposed—giving a

background set (bkg) and a testing set (obs), we determine whether one value (one) from the

obs is significantly different from the mean of the values in bkg, where one, obs and bkg are RSs
for TPS, 2K-set, and BPS, respectively. The mixed Student’s t-test statistic can be calculated by

combining the one-sample Student’s t-test and independent two-sample Student’s t-test. The

calculation of the t-statistics (t’) and degree of freedom (df) of the mixed Student’s t-test were

presented as Eqs 2 and 3, respectively. The p-values can be estimated by the “cdflib” function

[24].

t0 ¼
�Xbkg � one

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnobs � 1Þs2obsþðnbkg � 1Þs2bkg

nobsþnbkg � 2

r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nobs
þ 1

nbkg

q
ð2Þ

df ¼

s2obs
nobs
þ

s2bkg
nbkg

� �2

ðs2obs=nobsÞ
2

nobs� 1
þ
ðs2bkg=nbkg Þ

2

nbkg � 1

ð3Þ

The coefficient of conserved variation (CCV, Eq 4) and standard difference (SD, Eq 5) are

calculated, which indicate the degree of conservation of the TFBS among species and the alti-

tude of difference in RS scores between the TG and the RGs, respectively.

CCV ¼
j�Xobsjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pnobs
i¼1
ðobsi � oneÞ2=nobs

q ð4Þ

SD ¼
one � �Xbkg

j�Xbkgj
ð5Þ

2.4. Development of the Grit software

Utilizing the mixed Student’s t-test statistics, we developed a tool, called Grit, for screening

TFBS by coordinating TFs to their promoter sequences in orthologous genes. The tool takes

JASPAR-2020 (specified by the -m option), 2K-set (-i option), and BPS (-b option) as it’s

input. Running the tool with default options (-n 10 -z 200 -s 1 -t 0.05 -p 0) will produce a result

file (-o option) containing the predicted TFBS. There are three major steps built into the
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program: 1) calculate the RS for each PWMs presented in each promoter set for orthologous

genes using Eqs 1 and 2) calculate the p-values for the significance of RS of each genes for each

given PWMs using the mixed Student’s t-test statistics; and 3) perform multiple testing correc-

tion for all p-values using the FDR method [25], and retain the TFBS with FDR� threshold

defined by the -t option. The source code has been deposited in GitHub and is available under

academic free license.

2.5. Performance assessment methods of the Grit software

The ReMap datasets were obtained from the ReMap website release 2020, referred to as ReMap-

2020 [26], and ChIP-Atlas website release 2021, referred to as Atlas-2021 [27]. True positives

(TP) were defined as predicted binding sites overlapping 80% with experiment-supported bind-

ing sites from ReMap or the ChIP-Atlas ChIP-Seq datasets. False positives (FP) were defined as

predicted binding sites that did not overlap with experiment-supported binding sites, and false

negatives (FN) were defined as experiment-supported binding sites that were not identified.

Performance was assessed by calculating sensitivity [Sn = TP/(TP + FN)], positive predictive

value [PPV = TP/(TP + FP)], and geometric accuracy [ACCg =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn � PPV
p

], as reported by

Sand et al. [28] and Jayaram et al. [29] for all of the datasets analyzed. All assessments of the six

tools were performed on Amazon EC2 computation services in parallel. For software such as

PWMScan and Clover, where the local version was not available or too slow to analyze all

PWMs, a random subset of the transcription factors (35 TFs) was analyzed. The Sn, PPV, and

ACCg values for each tool were compared by paired Student’s t-test.

3. Results

3.1. Mixed student’s t-test with simulated datasets

Two normally distributed datasets were generated and used as bkg (mean = −10, SD = 5, gray)

and obs (mean = −2, SD = 7, dark green) datasets. Three values from the obs (located at 25, 50,

and 75 percentiles, red) were tested for their significance, and produced p-values of 1.0, 0.03, and

1E-25, respectively (Fig 1A). Three representative genes from the human genome were used for

testing: purple for a gene at the 75% quantile of CCV and 25% quantile of SD, dark green for a

gene at the 50% quantile of CCV and 75% quantile of SD, and red for a gene at the 25% quantile

of CCV and 75% quantile of SD, all of which produced p-values less than 1E-6 (Fig 1B). The p-val-

ues, CCV, and SD for each entity (one) in obs were calculated. As shown in Fig 1C, the p-values

decreased with increasing CCV and SD, indicated that the mixed Student’s t-test prefers TFBS

either having higher CCV or having higher SD, or both. We also noted that the mixed t-test

behaved as a one-sample t-test when distributions of values in obs and bkg were the same, or a

two-sample t-test when observation (one) was located at the mean of the obs (S1 Text).

3.2. Prediction of TFBS in human genome using Grit

A schematic of the pipeline used in this study was indicated in Fig 1D, which included: (1)

blast TG with RGs; (2) build the 2K-set for homolog genes using the BEST-to-BEST approach;

(3) run Grit using Jaspar-2020 and the 2K-set; and 4) assess the performance of Grit using pub-

lic ChIP-Seq datasets. The promoter set contained 2 kb length sequences for a putative pro-

moter region of 35,342 homologues gene clusters. To estimate the accuracy of this promoter

set, we compared it with experimentally validated human promoters available in the EPD data-

base containing 29,598 human gene promoter sequences [30]. The TPS contained promoter

sequences for 93.2% of these genes showing post alignment with the TPS of the EPD sequences

with an E-value < 1E-6.
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Grit was used for identification of TFBS in the human genome by applying it to the 2K-set

datasets. The Grit run took 22 h and identified 7.57 million significant TFBS for 537 TFs

(FDR� 0.05). A target gene was assigned a TF if the gene was found in at least one TFBS. Grit

prediction results were assessed with six publicly available motif scanning tools designed for

high throughput analysis using the 829 ReMap-2020 datasets (S2 Table) obtained from the

ReMap database [26]. The results were shown in Fig 2. FIMO and Swan consistently achieved

higher Sn but lower PPV for ChIP-Seq datasets as compared with other tools (p-value� 0.05).

The average Sn of Grit is lower than FIMO but the average PPV of Grit is the highest among

all competitors. As results, Grit attained the highest average ACCg, followed by FIMO, Swan,

Fig 1. Validating the mixed Student’s t-test with simulated and real-world data. A and B. Simulated data and representative real-world data testing; the

distribution of bkg was colored with gray, and obs with dark green; the one values of interest were indicated with vertical lines. C. Parameter testing. The X axis

represented the coefficient of conserved variation (CCV, 0 to 2.0), the Y axis represented the standard deviation (SD, 0 to 3.0), and the Z axis represented the 1

− p-value. D. Schematic of the pipeline used for the study.

https://doi.org/10.1371/journal.pcbi.1009773.g001
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Pscan, and PWMScan, Clover had the lowest ACCg. It is noticed that Grit outperformed

FIMO 29% as evaluated by ACCg (p-value� 0.05). The number of predicted targets for FIMO

and Swan was strikingly high, covering approximately 80% of human genes on average,

whereas the number of predicted targets for Grit, Pscan, and PWMScan were significantly

smaller, with Clover producing the lowest targets (p-value� 0.05).

3.3. Performance of Grit using ChIP-Atlas datasets

Additionally, performance of the six scanners was evaluated using 111 high-quality Atlas-2021

target gene sets (S3 Table) collected from experimentally validated human ChIP-Atlas data

with literature support [27]. Table 2 listed a random subset of the assessment results. The Sn

values of FIMO were higher than those of Grit (33.0%, p-value� 0.05), whereas the PPV values

for Grit were higher than those of FIMO (2.15 fold, p-value� 0.05). The ACCg values for Grit

were higher than those of FIMO (17.8% on average, p-value� 0.05), indicating that Grit per-

formed better than FIMO for Atlas-2021. Furthermore, the Grit method slightly outperformed

Fig 2. Performance assessment of motif scanners in analyzing ReMap datasets. A total of six scanners (Clover, FIMO, Grit, Pscan, PWMScan, and Swan)

were evaluated based on the parameters of sensitivity (Sn), positive predictive value (PPV), geometric accuracy (ACCg), and total number of predicted

transcription factor binding sites (TFBS, Count).

https://doi.org/10.1371/journal.pcbi.1009773.g002
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the Pscan method (4.8% on average, p-value� 0.05). Analysis using JASPAR-2020, ReMap-

2020, and Atlas-2021 datasets identified Grit, Pscan, and FIMO as the best tools for identifying

TFBS (complete prediction results for all the tools have been provided on the Grit website),

ranking them based on ACCg in the order Grit > Pscan > FIMO > Swan >

PWMScan > Clover.

3.4. Differences among Grit and other prediction tools

The prediction results of Grit and five other tools were compared. There were 38.9% TFBS in

ChIP-Atlas datasets that were not identified by the other five prediction tools; 32.8% of TFBS

were identified by both Grit and the other tools; 11.5% of TFBS were identified by the other

tools but not by Grit; and 16.8% of TFBS were identified by Grit but not by the other tools. A

total of 2.9% best TFBS identified by Grit for the same gene did not overlap with those identi-

fied by the other tools. A comparison of the numbers of TFBS identified by Grit and by the

other five tools showed that each tool produced dramatically different prediction results (Fig

3A and 3B). To show the unique features between Grit and the other tools, we investigated the

distributions of CCV and SD for Grit TFBS and Grit specific TFBS (TFBS detected by Grit but

did not by other tools, Grit–other, the “–” symbol means subtracting). The results indicated

Table 2. Performances of Grit with FIMO using publicly available Chip-seq datasets with literature support.

Motif Grit FIMO Pscan

Sn PPV ACCg Sn PPV ACCg Sn PPV ACCg

ASCL1 0.51 0.15 0.28 0.94 0.04 0.20 0.46 0.16 0.27

CDX2 0.44 0.18 0.28 0.69 0.07 0.22 0.43 0.20 0.30

DUX4 0.55 0.08 0.21 0.78 0.04 0.18 0.53 0.09 0.22

E2F1 0.61 0.80 0.70 0.31 0.49 0.39 0.58 0.81 0.69

ELK4 0.69 0.22 0.39 0.93 0.10 0.31 0.71 0.35 0.50

FLI1 0.48 0.77 0.61 0.56 0.44 0.49 0.42 0.81 0.58

GATA3 0.48 0.68 0.57 0.50 0.32 0.40 0.52 0.67 0.59

GLI2 0.52 0.37 0.44 0.70 0.17 0.35 0.30 0.33 0.31

HNF4G 0.46 0.27 0.35 0.86 0.10 0.30 0.29 0.29 0.29

JUND 0.35 0.71 0.50 0.57 0.33 0.43 0.30 0.69 0.46

MAFF 0.44 0.18 0.28 0.67 0.08 0.23 0.49 0.20 0.31

MEF2A 0.57 0.28 0.40 0.87 0.10 0.29 0.54 0.29 0.39

MXI1 0.40 0.72 0.54 0.59 0.38 0.47 0.34 0.72 0.49

NFE2 0.50 0.62 0.56 0.62 0.29 0.42 0.27 0.56 0.39

NFIC 0.34 0.59 0.45 0.73 0.26 0.44 0.32 0.58 0.43

NR2C2 0.49 0.13 0.25 0.91 0.05 0.21 0.31 0.12 0.19

NRF1 0.71 0.72 0.71 0.87 0.38 0.58 0.49 0.78 0.62

OTX2 0.60 0.51 0.55 0.47 0.26 0.35 0.37 0.56 0.46

PAX5 0.59 0.63 0.61 0.82 0.29 0.49 0.50 0.63 0.56

RUNX3 0.37 0.60 0.47 0.56 0.28 0.40 0.26 0.65 0.41

SP1 0.75 0.81 0.78 0.98 0.27 0.52 0.50 0.83 0.65

SPI1 0.42 0.78 0.57 0.78 0.31 0.49 0.46 0.78 0.60

SRF 0.36 0.63 0.48 0.41 0.31 0.36 0.46 0.62 0.53

TBX21 0.44 0.59 0.51 0.74 0.26 0.44 0.18 0.56 0.32

TCF7L2 0.40 0.62 0.50 0.71 0.25 0.42 0.29 0.59 0.42

Average 0.50 0.51 0.48 0.70 0.24 0.37 0.41 0.51 0.44

�Full information available in S3 Table. Sn = sensitivity, PPV = positive predictive value, ACCg = geometric accuracy.

https://doi.org/10.1371/journal.pcbi.1009773.t002
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that Grit − FIMO and Grit − Swan had significant higher CCV values, while Grit − Clover,

Grit − Pscan, and Grit − PWMScan had significantly higher SD values, than Grit TFBS (p-

value� 0.05, Fig 3C and 3D).

4. Discussion

4.1. Comparative genomics is required for TFBS prediction

Identification of TFBS is essential for understanding how TFs regulate gene expression, ulti-

mately controlling processes such as cell cycle progression, stress response, or stem cell

Fig 3. Differences among the results of Grit and other prediction tools. A. Number of transcription factor binding sites (TFBS) that overlap (light green)

between Grit and other prediction tools, and Grit specific (red) or other tool specific (light blue) TFBS. B. Overall comparison of numbers of TFBS between

prediction results of Grit and other prediction tools. The violin plot in C and D shown distributions of conserved variation (CCV) and standard difference (SD)

for TFBS identified by Grit but did not by other tools (Grit–other, the symbol “–” means subtracting), respectively.

https://doi.org/10.1371/journal.pcbi.1009773.g003
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differentiation into adult tissues [31–33]. A typical computational issue is deciding, giving a

PWM, if a nucleotide sequence contains a valid instance of the TFBS modeled by the PWM

itself [4]. Reliable predictions on a single sequence are nearly impossible without further filter-

ing because of the redundant information available on promoter sequences [18]. The activities

of functionally important TFs are highly conserved among both closely related and distant spe-

cies, thereby causing frequent occurrence of their binding sites in orthologous genes [1]. A

gene can be compared with its orthologs by analyzing sequence conservation in evolutionarily

preserved transcribed regions, which enables the identification of orthologous gene sets, and

TFBS can be predicted from the promoter sequences of these genes [21]. Although the pre-

dicted TFBS require further wet-lab experiment validation, with the increasing availability of

PWMs, this in silicon approach has gained wide popularity [29]. These functionally important

binding sites in closely related species can be identified by promoter sequence alignment and

phylogenetic printing methods [16, 34–36]. However, promoters of orthologous genes in dis-

tantly related species are always poorly conserved, and identification of TF binding sites in

these sequences is difficult [1, 20]. This study used cross-species comparison to build co-regu-

lated orthologous gene sets, without the need for non-coding sequence alignment. Therefore,

this approach is well suited for comparative genomics across large evolutionary divergences,

when existing alignment-based methods are not feasible. The rationale is that the promoters of

most of the genes targeted by the same TF(s) should contain significantly higher scores for

TFBS than some suitably computed numbers obtained from a collection of unrelated genes or

a random background model.

4.2. Mixed Student’s t-test is useful in discovering TFBS

By counting the number of matches and mismatches in target and control sequences, over-

represented motif analysis was performed using hypergeometric distribution [14, 37]. A more

intricate procedure, accounting for sequences with zero, one, two, or three or more matches in

the target and control sets has been reported [31]. Several studies have suggested counting all

matches in the target and control sequences, and proposed two different binomial formulas

for assessing motif over-representation [12, 14]. Notably, the widely used Pscan program cal-

culates an RS similar to Clover’s z-test to analyze over- or under-representation of TFBS. The

p-value is computed by counting the number of times a random dataset yields a score higher

than the input sequence set. Our tool "Grit" calculates an RS similar to Clover and Pscan, RS is

the average exponent of the standard motif matrix score and is proportional to the factor’s

total equilibrium occupancy of the TFBS in sequence in a simple thermodynamic model [38–

40]. Note that RS is a function of the length of the promoter sequence S, and if S is extended to

include nucleotides that do not coordinate the motif, RS would decrease. Given sets of equal-

length target and control sequences, it is possible to test for significance by ranking the RSs
from both sets and performing statistical analyses.

The newly developed mixed Student’s t-test was performed for TG and RGs for sites where

the TFBS were expected to be conserved. Additionally, we considered the possibility of motif

variation among species with highly diverged in RGs, such as pig or cattle, because of signifi-

cant changes in the binding scores of TF among orthologous genes in the 2K-set of reference

species. However, in cases of sufficiently large numbers of RGs, the binding affinity scores

should show a normal distribution. The statistical analysis prefers to detect TFBS either con-

served among species (high CCV) or having significant RS differences between the target and

control sequences (high SD), or both. In contrast to the statistical test implemented in other

tools, which produce a “whole” p-value for the gene set but fail to tell whether a specific

sequence has certain TFBS or not, the mixed Student’s t-test is not only able to utilize the
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information from comparative genomics, but also produces a theoretical p-value for an indi-

vidual sequence of interest.

4.3. Single- and multi-species prediction tools

FIMO, Swan, and PWMScan were designed to not only identify potential matches to a motif,

but also for potential matches that are greater than expected by chance, considering the geno-

mic background [1, 7, 10]. All were designed for TFBS prediction in a single-species and pro-

duced a large number of TFBS as expected. Compared with these tools, Grit identified

significantly smaller numbers of binding sites, which highlights the major differences between

these tools. Grit has been designed to predict TFBS based on PWMs, and these sites were either

highly conserved or had high RS among the promoter sequences. With the added condition

that the TFBS were required to be highly conserved among species, which was not a criterion

for single-species scanners, the final lists produced were relatively small, have a higher CCV,

and were thus likely to be more suitable for further experimental validation.

Clover and Pscan were designed for multi-species TFBS scanning [15, 18]. Similar to the

Clover algorithm, Grit computed an RS for each input sequence, representing the average like-

lihood of each TFBS to a promoter. Regulatory regions of higher eukaryotes often contain

multiple binding sites for the same transcription factor, with weaker “shadow” copies of the

motif also present [41]. Therefore, considering the average score of multiple matches per

sequence will likely aid in the discovery of functional motifs. Another issue is the definition of

a “background” suitable for assessing the significance of the results obtained. In Clover, this is

performed by shuffling the columns of the motif, or by building random sequence sets of the

same size and length of the sequence set investigated [15]. However, the algorithm imple-

mented in Clover is computationally intensive, taking 15 days to process 25 PWMs for the

human genome. Similar to Pscan, Grit treats the input sequences as a sample taken from a

“universe” composed of all promoter sequences available for the species investigated, several

subsamples are taken from the universe, with a default size = 200 and n = 10, and used as the

background. For each promoter set of orthologous genes, the RSs obtained from the input

sequence set can be compared with the RSs on the subsets randomly taken from the whole

genome promoter set, and the p-value can be produced by the mixed Student’s t-test.

Availability and future directions

Grit is a good alternative to current available motif scanning tools and is publicly available at

http://www.thua45.cn/grit under an academic free license. Further directions will be develop-

ment of algorithms like gene-set enrichment analysis, to analyze transcriptome data.
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