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SARS-CoV-2 rapidly spread from a regional outbreak to a global pandemic in just a few months. Global
research efforts have focused on developing effective vaccines against COVID-19. However, some of
the basic epidemiological parameters, such as the exponential epidemic growth rate and the basic repro-
ductive number, R0, across geographic areas are still not well quantified. Here, we developed and fit a
mathematical model to case and death count data collected from the United States and eight European
countries during the early epidemic period before broad control measures were implemented. Results
show that the early epidemic grew exponentially at rates between 0.18 and 0.29/day (epidemic doubling
times between 2.4 and 3.9 days). We found that for such rapid epidemic growth, high levels of interven-
tion efforts are necessary, no matter the goal is mitigation or containment. We discuss the current esti-
mates of the mean serial interval, and argue that existing evidence suggests that the interval is between 6
and 8 days in the absence of active isolation efforts. Using parameters consistent with this range, we esti-
mated the median R0 value to be 5.8 (confidence interval: 4.7–7.3) in the United States and between 3.6
and 6.1 in the eight European countries. We further analyze how vaccination schedules depend on R0, the
duration of protective immunity to SARS-CoV-2, and show that individual-level heterogeneity in vaccine
induced immunity can significantly affect vaccination schedules.
� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

SARS-CoV-2 is the infectious agent that causes the COVID-19
pandemic. It was first detected in Wuhan city, China in Dec 2019
(WHO, 2020), and has spread rapidly causing the ongoing global
pandemic. Two key epidemiological parameters for understanding
the dynamics of the COVID-19 outbreak are the early epidemic
growth rate, defined as the rate of early exponential growth of
an epidemic in the absence of control measures, and the basic
reproductive number R0, defined as the number of secondary infec-
tions when an index case is introduced into a fully susceptible pop-
ulation. Accurate estimations of these two fundamental
parameters of infectious disease dynamics across geographic areas
are crucial for many aspects of policy making, from outbreak pre-
paredness to rational design of epidemic intervention and exit
strategies (Thompson et al., 2020). For example, in the wake of sec-
ond waves of COVID-19 outbreak (Kissler et al., 2020), they allow
for accurate forecasting the country specific epidemic trajectory,
and the burden on health care systems (Grasselli et al., 2020; Li
et al., 2020b) and potential health and economic damage. They
set the baseline for evaluation of effectiveness of country specific
public health intervention strategies (Dehning et al., 2020;
Flaxman et al., 2020; Pellis et al., 2020). Finally, accurate estima-
tion of R0 is crucial for predicting the herd immunity threshold
needed to stop transmission (Britton et al., 2020; Gomes et al.,
2020; Lipsitch et al., 2003; Park et al., 2020; Sanche et al., 2020).
This is particularly pertinent to the development of appropriate
vaccination strategies (Jackson et al., 2020).

Initial estimates of the rate of early epidemic spread in Wuhan,
China suggested that the epidemic grew at 0.1–0.14/day, leading to
an epidemic doubling time of 5–7 days (Kucharski et al., 2020; Li
et al., 2020a; Riou and Althaus, 2020; Wu et al., 2020a). However,
using domestic travel data and two distinct approaches, we esti-
mated that the epidemic in Wuhan grew much faster than initially
estimated, and the growth rate is likely to be between 0.21 and
0.3/day before lock-down was implemented, translating to a dou-
bling time between 2.3 and 3.3 days, and an R0 approximately at
5.7 with a confidence interval between 3.8 and 8.9 (Sanche et al.,
2020). A high epidemic growth rate and a high R0 of the outbreak
in Wuhan were also reported by another study (Tang et al., 2020).
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The early epidemic growth rate and R0 likely vary across differ-
ent geographic regions, because transmission of infectious agents
depends on not only biological factors, but also social factors and
population structure. Several works addressed the need to esti-
mate the early epidemic growth rates in Europe and other coun-
tries across the globe during initial COVID-19 pandemic (Dehning
et al., 2020; Flaxman et al., 2020; Pellis et al., 2020; Romero-
Severson et al., 2020), including a preprint version of this work
posted online in early April 2020 (Ke et al., 2020). In general, these
works found that SARS-CoV-2 outbreaks grew at very fast rates
(with a short doubling time), similar to what we have estimated
for the outbreak in Wuhan. However, the basic reproductive num-
ber R0 has not been well quantified, and refinement is needed espe-
cially in light of the recent new understanding of the duration of
the serial interval (Ali et al., 2020), i.e. a key parameter used to esti-
mate R0 from the epidemic growth rate.

Here, we fit mechanistic models to both case and death count
data collected from the United States (US) and eight European
countries in March 2020 before broad interventions were estab-
lished. By considering the joint distribution of COVID-19 cases
and deaths, our inference approach gives a more accurate assess-
ment of early COIVD-19 dynamics and will help minimize biases
as a result of systemic underreporting of cases and/or deaths.
Importantly, we provide estimates of the basic reproductive
numbers across the US and eight European countries, using the
current best estimates of basic epidemiological parameters, such
as the serial interval (see Section 4 for details). We show that in
most countries, COVID-19 spreads very rapidly, leading to high
estimated R0 values and consequently high herd immunity
thresholds in these countries. We further explore how vaccina-
tion schedules depend on the value of R0 and the distribution
of the duration of vaccine-induced immunity in a population,
in the context of the durations of protective immunity reported
for SARS-CoV-2 (Long et al., 2020; Seow et al., 2020), as well as
other coronaviruses such as HCoV-OC43 and HCoV-HKU1
(Callow et al., 1990; Kissler et al., 2020), SARS-CoV-1 (Cao
et al., 2007; Chan et al., 2013; Le Bert et al., 2020) and MERS-
CoV (Payne et al., 2016).
2. Methods

2.1. Data

We collected daily case confirmation and death count data from
the John Hopkins CSSE (Center for Systems Science and Engineer-
ing) database (https://github.com/CSSEGISandData/COVID-19).
The data is accessed and extracted on March 31, 2020. The data
consists of time series of the cumulative number of case confirma-
tions and deaths by country. Daily incidences were derived from
the cumulative counts. We included data from the United States
(US) and eight most affected European countries where the total
deaths exceed 150 by March 31, 2020. The total deaths threshold
is to ensure that the number of deaths is high enough for statistical
inference. The eight European countries are France (FR), Italy (IT),
Spain (SP), Germany (GR), Belgium (BE), Switzerland (SW), Nether-
lands (NT), United Kingdom (UK).

We included a subset of case and death count data for infer-
ence based on the two following criteria. First, to minimize the
impact of stochasticity and uncertainty in early data collection,
we used case confirmation incidence data starting from the date
when the cumulative number of cases was greater than 100,
and used daily new death count data starting from the date when
the cumulative death count is greater than 20 in each country
(see Table S1 and Fig. 1 for the period from which data is
included). Second, to estimate the early outbreak growth in each
2

country before control measures were implemented, we included
case count data up to the date of lockdown in each country. For
death counts, we included a maximum of 15 days of data points
starting from the date when the cumulative death count is
greater than 20 in each country. We tested the sensitivity of
model predictions against variations in the number of data points
used for inference. In this analysis, we included the 15, 13 or
10 days of data points prior to the date when lockdown was
implemented in each country. Overall, we found that the results
are consistent across the different numbers of data points used
(Table S1).

2.2. Model

We construct a SEIR type model using ordinary differential
equations (ODEs; see Supplementary Text). We consider the expo-
nentially growing phase of the outbreak and thus make the com-
mon assumption that the susceptible population is constant over
time. Then, the total number of infected individuals
I� tð Þ ¼ E tð Þ þ IðtÞ can be expressed as:

I� tð Þ ¼ I�0e
rt ð1Þ

where r is the exponential growth rate of the epidemic (the growth
rate for short below), and I�0 is the number of total infected individ-
uals at time 0, set arbitrarily as January 20, 2020. Note the choice of
the date of time 0 does not affect our estimation.

We solve the ODE model and derive the following expressions
for the key quantities for model inference (see Supplementary
Text). The descriptions and values used for the parameters in the
ODE model are summarized in Table 1.

The true daily incidence of infected individuals, X tð Þ, can be
expressed as:

X tð Þ ¼ b kþ rð Þ
r kþ r þ bð Þ I

�
0 ert � er t�1ð Þ� � ð2Þ

where b and 1/k are the transmission parameter of the virus and the
latent period of infection, respectively.

The daily new confirmed case count, W tð Þ, is related to the true
daily incidence, X tð Þ as:

W tð Þ ¼ hðtÞ mg
mg þ r

� �m

X tð Þ ð3Þ

where hðtÞ is the detection probability, i.e. the fraction of newly
individuals at time t who are later detected among all infected indi-
viduals. We assumed an Erlang distribution for the period between
infection and case confirmation (Sanche et al., 2020), where 1=g and
m are the mean and the shape parameter for the distribution.

The daily new death count, U tð Þ, is related to the true daily inci-
dence, X tð Þ as:

U tð Þ ¼ X
nd

r þ nd

� �n

X tð Þ ð4Þ

where X is the infection fatality ratio. Again, we assumed an Erlang
distribution for the period between infection and death (Sanche
et al., 2020), where 1=d and n are the mean and the shape parameter
for the distribution.

We tested three different scenarios for surveillance intensity
changes over time, modeled as the detection probability, hðtÞ:

1) h is a constant, i.e. no change over time;
2) h tð Þ ¼ pmin þ ðpmax � pminÞ tm

tmþKm, i.e. h is a Hill-type function of
t;

3) h tð Þ is equal to pmin before t1, increases linearly to pmax

between t1 and t2 and stay constant at pmax after t2, i.e. h is
a semi-linear function of t.

https://github.com/CSSEGISandData/COVID-19


Fig. 1. Estimation of the exponential growth rate and the doubling time of epidemics in eight European countries and the US. Red and black symbols show the daily counts of
new cases and new deaths, respectively. Closed dots denote data used for parameter inference; whereas open circles denote data that are not used for parameter inference.
We simulated the model using sampled parameter combinations that are able to explain the data shown in dots (see Uncertainty quantification in Section 2). The colored
bands denote the area between the lower and upper bounds of simulated/predicted true daily infection incidence (blue), daily cases (red) and daily deaths (grey) assuming no
intervention efforts nor changes in surveillance intensity. Deviations of open circles from the corresponding bands thus indicate either changes in surveillance intensity or
impacts of control measures.

Table 1
Description of parameter and their values. See the Supplementary Text for discussions of choice of parameter values.

Parameters Description Value Ranges used in uncertainty
analysis

References

r Exponential growth rate Estimated from data 0.1–0.35 /day
I�0 I�0is the number of total infected

individual at time 0 (Jan. 20)
Estimated from data 0.0001–10 on a log scale

h detection probability Estimated from data 0.001–1 on a log scale
b Infectivity in the SEIR model Calculated from r See Supplementary Text
1=k The mean latent period, i.e. from

infection to becoming infectious
3 days 3–4 days He et al. (2020); Lauer et al. (2020); Sanche et al.

(2020)
1=g The mean duration from infection to

case confirmation
12 days 10–14 days Ng et al. (2020) and Sanche et al. (2020)

m Shape parameter for the duration
from infection to symptom onset

3 2–4 Sanche et al. (2020)

n Shape parameter for the duration
from symptom onset to death.

4 3–5 Sanche et al. (2020)

1=d Mean duration from infection to
death

21.5 days 20.5–23.5 days Sanche et al. (2020) and Zhou et al. (2020)

X Infection fatality ratio 0.01 0.004–0.014 Dorigatti et al. (2020) and Wu et al. (2020b)
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Note that the time from infection to case confirmation, 1=g, can
be a time dependent function as we and others have shown previ-
ously (Ng et al., 2020; Sanche et al., 2020). To keep the model sim-
ple, we implicitly assume that the time dependent changes in g can
be included in the estimation of hðtÞ.
3

2.3. Parameter estimation

We fit the daily case count function W tð Þ and the death count
function U tð Þ to incidence data and daily death data to infer the
exponential growth rate of the infection ðrÞ, the initial number of
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total infected individuals at time, and the detection probability (ht).
Other parameter values are fixed according to previous estimates
(see Table 1). We assumed that the data were negative binomial
distributed conditional on the model and inferred parameters by
maximizing the likelihood function using standard methods.

To compare between models, we calculate the Akaike Informa-
tion Criterion (AIC) score for each model as (Burnham and
Anderson, 2002):

AIC ¼ 2np � 2LL ð5Þ
where np is the number of fitted parameters and LL is the log like-
lihood of the model. The model with the lowest AIC score is the best
model. A model is significantly worse than the best model if the dif-
ference between their AIC scores is greater than 2 (Burnham and
Anderson, 2002).

2.4. Uncertainty quantification

To evaluate uncertainties in the estimated parameters r, h and
I�0, we sampled 108 parameter combinations of all fixed parameters
and estimated parameters by drawing parameters randomly from
uniform distributions over the ranges specified in Table 1. We cal-
culate the LL for each parameter combination. We accepted a
parameter combination if the likelihood of this parameter combi-
nation was not statistically different from the best-fit parameter
combinations using the log-likelihood ratio test. The upper and
lower bounds reported were summarized using simulation results
of all accepted parameter combinations.

2.5. Estimation of R0

We calculated R0 according to the equation derived by Wearing
et al. (2005):

R0 ¼ r r
km þ 1
� �m

c 1� r
cn þ 1

� ��nh i ; ð6Þ

where 1=k and 1=c are the mean latent and infectious periods,
respectively, and m and nare the shape parameters for the gamma
distributions for the latent and the infectious periods, respectively.

We set the mean latent period, 1=k, to vary between 3 and
4 days. This is based on that the incubation period is estimated
to be between 5 and 6 days (Backer et al., 2020; Lauer et al.,
2020; Sanche et al., 2020) and infected individuals become infec-
tious approximately 2 days before symptom onset (He et al., 2020).

We set the mean infectious period, 1=c, to be between 6 and
8 days to be consistent with the estimated mean serial interval,
i.e. the mean time interval between symptom onsets of an index
case and secondary cases in transmission pairs, of 6–8 days (Bi
et al., 2020; Lavezzo et al., 2020; Thompson et al., 2020). See the
Section 4 for a discussion of the estimates of the serial interval.
We note that this range of infectious period is also consistent with
the findings that infectious viruses can be recovered during the
first week of symptom onset (and up to 9 days post symptom
onset) (Payne et al., 2016; Wolfel et al., 2020).

To quantify the uncertainty of R0, we assumed that m = 4 and
n = 3 similar as in our previous work (Sanche et al., 2020). We
assume that the exponential growth rate, r, varies in the range esti-
mated from the data. The parameters r; k; cð Þ are assumed to be
mutually independent and we generate random samples from uni-
form distributions according to ranges of variations defined above
to compute the resulting R0. We generated 104 parameters, and
then computed their respective R0 using Eq. (6). We used the
97.5% and 2.5% percentile of the generated data to quantify the
95% confidence interval.
4

2.6. Calculation of the level of population immunity after mass
vaccination

We assume a gamma distribution for the duration of protective
immunity induced by a hypothetical vaccine to SARS-CoV-2 in a
population. Let s be the mean duration, and s be the shape param-
eter of the gamma distribution. For simplicity, we assume that the
durations of the immunity induced by natural infection and vacci-
nation are the same. We further assume that the percentage of pro-
tected population reaches to 85% after every mass vaccination with
the hypothetical vaccine. Note that this is likely to be an optimistic
scenario (Mello et al., 2020). The fraction of population that are
immune to SARS-CoV-2 at time t� after a mass vaccination can then
be expressed as 85%� 1� C t�ð Þð Þ, where Cðt�Þ is the cumulative
density function of the gamma distribution for the duration of pop-
ulation immunity. Based on this expression, we calculate the time
when the population immunity reaches to the herd immunity
threshold value by solving 85%� 1� C t�ð Þð Þ ¼ 1� 1=R0 for t�.
The solution for t� is the maximum time interval between two vac-
cinations to maintain herd immunity in a population.
3. Results

3.1. Estimation of the epidemic growth rate and surveillance intensity

Using our simplified SEIR-type (susceptible-exposed-infected-r
ecovered) model (see Section 2 and Supplementary Text for
details), we fit both the case incidence data and the daily death
count data to estimate the epidemic growth rate and the detection
probability, i.e. the probability that an infected person is identified,
before interventions were implemented in eight European coun-
tries and the US. The exponential growth rates of early outbreaks,
r, range between 0.19 and 0.29/day in the nine countries, translat-
ing to doubling times between 2.4 and 3.7 days (Fig. 1). Spain and
the US had the highest estimated growth rates, at 0.29/day and
0.28/day, respectively; whereas Switzerland and Netherlands had
the lowest estimates at 0.19/day and 0.18/day, respectively. Evalu-
ating uncertainties in these estimates (see Section 2), we found
that the epidemic growth rates are highly constrained by the time
series data despite variations in parameter values in the model
(Fig. 2A).

We estimated that the detection probability, i.e. the fraction of
infected individuals who are detected by surveillance, was likely to
be low (<30%) across the countries examined except for Germany.
The point estimate of the detection probability in the US is 12%, i.e.
approximately 1 in 8 infected individuals were detected, similar to
a recent estimate using influenza like illness data (Silverman et al.,
2020). This is likely due to the high percentage of infected individ-
uals with no or mild-to-moderate symptoms (Mizumoto et al.,
2020; Zou et al., 2020), which are difficult to detect through pas-
sive surveillance systems. The detection probability is higher in
Germany (with a point estimate of 58%) than in other countries,
providing an explanation of the high number of reported cases
compared to the relative low number of deaths in Germany during
March 2020. Overall, there exist large uncertainties in our estima-
tion of the detection probability (Fig. S1) due to the uncertainties in
the fixed parameter values assumed in the model, such as the
infection fatality ratio.

Changes to the detection probability over time, e.g. as a result of
changes in testing, could lead to an apparent increase or decrease
in case count and biases in inference. We considered two scenarios
involving increases in testing over the study period (see Section 2
for the mathematical formulations), and found no statistical evi-
dence that case counts during the relatively short period for which
we perform inference are strongly impacted by changes in surveil-



Fig. 2. Fast spread of SARS-CoV-2 and its implications for public health interventions. (A) Point estimates and confidence interval ranges of the exponential growth rate, r in
each country. See Table 2 for country name abbreviations. (B) Final fraction of infected individuals after 12 months of outbreak. A growth rate less than 0.03/day, i.e. a
doubling time of 23 days, is needed to achieve the goal that less than 10% of individuals are infected (dashed lines). However, the benefit, i.e. fraction of uninfected individuals,
increases exponentially when the growth rate is further reduced beyond the threshold. (C) High levels of control efforts, measured as fractions of transmission reduction (y-
axis), are needed to achieve containment, i.e. reverting epidemic growth (dots), or mitigation, i.e. the final fraction of infected individuals is 1% (x) or 10% (open circle) after a
year. We assumed initial infected population as shown in x-axis and epidemic growth rates of 0.19 (red) or 0.29/day (blue).

Fig. 3. Estimates of the median and ranges of the reproductive number R0 in each
country. Median R0 were shown in red numbers. See Table 2 for country name
abbreviations.
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lance intensity (Table S2). While it is highly likely that the proba-
bility of a case being detected increased over the period where
testing was becoming available, our analysis excluded data from
that period. As shown in Fig. 1, the red, open circles indicate data
outside of the study period. Most countries show a pattern of very
rapid increase in detected cases in the very early epidemic period
that is likely the result of both a growing epidemic and increasing
availability and use of testing.

3.2. Implications of fast epidemic growth for public health intervention
strategies

Using our empirical estimates of the growth rates, we explored
the implications for public health efforts to control the COVID-19
outbreak. We considered an outbreak scenario in a large city with
a population of 10 million. We first calculated the total fraction of
infected individuals after a year, assuming only one infected indi-
vidual at day 0. If our goal is that the total fraction of infected indi-
viduals is less than 10% after a year, the growth rate has to be
reduced from 0.2 to 0.3/day to less than 0.03/day (Fig. 2B). This
suggests that moderate social distancing efforts will be insufficient
to prevent the virus to infect a large fraction of the population. On
the other hand, if the targeted growth rate, i.e. 0.03/day, is
achieved through very strong public health interventions, then a
lower rate may also be attainable. The benefits of a small decrease
below the threshold are significant, as the total infected fraction
decreases exponentially when r decreases beyond 0.03/day as
shown in Fig. 2B.

To corroborate the results above, we calculated the intervention
efforts needed for three hypothetical goals: 1) containment (i.e. the
size of epidemic decreases), 2) 1% of the population is infected one
year after the intervention, and 3) 10% of the population is infected
one year after the intervention. Efforts needed for each goal are
similarly high, especially when the population of infected individ-
uals is already more than 1000 (Fig. 2C). For example, when an out-
break grows at rate 0.29/day (as we estimated for the US), the
levels of efforts needed to achieve the three goals are between
80% and 82% reduction in transmission; whereas when the growth
rate is 0.19/day, the levels of effort needed are between 70% and
73% reduction. Regardless of the heterogeneity in the growth rates,
the force of infection must be significantly reduced, arguing for
strong and comprehensive intervention efforts.

3.3. Estimating the basic reproductive number, R0

We computed the basic reproductive number, R0, for each coun-
try following the approach of Wearing et al. (2005), which uses as
5

input the estimated growth rate, and the durations of the latent
and infectious periods. We assumed that the duration of the latent
period (i.e. the period between infection and becoming infectious)
and the infectious periods to be 3–4 days and 6–8 days, respec-
tively (see Section 2 for justification of these parameter ranges).
These choices of parameters are consistent with the estimated
mean serial intervals of 6–8 days (Bi et al., 2020; Lavezzo et al.,
2020; Thompson et al., 2020). Note that some estimates of the
mean serial intervals are shorter (Du et al., 2020; Ganyani et al.,
2020; He et al., 2020; Nishiura et al., 2020). These shorter serial
intervals are a result of intensive intervention efforts to rapidly iso-
late infected individuals (Ali et al., 2020; Bi et al., 2020), and can be
useful in estimating effective reproductive numbers in places
where intensive isolation efforts are implemented. However, for
the purpose of estimating the basic reproductive number, R0, and
the herd immunity threshold (in the next section), the mean serial
interval in the absence of isolation effort, i.e. 6–8 days, shall be
used. In the Section 4, we present a more complete argument that
for the choice of the duration of the mean serial interval.

Using the estimated ranges of the growth rates for each country,
we estimated that the US and Spain had highest median R0s at 5.9



Table 2
Estimated medians and confidence intervals of the basic reproductive number, R0, and their corresponding herd immunity thresholds for eight European countries and the US.

Country Abbreviation Median R0 Confidence interval – R0 Classical herd immunity threshold Confidence interval – herd immunity

Belgium BE 3.6 (2.9, 4.6) 72% (65%, 78%)
France FR 4.4 (3.6, 5.4) 77% (72%, 81%)
Germany GR 4.7 (3.8, 5.8) 79% (74%, 83%)
Italy IT 4.6 3.7, 5.8) 78% (73%, 83%)
Netherlands NT 3.5 (3.0, 4.2) 72% (67%, 76%)
Spain SP 6.4 (5.2, 8.0) 84% (81%, 88%)
Switzerland SW 3.5 (2.8, 4.3) 71% (63%, 77%)
United Kingdom UK 3.9 (3.3, 4.6) 74% (69%, 78%)
United States US 5.9 (4.7, 7.5) 83% (79%, 86%)
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(CI: 4.7–7.5) and 6.4 (5.2–8.0), respectively (Fig. 3 and Table 2). For
the other countries, we estimated the median R0 ranges between
3.5 and 4.7 (Fig. 3 and Table 2).

3.4. Implications for vaccination strategies

From the range of median R0 estimated above, we first calcu-
lated the fraction of individuals needed to be immune in a
homogenous population such that an outbreak stops growing. This
fraction is given by the classical result, 1–1/R0 (Anderson and May,
1991). We refer to this term as the ‘classical herd immunity thresh-
old’, which spanned between 71% and 84% for the countries consid-
ered here (Table 2). We note that recent works show that due to
population heterogeneity, the herd immunity threshold induced
by disease transmission may be lower than the classical threshold
predicted by 1–1/R0 (Britton et al., 2020; Gomes et al., 2020). How-
ever, the herd immunity threshold through random vaccination
stays at 1 � 1/R0.

Multiple lines of evidence suggest that the protective immunity
may not be long lived for SARS-CoV-2 (Long et al., 2020; Seow
et al., 2020). Thus, we further considered how a vaccine with wan-
ing protection could be used to combat COVID-19 given our esti-
mated levels of R0 (see Section 2). We assumed that vaccination
achieves 85% population immunity in a population. This is an opti-
mistic scenario. For example, with a protective efficacy of 94%, the
coverage has to be greater than 90% to achieve 85% population
immunity. If this level of immunity is not achieved, for example,
due to low vaccination coverage (Mello et al., 2020) or low protec-
tive efficacy, we may not reach herd immunity through vaccination
for places where R0 is estimated to be around 6, e.g. the US and
Spain. In the model, we assumed a gamma distribution for the
duration of protective immunity induced by a hypothetical vaccine
Fig. 4. The importance of the distribution of the duration of vaccine-induced immu
distribution: exponential (shape parameter s ¼ 1), Gaussian-like (s ¼ 10) and identical (s
to all panels. (B) The fraction of individuals who are immune in a population over time.
The dotted lines show the heard immunity thresholds, i.e. 83% (for R0 = 6) and 67% (for R
(predicted for each R0) for the three scenarios. We assumed R0 = 3 (dashed lines) or 6 (so
line. The dotted lines show mean durations of immunity of 45 weeks, 3 years and 10 ye
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in a population, where s is the shape parameter of the gamma dis-
tribution (Fig. 4A).

If the duration of protective immunity from the vaccine follows
an exponential distribution, (i.e. when s ¼ 1), a sizable fraction of
individuals lose immunity rapidly, leading to a loss of herd immu-
nity shortly after the initial vaccination program, especially when
R0 is large and the herd immunity threshold is high (Fig. 4B). Con-
sequently, the time between vaccinations required to maintain
herd immunity is much shorter than the mean duration of protec-
tive immunity (Fig. 4C). For example, even if the mean duration of
protective immunity is 10 years, vaccination must occur every
2.4 month and 2.4 years to maintain herd immunity when R0 is 6
and 3, respectively (see the red lines in Fig. 4C). On the other
extreme, when s is very large (Fig. 4A, s ¼ 1), individuals in the
population have identical durations of protective immunity. In this
case, herd immunity persists for a long period of time before the
fraction of immune individuals suddenly drops to a very low level
(Fig. 4B). In this case, herd immunity can be kept at a duration sim-
ilar to the mean duration of protective immunity irrespective of R0

(see blue lines in Fig. 4C).
The reality of an imperfect vaccine is likely to be between these

two extremes. When we assume s ¼ 10, the distribution becomes
more Gaussian-like (Fig. 4A) where some people lose protective
immunity faster than others, but that heterogeneity is relatively
low. If a mass vaccination achieves 85% immunity in a population
and protective immunity lasts on-average around 45 weeks to
1 year (Long et al., 2020) (consistent with the duration of immunity
induced by endemic coronaviruses (Callow et al., 1990; Kissler
et al., 2020)), then vaccination will need to occur once a few
months (Fig. 4C). If the mean duration of protective immunity is
around 3 years as observed for the antibody response to SARS-
CoV-1 or MERS-CoV (Payne et al., 2016), vaccination once a year
nity in maintaining herd immunity in a population. (A) Three scenarios for the
¼ 1). All three distributions have the same mean, i.e. 1 year. The color code applies
We assumed that 85% of population are immune after a mass vaccination at time 0.
0 = 3). (C) The time when the population immunity decreases to the threshold value
lid lines) in the calculations. Note the dashed blue line overlaps with the solid blue
ars.



R. Ke, E. Romero-Severson, S. Sanche et al. Journal of Theoretical Biology 517 (2021) 110621
or once two years will be sufficient, if R0 is 6 or 3, respectively
(Fig. 4C). If the mean duration of protective immunity is greater
than 10 years (for example, a long T cell immunity to SARS-CoV-
1 is observed in individuals recovered from SARS-CoV-1 infection
(Le Bert et al., 2020)), the time interval between repeated vaccina-
tions becomes longer than 4 years or 7 years when R0 is 6 or 3,
respectively.
4. Discussion

In this work, we report rapid COVID-19 epidemic spread before
broad control measures were implemented in the US and in the
eight most affected countries in Europe during March 2020. We
further estimated that R0 values range between 3.5 and 6.4 in these
countries, which means high herd immunity thresholds between
71% and 84%. Together with our previous estimates for the out-
break in Wuhan (Sanche et al., 2020), these results are consistent
with SARS-CoV-2 being highly transmissible irrespective of hetero-
geneities in geographic and social settings and emphasize the
necessity of strong control measures, such as social distancing. A
high level of coverage of effective vaccines are needed to achieve
herd immunity. We further show that the heterogeneity of
individual-level protection provided by a vaccine is an important
factor in determining the frequency of vaccinations.

Awareness of the extraordinary high rates of COVID-19 spread
in the absence of control measures is critically important for epi-
demic preparedness. The short doubling times of the epidemic
means that health care systems can be overwhelmed in a couple
of weeks rather than several months in the absence of control (Li
et al., 2020b). For example, a report shows that the number of
COVID-19 patients admitted to intensive care units in Italy during
February and early March 2020 grew at a rate of approximately
0.25/day during early epidemic (Grasselli et al., 2020). We esti-
mated that the SARS-CoV-2 outbreaks grew extremely rapidly at
rates between 0.18 and 0.29/day, in eight European countries
and the US. These estimates for European countries are in general
consistent with other studies using different approaches and dif-
ferent sources of data (Dehning et al., 2020; Flaxman et al., 2020;
Pellis et al., 2020). We further show that because of the high trans-
missibility of the virus, moderate control efforts will not suffi-
ciently slow the virus spread to achieve measurable public health
benefits. This may explain the continuous growth of the outbreak
in some countries despite measures, such as work and school clo-
sures, were in place. To delay the peak or to reverse the growth of
the epidemic with non-pharmaceutical interventions, strong and
comprehensive intervention efforts, such as wide-spread testing,
isolation and quarantine, use of personal protective equipment,
and social distancing, may be needed.

While we found remarkably high rates of epidemic growth in all
the examined countries, we caution that our inference is largely
driven by data collected from highly populated areas, such as
Wuhan in China, Lombardy in Italy, and New York city in the US.
Heterogeneities in the growth rate almost certainly exist among
different areas within each country. For example, recent works
suggest that the rate of spread is positively associated with popu-
lation densities (Rader et al., 2020). Therefore, the estimates we
provide may represent good estimates in highly populated areas
such as in cities.

One limitation of our inference (as well as in other works
(Dehning et al., 2020; Flaxman et al., 2020; Pellis et al., 2020;
Romero-Severson et al., 2020)) arises from the case and death
count data. Case confirmation data is influenced by many factors,
including underreporting (Li et al., 2020c). Death and the cause
of death are usually recorded more reliably and are less affected
by surveillance intensity changes than case counts. However,
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COVID-19 death counts may also underestimate the true COVID
deaths. For example, it is possible that deaths from COVID-19 are
underreported when people are unaware of community transmis-
sion of COVID-19 (Kong et al., 2020) or when health care system is
overwhelmed (Li et al., 2020b). In addition, factors including
changes in definitions and protocols for ascertaining COVID deaths,
updating prior deaths may also impact on COVID death reporting.

Calculation of the basic reproductive number requires knowl-
edge of the distribution of the length of serial interval (SI), which
in turn is determined by the latent and the infectious periods. Sim-
ilar to our earlier work (Sanche et al., 2020), we assumed parame-
ter values that are consistent with a mean SI of 6–8 days, based on
estimates using transmission-pair data fromWuhan, China and Vo,
Italy (Ali et al., 2020; Lavezzo et al., 2020; Thompson et al., 2020).
This led to higher estimates of R0 for the European countries than
other studies (Flaxman et al., 2020; Salje et al., 2020). For example,
Flaxman et al. assumed a mean serial interval of 6.5 days according
to Bi et al. (2020). However, Bi et al. demonstrated that when the
transmission pair is not isolated rapidly after symptom onset, the
mean serial interval is estimated to be 8 days (Bi et al., 2020).

Shorter mean SIs were frequently reported in the literature, for
example, 4.0 days in Du et al. (2020), 5.8 days in He et al. (2020), 4–
5 days in Nishiura et al. (2020), 4–5.2 days in Ganyani et al. (2020).
However, these estimates were based on data reported in locations
outside of Wuhan, Hubei province, and other Asian countries and
territories neighboring China, and thus were strongly impacted
by active surveillance and isolation effort as demonstrated by Ali
et al. (2020) and discussed in Bar-On et al. (2020). Indeed, we pre-
viously estimated that in provinces outside of Hubei province, the
mean time from symptom onset to hospitalization/isolation, was
as short as 1.5 days after Jan 18th (Sanche et al., 2020), suggesting
an exceptionally active surveillance effort. For the purpose of esti-
mating the basic reproductive number, R0, and the herd immunity
threshold, the mean serial interval in the absence of isolation effort
is the relevant quantity to use. Therefore, we believe our estima-
tion of R0 represent a more accurate estimate. Further work char-
acterizing the heterogeneities of the distribution of serial
intervals and measuring serial intervals from individuals who are
asymptomatic may help to improve the estimation of R0 (Park
et al., 2020).

We calculated the classical herd immunity thresholds 1 � 1/R0,
derived from models assuming a homogenous population
(Anderson and May, 1991), to be between 71% and 84% in China
(Sanche et al., 2020), the US and the eight European countries.
These are very high thresholds for random vaccination even with
an effective vaccine. A recent survey showed that only approxi-
mately 50% of Americans plan to get a COVID-19 vaccine (Mello
et al., 2020). Assuming 90% efficacy, 50% coverage only leads to a
population immunity of 45%. This is much lower than the herd
immunity required to stop transmission. This highlights the impor-
tance of public education about COVID-19 vaccination to ensure
high vaccine coverage to achieve herd immunity (Mello et al.,
2020). Other intervention efforts including both non-
pharmaceutical, i.e. effective test, trace and isolation, and pharma-
ceutical interventions, i.e. therapeutics, are likely needed in addi-
tion to vaccination. If the herd immunity threshold is not
achieved, i.e. a likely scenario given the high herd immunity
thresholds, transition to endemicity will be expected (Lavine
et al., 2021).

We note that the herd immunity thresholds derived from the
classical formula, 1 � 1/R0, represent good estimates in the context
of random vaccinations and recent works pointed out that the dis-
ease induced herd immunity threshold may be lower due to
heterogeneity in population structure, such as age structure and
contact activity levels (Britton et al., 2020), and individual suscep-
tibility and exposure (Gomes et al., 2020). This is because individ-
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uals with a high level of contacts are more likely to be infected and
once these individuals are recovered/vaccinated and immune, the
infectious agent is much less likely to spread. This may be true
when there exists substantial heterogeneity in the population
and risk behavior is static, i.e. low risk persons never engage in
high-risk behaviors over time. However, the extent of heterogene-
ity and whether contact structure changes over time for SARS-CoV-
2 spread are yet to be quantified through rigorous epidemiological
studies. Therefore, cautions need to be made when disease induced
immunity thresholds are used for public health policy making.

Recent COVID-19 vaccine trials show that they are highly effica-
cious in preventing disease (Moderna, 2020; Pfizer, 2020); how-
ever, it is still not known how effective they protect from
infection and how long the protective immunity lasts. We found
that if the duration of immunity is relatively short as suggested
in Long et al. (2020) and Seow et al. (2020), and similar to the dura-
tions of protective immunity against other endemic coronaviruses
(Callow et al., 1990; Kissler et al., 2020) or MERS-CoV (Payne et al.,
2016), a frequent vaccination schedule once every couple of years
to multiple times per year is needed to maintain herd immunity.
Furthermore, we found that in addition to the mean duration of
vaccine-induced protective immunity, the distribution of the dura-
tion is an important factor in determining vaccination frequency. A
vaccine that induces a more uniform response in a population is
better than a vaccine that induces a heterogeneous response in
maintaining population immunity. Studies of the kinetics of anti-
body dynamics in individuals, such as Antia et al. (2018) and
Seow et al. (2020), will help making more precise predictions of
vaccine schedules.

Overall, our work shows that SARS-CoV-2 has high R0 values
and spread very rapidly in the absence of strong control measures
across different countries. This implies very high herd immunity
thresholds, and thus highly effective vaccines with high levels of
population coverage will be needed to prevent sustained transmis-
sion. If the protective immunity induced by vaccination is not long
lasting, understanding the full distribution of the duration of pro-
tective immunity in the population is crucial to determine the fre-
quency of vaccinations.
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