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Simple Summary: Radiomics analysis is used on magnetic resonance imaging – apparent diffusion
coefficient (MRI-ADC) maps and [68Ga]Ga-PSMA-11 PET uptake maps to assess unique tumor traits
not visible to the naked eye and predict histology-proven ISUP grades in a cohort of 28 patients. Our
study’s main goal is to report imaging features that can distinguish patients with low ISUP grades
from those with higher grades (ISUP one+) by employing logistic regression statistical models based
on MRI-ADC and 68Ga-PSMA data, as well as assess the features’ stability under small contouring
variations. Our findings reveal that MRI-ADC and [68Ga]Ga-PSMA-11 PET imaging features-based
models are equivalent and complementary for predicting low ISUP grade patients. These models can
be employed in broader studies to confirm their ISUP grade prediction ability and eventually impact
clinical workflow by reducing overdiagnosis of indolent, early-stage PCa.

Abstract: Prostate cancer (PCa) risk categorization based on clinical/PSA testing results in a substan-
tial number of men being overdiagnosed with indolent, early-stage PCa. Clinically non-significant
PCa is characterized as the presence of ISUP grade one, where PCa is found in no more than two
prostate biopsy cores.MRI-ADC and [68Ga]Ga-PSMA-11 PET have been proposed as tools to predict
ISUP grade one patients and consequently reduce overdiagnosis. In this study, Radiomics analysis is
applied to MRI-ADC and [68Ga]Ga-PSMA-11 PET maps to quantify tumor characteristics and predict
histology-proven ISUP grades. ICC was applied with a threshold of 0.6 to assess the features’ stability
with variations in contouring. Logistic regression predictive models based on imaging features were
trained on 31 lesions to differentiate ISUP grade one patients from ISUP two+ patients. The best
model based on [68Ga]Ga-PSMA-11 PET returned a prediction efficiency of 95% in the training phase
and 100% in the test phase whereas the best model based on MRI-ADC had an efficiency of 100%
in both phases. Employing both imaging modalities, prediction efficiency was 100% in the training
phase and 93% in the test phase. Although our patient cohort was small, it was possible to assess that
both imaging modalities add information to the prediction models and show promising results for
further investigations.
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1. Introduction

Prostate cancer (PCa) is the second most frequent cancer diagnosis made in men and
the fifth leading cause of death worldwide, with an ever-increasing incidence [1].

The current clinical-/PSA-based risk stratification for PCa still leads to a large number
of men being overdiagnosed with indolent, early-stage PCa that may require only active
surveillance rather than immediate treatment with unjustified comorbidities. According
to pertinent societal guidelines, clinically non-significant PCa (cns-PCa) is characterized
as ISUP grade one, where PCa is found in no more than two prostate biopsy cores, each
affected by less than 50% of its length, with a total PSA inferior to 10 ng/mL [2,3]. At the
same time, systematic trans-rectal ultrasound-guided 12-core biopsies may fail to detect
the most aggressive components of PCa and their real sizes, underestimating clinically-
significant PCa (cs-PCa) in up to 30% of cases and delaying active treatments. A noninvasive
determination of the real ISUP grade group would be of great help in informing biopsy
targeting and treatment decisions [4–6]. In this scenario, there is an emerging need for
non-invasive methods that better correlate with histology-proven ISUP grades.

Multiparametric magnetic resonance imaging (mp-MRI), combining T1-weighted and
T2-weighted sequences with Diffusion-Weighted MRI and [68Ga]Ga-PSMA-11 PET, have
proven to be good candidates to bridge this gap [7–10]. For instance, the PROMIS trial
demonstrated that mp-MRI at triage might avoid unnecessary biopsies in 27% of cases
and allow for an 18% increase in the detection of clinically significant cancers for TRUS
biopsies guided by mp-MRI compared to standard TRUS biopsies [7]. In subsequent
studies, Kasivisvanathan et al. [11] and Ahdoot et al. [8] found that MRI-targeted biopsies
are superior to standard transrectal ultrasonography-guided biopsies in men at clinical
risk of prostate cancer. Furthermore, quantitative parameters extracted from Apparent
Diffusion Coefficient maps (calculated from DWI sequences of mp-MRI) showed a negative
correlation with histology-proven ISUP grade (formerly Gleason score) [12–14]. However,
the positive predictive value of mp-MRI is still poor, ranging from 20% to 68% [12], resulting
in needless biopsies [11] and a need for improvement, particularly for individuals classified
as intermediate risk. Despite these new findings, the analysis of the MRI-ADC maps’
histograms alone leaves many grey areas in the discrimination of low ISUP grade patients
(one vs. two+), which is critical for treatment guidance, such as deciding between active
surveillance, surgery, or radiotherapy according to NICE guidelines [15].

Prostate-specific membrane antigen (PSMA) is a type II transmembrane glycoprotein
overexpressed on the surfaces of PCa epithelial cells. Higher degrees of PSMA overex-
pression are associated with higher aggressive biology (Gleason Score/ISUP grade group),
luminal subtype, high androgen receptor activity, and higher serum PSA and is related
to tumor progression and disease recurrence [16–22]. Pioneering studies evaluating the
potential of [68Ga]Ga-PSMA-11 PET to detect intraprostatic tumour foci have documented
proportionality between the intensity of the PSMA tumour uptake and ISUP grade group,
the size of tumor foci, tumor growth pattern (infiltrative versus expansive), serum PSA,
and higher D’Amico scores [23–32]. A recent meta-analysis carried out on 389 patients with
clinical/biochemical suspicion of PCa documented for [68Ga]Ga-PSMA-11 PET an overall
sensitivity and specificity of 97% and 66%, respectively. Despite, [68Ga]Ga-PSMA-11 PET
returned a poor specificity similar to that of mpMRI and its negative likelihood ratio was
found to be 0.05, leading to a 20-fold decrease in the odds of PCa being present in patients
with negative PET findings. In addition, the diagnostic accuracy of [68Ga]Ga-PSMA-11
PET for detecting clinically significant PCa returned pooled sensitivity and negative likeli-
hood ratios of 0.99 and 0.02, respectively, implying a potential role as a non-invasive risk
stratifier [33].

Thus, PSMA-targeted PET imaging has been proposed in recent years to increase the
diagnostic accuracy of mpMRI in defining the malignant potential of lesions detected and
scored according to PIRADS version 2.1 (accessed on 7 April 2022). Studies evaluating the
added value of [68Ga]Ga-PSMA-11 PET and mpMRI for detection of clinically-significant
PCa documented a significantly increased diagnostic accuracy for the multimodality ap-
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proach compared to individual modalities. PSMA uptake (SUV(bw)max) and DWI MRI
(ADCmax and ADCmin) were found to be distinct biomarkers able to differentiate between
clinically significant PCa and normal prostatic tissue in naïve prostate cancer patients
with a Gleason Score ≥7 [34,35]. In this study, texture analysis, which applies advanced
mathematical functions to medical images, will be employed both in MRI-ADC maps and
[68Ga]Ga-PSMA-11 uptake maps to quantify peculiar tumor characteristics not visible to the
naked eye, in order to predict the histology-proven ISUP grade. Therefore, their application
to MRI-ADC maps has been reported to be helpful in reducing grey areas in ISUP grade
prediction [36], and employed together with [68Ga]Ga-PSMA-11 PET, they may show even
more promising results. Despite this evidence, Radiomics features are strongly affected
both by acquisition parameters and contouring methods [37–39].

The primary objective of our study is to report the features able to discriminate low
ISUP grade patients from higher grade (ISUP 1+) patients, employing both MRI-ADC and
[68Ga]Ga-PSMA-11 data to test the stability of the features under small contouring variations.

2. Materials and Methods
2.1. Patient Selection

We retrospectively analyzed a dataset of mp-MRI and [68Ga]Ga-PSMA-11 PET images
from 28 patients with biopsy-proven prostate adenocarcinoma enrolled in our institu-
tional prospective multi-cohort study BIOPSTAGE (EudraCT number: 2017-002651-28)
between May 2018 and May 2020. In this prospective study, patients with high-risk prostate
cancer are staged by pelvic mp-MRI and [68Ga]Ga-PSMA-11 PET prior to radical prosta-
tectomy and pelvic lymph node dissection to rule out metastases and for correlation of
pelvic imaging findings with axial step section histopathology analysis. Both mp-MRI
and [68Ga]Ga-PSMA-11 PET scans were performed in patients fulfilling the following
cohort-specific inclusion criteria:

(a) patients 18 years of age or older, able to express informed consent for study participa-
tion and compliant with BIOPSTAGE on-protocol imaging;

(b) biopsy evidence of prostate cancer with any of the following high-risk characteristics:

(1) clinical T stage ≥ T2c;
(2) clinical stage N1;
(3) ISUP grade group ≥ 4;
(4) serum PSA > 20 ng/mL;

(c) biopsies performed at least 4 weeks prior to mp-MRI and [68Ga]Ga-PSMA-11 PET;
(d) patients opting for radical prostatectomy and pelvic lymph node dissection.

Exclusion Criteria included:

(a) ongoing hormone therapy at the time of screening and within the previous six months;
(b) previous pelvic radiation therapy;
(c) any medical condition incompatible with MRI scanning or the administration of MRI

contrast medium, or any condition that impairs the quality of pelvic MRI imaging;
(d) history of allergic reactions attributed to compounds of similar chemical or biological

composition to [68Ga]Ga-PSMA-11;
(e) other known malignant neoplastic disease in the patient’s medical history with a

disease-free interval of less than 5 years; chemotherapy or radiation therapy in the 4
weeks prior to study entry;

(f) a history of other malignant neoplastic disease in the patient’s medical history with a
disease-free interval of less than 5 years.

An outline of the workflow employed prior to statistical analysis to obtain the results
described below is given in Figure 1.



Cancers 2022, 14, 1888 4 of 12

Cancers 2022, 14, x FOR PEER REVIEW 4 of 13 
 

 

An outline of the workflow employed prior to statistical analysis to obtain the results 
described below is given in Figure 1. 

 
Figure 1. Left: Detail of prostate contouring for the two imaging modalities performed by Nuclear 
Physician and Radiologist, respectively. Center: Representative example of anatomic pathology 
reporting with details about ISUP grading. Right: [68Ga]Ga-PSMA-11 PET and MRI-ADC are fused 
with MIM maestro software with the respective contouring superimposed. 

2.2. MR Imaging Protocol and Lesion Contouring 
Mp-MRI studies were acquired at our department with a 3 Tesla MR Scanner (Philips 

Ingenia 3.0T, Philips Healthcare, Best, the Netherlands) by using a Philips Sense Flex 
Medium surface coil. 

The patient was placed in the scanner in the supine position, feet first. T1-weighted 
(T1w), T2-weighted (T2w), and ADC maps generated by axial diffusion-weighted 
imaging (DWI) sequences for prostate/small pelvis were acquired. 

Four b-values were used (b100, b800, b1000, b2000) to provide more accurate ADC 
calculations. Echo time (TE) and repetition time (TR) were ≤90 ms and ≥3000 ms, 
respectively. The field of view (FOV) was 16–22 cm with an in-plane dimension of 2.5 mm. 
Slice thickness was set to 3 mm without a gap. 

ADC maps were selected for radiomic analysis since they are the most informative 
for lesion detection, localization, and characterization, providing essential information on 
neoplastic tissue and anatomic detail [14]. Contouring of the 28 patient lesions was 
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Figure 1. Left: Detail of prostate contouring for the two imaging modalities performed by Nuclear
Physician and Radiologist, respectively. Center: Representative example of anatomic pathology
reporting with details about ISUP grading. Right: [68Ga]Ga-PSMA-11 PET and MRI-ADC are fused
with MIM maestro software with the respective contouring superimposed.

2.2. MR Imaging Protocol and Lesion Contouring

Mp-MRI studies were acquired at our department with a 3 Tesla MR Scanner (Philips
Ingenia 3.0T, Philips Healthcare, Best, the Netherlands) by using a Philips Sense Flex
Medium surface coil.

The patient was placed in the scanner in the supine position, feet first. T1-weighted
(T1w), T2-weighted (T2w), and ADC maps generated by axial diffusion-weighted imaging
(DWI) sequences for prostate/small pelvis were acquired.

Four b-values were used (b100, b800, b1000, b2000) to provide more accurate ADC
calculations. Echo time (TE) and repetition time (TR) were ≤90 ms and ≥3000 ms, respec-
tively. The field of view (FOV) was 16–22 cm with an in-plane dimension of 2.5 mm. Slice
thickness was set to 3 mm without a gap.

ADC maps were selected for radiomic analysis since they are the most informative
for lesion detection, localization, and characterization, providing essential information on
neoplastic tissue and anatomic detail [14]. Contouring of the 28 patient lesions was per-
formed on the mp-MRI through Watson Elementary software (Watson Medical, Nijmegen,
the Netherlands) by an expert radiologist employing T1w, T2w, and ADC maps for a total
of 37 lesions contoured.

2.3. [68Ga]Ga-PSMA-11 PET/CT Imaging Protocol and Lesion Contouring

[68Ga]Ga-PSMA-11 was prepared according to national regulations and good radio-
pharmaceutical practices (GRP) as outlined in specific EANM guidelines [26]. All patients
were intravenously injected with a mean activity of 159 MBq of [68Ga]Ga-PSMA-11 (activity
range: 112–202 MBq) via an indwelling catheter in an antecubital vein according to patient
weight. A whole-body PET/CT scan was performed 60–80 min after I.V. administration
of [68Ga]Ga-PSMA-11, covering a volume from the skull vertex through the mid-thigh in
3D flow motion. Whole-body PET acquisitions were corrected for attenuation and scatter
and adjusted for system sensitivity and providing parametric images in terms of Standard-
ized Uptake Values (SUVbw: KBq found/gm tissue/KBq injected/gm body mass). The
PET reconstruction matrix was 400 × 400 pixels (Hi-REZ processing), achieving an axial
resolution of 2.5 mm and a slice thickness of 4 mm. The CT component of the studies was
performed using the CARE Dose4D protocol for CT dose adaptation (mAs weighed on
z-axis, patient’s dimensions, and x-y axis), HDFOV 512 × 512 matrix, and slice thickness of
3 mm for PET attenuation correction and co-registration. [68Ga]Ga-PSMA-11 PET images
were contoured by an expert Nuclear Physician on MIM Maestro software, employing
as the minimum positivity threshold an arbitrary maximum SUV(bw)max of 3 g/mL and
outlining 62 positive lesions.
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2.4. Histopathological Reporting and ISUP Grade Assignment

Post-surgical histopathology results are considered the standard of truth for ISUP
grade determinations of lesions. The anatomic pathology specimens were sectioned serially
from apex to base and submitted as 12 whole-mount sections for examination. After detailed
microscopic revision, the ISUP grade pattern present in each section was determined. Then
each lesion detected with mp-MRI or [68Ga]Ga-PSMA-11 PET was compared with the
histopathology results and consequently, associated with an ISUP grade. If an imaging-
detected lesion had negative correspondence with histopathology, this same lesion was
classified as a false positive and consequently discarded from the analysis. All the lesions
with tumour correspondence with histopathology were classified as true positives.

2.5. Images Pre-Processing and Radiomic Analysis

[68Ga]Ga-PSMA-11 PET and MRI-ADC images were resampled to a resolution of
1/1/1 mm to uniform the dataset.

For the Radiomics features’ stability assessments, physicians’ contours were isotrop-
ically expanded by 1 and 2 mm and contracted by 1 mm. Contraction of 2 mm was not
considered in the analysis due to the small size of many lesions that may cause failure in
the subsequent Radiomics analyses.

The lesions subset visible both in MRI-ADC and [68Ga]Ga-PSMA-11 PET were further
contoured according to the following rules: (a) if the [68Ga]Ga-PSMA-11 PET lesion contour
is included, the MRI-ADC lesion contour—[68Ga]Ga-PSMA-11 PET contour is chosen and
vice versa (b) In case of partial overlapping (>80% of the volume), intersection between lesion
contours was performed (c) in other scenarios, association between lesions was not considered.

First, second, and higher order features were extracted with the Image Biomarker
Standardisation Initiative (IBSI) [40] compliant tool, SOPHiA DDM™ For Radiomics (2021
SOPHIA GENETICS s.p.a., Boston, MA, USA), for MRI-ADC and [68Ga]Ga-PSMA-11 PET
images. First order features were derived from the histogram of voxel intensities. Second
and higher order features were calculated from Intensity size-zone, co-occurrence, and
run length-based matrices. Detailed descriptions of the 218 imaging features extracted
can be found in the IBSI Reference manual [40]. Grey level quantization was fixed to
32 bins between the minimum and maximum values inside the Region Of Interest (ROI).
Features extracted from physicians’ contours were compared with isotropically expanded
and contracted ROIs (+1 and +2 mm −1 mm) through the Intra Class Correlation coefficient
(ICC) to select stable features under small variations in contouring with ICC >0.6.

2.6. Statistical Analysis

The endpoint of this study was an investigation of the diagnostic performance of
Radiomics features extracted from multimodality imaging (MRI-ADC and [68Ga]Ga-PSMA-
11 PET) against the ISUP grade obtained from histological evaluation, in particular, the
ability of radiomic features to discriminate ISUP 1 from higher grades in order to help with
treatment stratification. In Figure 2, the entire process of statistical analysis is summarized,
from features extraction to final model evaluations.

Five independent predictive logistic models for ISUP Grade were developed based on:

(a) lesions visible only through [68Ga]Ga-PSMA-11 PET;
(b) lesions visible only with MRI-ADC;
(c) lesions visible with [68Ga]Ga-PSMA-11 PET and MRI-ADC but only employing

68-[68Ga]Ga-PSMA-11 PET imaging features;
(d) lesions visible with [68Ga]Ga-PSMA-11 PET and MRI-ADC but only employing mp-

MRI imaging features;
(e) lesions visible both with [68Ga]Ga-PSMA-11 PET and MRI-ADC, with features ex-

tracted from both imaging modalities.
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statistical models.

The models were built through a stochastic cross-validation process to evaluate
their performance.

The modeling process followed the following procedure:
Lesion feature datasets were divided into training (2/3) and test (1/3) sets. Subse-

quently, a logistic regression model was trained on the training set, with the employing
features selected by a least absolute shrinkage and selection operator (LASSO) algorithm
with internal 3-fold cross-validation. The predictive ability of the model was then calculated
on the test set. This operation was repeated 30 times and subsequently, receiver operating
curves (ROC) and the area under the curve (AUC) of each iteration were recorded both for
the training and test sets.

The models’ quality was reported by averaging the AUC across iterations. The ROC
and AUC were reported for the best-performing iteration to evaluate the model’s prediction
power and to compare the performances of the mixed imaging features model (e) with
standalone imaging models (c) and (d). The most frequently selected features across
iterations were reported as the most informative features for ISUP Grade prediction.

All statistical analyses were carried out with R and the open-source software RStu-
dio [41]. The raw data of this study ([68Ga]Ga-PSMA-11 PET, MRI-ADC and Pathology
records) are available from the corresponding author on reasonable request.

3. Results

Patients were aged between 44 and 72 years (mean age: 62 years). The median total
PSA at the time of prostate cancer diagnosis was 6.8ng/mL (IQR: 4.4–8,7). Eleven patients
had ISUP grade one prostate cancer in post-prostatectomy pathology, eight patients had
ISUP two, three patients had ISUP three, five patients had ISUP four, and one patient had
ISUP five prostate cancer. The median time between [68Ga]Ga-PSMA-11 PET and mp-MRI
was eight days, whereas the median time between advanced imaging and prostatectomy
was 45 days. In post-prostatectomy pathology, organ-confined disease (pT2a to pT2c) was
documented in 21 patients; seven patients were found with locally advanced disease (pTa
to pT3b). Table 1 provides an overview of the patient’s features, while Table S1 provides a
more detailed description of the patient’s characteristics.

In this cohort of high-risk prostate cancer candidates for surgery, MRI-ADC and
[68Ga]Ga-PSMA-11 PET, yielded similar sensitivities (71.5% and 72.3%, respectively) and
specificities of 99.5% and 90.5%, respectively, in detecting prostate cancer foci.

For the purpose of this study, we analyzed only true positive lesions on MRI-ADC
imaging (n = 37) and [68Ga]Ga-PSMA-11 PET imaging (n = 49 lesions) that had positive
correspondence with histopathology and that were used to build models (a) and (b). The
small unbalance in the number of discovered lesions between imaging modalities is due
to the fact that in four patients, multiple PET lesions had correspondence with only one
big lesion in MRI-ADC maps and for three patients, MRI-ADC imaging was low quality or
unreadable. Among these lesions, 31 were topographically paired at fusion and employed
to build models (c), (d) and (e).
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Table 1. Summary of patients’ characteristics.

Patients Characteristics Value

mean age (years), age range 62.0 (44–72)
median age (years), IQR 63.0 (58.5–66.5)

median total PSA (ng/mL), IQR 6.8 (4.4–8.7)
median PSA density (ng/mL/g), IQR 0.15 (0.11–0.23)

median prostate volume (mL), IQR 48 (37.3–59.3)
overall ISUP grade group (post-prostatectomy pathology)

1 n = 11
2 n = 8
3 n = 3
4 n = 5
5 n = 1

pathology T stage
T2a-T2b n = 6

T2c n = 15
T3a n = 4
T3b n = 3

median time between [68Ga]Ga-PSMA-11 PET and mpMRI
(days), IQR

8 (4–13)

median time between imaging and surgery (days), IQR 45 (24–86)
IQR: Inter Quartile Range, PSA: Prostate-Specific Antigen.

We extracted 218 imaging features with the Radiomics software Sofia (manufacturer,
city, state (if USA), country) from MRI-ADC and [68Ga]Ga-PSMA-11 PET imaging. The
extraction was performed on the original images and expanded lesion contours. Subse-
quently, ICC was applied with a threshold of 0.6 to assess the features’ stability for small
variations in contouring. Twenty-nine and 87 features successfully passed the ICC test for
[68Ga]Ga-PSMA-11 PET and MRI-ADC imaging, respectively. These features were further
investigated and employed to build the five logistic models described in the “Materials and
Methods” section. Table 2 summarizes the performance of the models in the training and
test phases and the overall best performing model for each category, with details described
below. For [68Ga]Ga-PSMA-11 PET features (a), the average model performance in terms
of the area under the curve (AUC) in the training and test sets were 0.58 and 0.53, respec-
tively. One iteration out of the 30 showed a very good predictive power with an AUC of
0.90 in the training set and 1.00 in the test set. MRI-ADC -based models (b) exhibited higher
performance with an average AUC of 0.91 in the training phase and 0.67 in the test set.
Furthermore, eight of the 30 iterations showed high predictive performance both in the
training and test sets with an AUC higher than 0.80. The average performance of model
(c) based on [68Ga]Ga-PSMA-11 PET features but trained on lesions visible also for mp-MRI,
was 0.80 and 0.60 on the training and test sets, respectively. One iteration returned an AUC
of 0.95 in the training set and an AUC of 1.00 in the test set. The most frequently selected
features for the models’ development were area density, inverse elongation, zone size
non-uniformity, flatness, and volume fraction differences between the intensity fractions.

Table 2. Summary of trained and tested imaging biomarker-based models.

Model Type Number of Lesions Train Mean AUC Test Mean AUC Train Best AUC Test Best AUC

PET 49 0.58 0.53 0.9 1
MRI 37 0.91 0.67 0.92 1

PET (MRI-visible) 31 0.8 0.6 0.95 1
MRI (PET-visible) 31 0.74 0.45 1 1

MRI+PET 31 0.75 0.49 1 0.93

The average performance of models (d) based only on MRI-ADC features and trained
on commonly detected lesions was 0.74 and 0.45 on the training and test sets, respectively.
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Two iterations scored an AUC higher than 0.80 and the most-selected features were joint
maximum, zone distance non-uniformity, 90th discretized intensity percentile, compactness,
information correlation, and skewness. Models (e) based on both [68Ga]Ga-PSMA-11
PET and MP-MRI features showed a mean performance of 0.75 on the training set and
0.49 on the test set. Two iterations had an AUC higher than 0.80 and the most informative
features were normalized inverse difference ([68Ga]Ga-PSMA-11 PET), zone distance non-
uniformity (MRI-ADC), joint maximum (MRI-ADC), large zone low grey level emphasis
([68Ga]Ga-PSMA-11 PET), 90th discretized intensity percentile(MRI-ADC), and area density
([68Ga]Ga-PSMA-11 PET).

In Figure 3, we report the ROC curves of the best performing iterations of models
(c), (d), and (e), both in the training and test sets.
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4. Discussion

The biopsy’s ISUP grade differs from the final ISUP determined after surgery in around
one-third of patients, with biopsies tending to underestimate cancer aggressiveness. The
differences between the two ISUPs can have a big impact on how patients are managed. As
a result, incorporating pre-therapeutic imaging characteristics to accurately determine PCa
aggressiveness is of great clinical importance.

This study evaluated the ability of MRI-ADCand [68Ga]Ga-PSMA-11-based quanti-
tative analyses to help differentiate low-risk prostate cancer patients (ISUP one) from the
higher-risk patient classes (ISUP>1) and aimed to evaluate the benefits of the two imaging
techniques combined. However, the results of this paper can be intended only as proof of
concept as the number of concordant lesions on MRI-ADC and [68Ga]Ga-PSMA-11 PET is
low, which represents the major limitation of this study. To overcome this limitation, we
employed a stochastic cross-validation approach and ran the LASSO-logistic modelling
process on 30 partitions of the datasets into training and test sets. Another limitation is
represented by the laborious and time-consuming process required to contour, fuse, and
evaluate lesions on different imaging modalities. Furthermore, Radiomics feature vari-
ability due to imaging acquisition and reconstruction is another disadvantage that to date
limits the widespread clinical practice of this approach. The average predictive power in
terms of the AUC for the training phase is very variable across models (a)–(e) and reaches a
maximum of 0.91 for model (b). In the test phase, the performances are quite low, ranging
from 0.45 in model (d) to 0.65 in model (b). From these average AUCs, it is difficult to
speculate about the benefits of employing both [68Ga]Ga-PSMA-11 PET and MRI-ADC
for ISUP predictions and these low performances can be justified by the small datasets
and mild class imbalance involved in the analysis that may compromise the training of
the majority of the models. For model (e), we had a performance drop in the test phase
probably caused by the augmented number of features involved in the analysis together
and the reduction in the number of lesions. Following these results, we are convinced that
the models’ predictive power was strongly influenced by the data repartition in the training
and test phases and thus it is our opinion that only in the higher AUC models were the
datasets correctly balanced to give an idea of the real benefit of imaging features. For these
reasons, we should take a closer look at every single model to give further details about the
contribution of the two imaging modalities. The best-performing [68Ga]Ga-PSMA-11 PET
models (a)–(c) have very high accuracies (>90%) both in the training and test phases and
outperform the baseline single-modality models similarly reported by Solari et al. [42] for
PCa ISUP grade prediction.

It is interesting to point out that in (b) models, the MRI-ADC mean value that is the
imaging predictor currently employed in clinical practice to assess patient risk was not
selected by LASSO. This evidence suggests that the Radiomics approach can provide a
significant improvement to patient classification for MRI-ADC sequences. Furthermore,
the performances of the best training models (b) are in line with the previously reported
performances of mp-MRI Radiomics-based analyses [43], in particular in the work of Fehr
et al. [44]. By combining ADC and T2w mean values with textural features, they achieve an
accuracy higher than 90% in differentiating low Gleason (6) prostate lesions from higher
scores (>7).

Building the predictive models (c) and (d), including the lesions visible both in MRI–
ADC and [68Ga]Ga-PSMA-11 PET, we can assess that the two imaging modalities are
equivalent in discriminating the low-risk patients from the higher-risk ones with an AUC
of the best performing iteration of 1.00 for the test phase, as visible from Figure 3C,D.
Finally, combining the 29 features of [68Ga]Ga-PSMA-11 PET and the 87 features of MRI–
ADC imaging, we obtained model (e), where performances were slightly lower and had a
maximum AUC of 0.93 (Figure 3F). It is important to point out that in this model, the LASSO
algorithm always chooses the most informative of both MRI-ADC- and [68Ga]Ga-PSMA-
11-based features to build the logistic regression prediction model, indicating that the two
modalities contribute to adding unique information for lesion classification. However,
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with our dataset it is difficult to observe statistically significant improvements in the
performances given by the integration of the two modalities due to the restricted number
of lesions, and further investigation is required to confirm our hypothesis.

5. Conclusions

Among the developed models, each imaging modality seems to provide similar
results in ISUP grade prediction. Preliminary results suggest that aside from the MRI-
ADC average value, currently employed in clinical practice to assess lesion severity, other
imaging biomarkers may provide complementary information for ISUP grade prediction,
but further, broader studies are necessary to confirm these findings.

Both [68Ga]Ga-PSMA-11 PET and MRI-ADC imaging biomarkers showed to be com-
plementary in ISUP grade assessment when employed together to build prediction models.
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