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ABSTRACT

Research on human and murine haematopoiesis has
resulted in a vast number of gene-expression data
sets that can potentially answer questions regarding
normal and aberrant blood formation. To researchers
and clinicians with limited bioinformatics experience,
these data have remained available, yet largely in-
accessible. Current databases provide information
about gene-expression but fail to answer key ques-
tions regarding co-regulation, genetic programs or
effect on patient survival. To address these short-
comings, we present BloodSpot (www.bloodspot.
eu), which includes and greatly extends our previ-
ously released database HemaExplorer, a database
of gene expression profiles from FACS sorted healthy
and malignant haematopoietic cells. A revised inter-
active interface simultaneously provides a plot of
gene expression along with a Kaplan—Meier anal-
ysis and a hierarchical tree depicting the relation-
ship between different cell types in the database. The
database now includes 23 high-quality curated data
sets relevant to normal and malignant blood forma-
tion and, in addition, we have assembled and built
a unique integrated data set, BloodPool. Bloodpool
contains more than 2000 samples assembled from
six independent studies on acute myeloid leukemia.
Furthermore, we have devised a robust sample in-
tegration procedure that allows for sensitive com-

parison of user-supplied patient samples in a well-
defined haematopoietic cellular space.

INTRODUCTION

A decade of intense studies of the genetic programs under-
lying normal and malignant haematopoiesis has resulted
in a number of gene-expression data sets, which can po-
tentially help answer questions concerning the molecular
mechanisms governing normal haematopoiesis and how
these are de-regulated in cancer. To researchers and clin-
icians with limited bioinformatics experience, these data
have been available through online databases in the form
of raw or semi-processed files but remained largely inacces-
sible for analysis, let alone comparison with user-supplied
in-house data. Recently, a number of web interfaces have
been generated to facilitate single gene queries of in-house
data (ImmGen Gene Skyline (1), Gene-expression Atlas
(2), Leukemia Gene Atlas (3) and Differentiation Map (2))
or curated, compiled and processed data sets (HemaEx-
plorer (3), Gene Expression Commons (4), A HeamAtlas
(5), BloodChIP (6), BloodExpress (7) and CODEX (8)).
These tools provide information on the expression of single
genes, but fail to answer the main questions as to whether
these genes influence patient survival or if genes or pathways
are regulated in similar or inverse patterns. We have previ-
ously published a comprehensive database of mRNA mi-
croarray samples from FACS sorted healthy and leukemic
bone marrow samples (3) which has proven a useful and
popular resource for researchers working within the areas
of cellular differentiation, haematopoiesis and leukaemia.
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Here, we present a complete overhaul and significantly
expanded version of the original database, with a new
and interactive interface, all freely available online. The
new database redefines current approaches to explorative
data integration, presentation and visualisation of gene-
expression in the haematopoietic system. Consequently, all
these improvements called for a new name: BloodSpot.

The core function of BloodSpot is to provide an expres-
sion plot of genes in healthy and cancerous haematopoi-
etic cells at specific differentiation stages. To present these
haematopoietic gene profiles, we have developed a novel vi-
sualization chart that simply integrates the benefits of strip-
charts and violin plots. The server accepts either a unique
gene name (gene alias) or a gene signature name from the
MSigDB database. Of note, an auto-complete mechanism
helps finding the right names for genes and gene signa-
tures. To contextualise the haematopoietic gene expression
profile, two additional levels of visualisation are available:
an interactive hierarchical tree that shows the relationship
between the samples displayed and a Kaplan—Meier plot
based on a high-quality Acute Myeloid Leukemia (AML)
data set (9). Additionally, we added a large body of curated
data sets to the database, which users can query seamlessly.
Significantly, we provide a new integrated data set of sam-
ples from AML patients along with FACS sorted samples
from healthy individuals. This new integrated data set pro-
vides the most detailed picture of the gene expression land-
scape in healthy and malignant haematopoiesis to date. Fi-
nally, the database provides the possibility of comparing
user-supplied leukaemia samples to healthy cells.

The platform is freely available, and requires no login, at:
www.bloodspot.eu

DATA CONTENT UPDATES
Available data sets

BloodSpot is a database of mRNA expression in healthy
and malignant haematopoiesis and includes data from both
humans and mice. The database is sub-divided into several
data sets that are each accessible for browsing through the
new interface. Data sets are organised by organism of ori-
gin and disease status. The data sets are organised as fol-
lows: first, human healthy haematopoietic cells, then human
leukaemia and finally healthy mouse haematopoietic cells.
BloodSpot contains the data sets from our previous Hema-
Explorer (3) as well as new published data sets, all man-
ually processed as described in Rapin et al. (10). All data
sets available in BloodSpot were generated using oligonu-
cleotide microarray chips, except for one mouse data set that
was generated using RNA sequencing technology. For com-
pleteness, the database also includes the content of other
online databases that we deem relevant for the study of
haematopoiesis in the framework of BloodSpot. These ex-
ternal databases include the Differentiation Map (DMAP)
(2) and the Immunological Genome project (ImmGen) (1).

In total the platform encompasses more than 5000 sam-
ples (see Tables 1-3). All data sets were controlled for qual-
ity, appropriately normalised and adjusted for batch effects
when necessary (11,12).
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Figure 1. Principal component analysis (PCA) plot of BloodPool sam-

ples. (A) before batch correction, (B) after batch correction. Batches are
coloured by study of origin.

BloodPool

One new feature of BloodSpot is BloodPool, an aggregated
and integrated data set grouping the results of multiple
studies focusing on AML. By means of our batch correc-
tion methods this data set can be used to study gene expres-
sion (programs) in AML in comparison with healthy cor-
responding cells (see Figure 1). Using the computational
method developed in Rapin ez al. (10), we have also com-
puted gene expression fold changes relative to their near-
est normal counterparts for all AML profiles in BloodPool.
BloodPool is available for browsing within BloodSpot and
can be selected as any of the other available data sets.

MSigDB and CMAP gene signatures integration

We collected all gene signatures available from the Molecu-
lar Signatures Database (MSigDB) (13) (version 4.0) (http:
/Iwww.broadinstitute.org/gsea/msigdb/) and computed, for
each signature, the mean expression values for all samples in
all data sets. These mean values summarise the expression of
a signature for each sample. Connectivity map (CMAP) (13)
signatures were generated with the rank matrix provided by
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Table 1. Data sets for normal hematopoiesis

Sample
Data set Organism Source numbers Cell types Reference
Normal hematopoiesis with Human GSE42519 34 HSC, MPP, CMP, MEP, Rapin et al. (20)
AMLs GMP, early PM, late PM,
MY, MM, BC, PMN
Normal hematopoiesis Human GSE17054 2 HSC Majeti et al. (21)
(HemaExplorer)
Normal hematopoiesis Human GSE19599 4 GMP, MEP Andersson et al. (22)
(HemaExplorer)
Normal hematopoiesis Human GSE11864 2 Monocytes Hu et al. (23)
(HemaExplorer)
Normal hematopoiesis Human E-MEXP-1242 2 Monocytes Wildenberg et al. (24)
(HemaExplorer)
Normal hematopoiesis Human GSE24759 211 Normal Hematopoiesis Novershtern ez al. (2)
(DMAP)
Mouse normal Mouse GSE14833, 67 Normal Hematopoiesis Di Tullio et al. (25),
hematopoietic system GSE6506 Chambers et al. (26)
ImmGen data sets Mouse GSE15907 >700 Normal Hematopoiesis Ref (1,27-29)
Table 2. Data sets for leukemic patients
Patient
Data set Organism Source numbers Cell types Reference
AML Normal Human AML GSE15434 251 NK-AML, WBM Kohlman et al. (28)
Karyotype data
sets
AML TCGA data Human AML TCGA 183 Various genetic aberrations, TCGA (9)
sets including t(8;21), inv(16),
t(15;17), t(11q23), complex
karyotype, WBM
Leukemia MILE Human AML, GSE13159 2096 AML, ALL and Haferlach et al. (29,30)
study ALL, CML, CLL preleukemic stages.
and MDS
AML versus Human AML GSE6891, 91 NK-AML, WBM de Jonge et al. (31,32)
normal GSE13159
251

Bloodpool Human AML GSE13159, 2076 Mainly AML, ALL and all references above

GSE15434, preleukemic stages.

TCGA,

GSE61804,

GSE14468

the database. For each combination of compound and con-
centration, we reported the top and bottom 500 genes and
produced gene signatures. The data displayed in BloodSpot
represent the mean value of all genes in a given signature.

Data normalisation

All data were normalised and batch corrected to eliminate
potential lab batch effects. For this we performed Robust
Multi-array Average (RMA) (14) normalisation of all mi-
croarray .CEL data files partitioned by origin, and next
applied ComBat (http://jlab.byu.edu/ComBat/) (12) an em-
pirical Bayes method implemented in the R language. The
batches were defined to be the study name/number, while
the covariates was assigned to the relevant cell type. The
resulting integrated gene expression databases can be visu-
alised directly or compared to external samples provided by
the user. See Tables 1-3 for an overview of the data pre-
sented in BloodSpot and the normalisation procedure used.
All AML data sets available in BloodSpot are normalised
according to Rapin et al. (10) and further batch corrected
using ComBat when necessary. This processing schema en-
sures that the samples are normalised in the context of nor-

mal haematopoiesis and according to state of the art batch
correction methods, regardless of the origin of the data.

For RNA-seq data, we used the Blue Collar Bioin-
formatics RNA-seq pipeline (mapping on mml10 mouse
genome with TopHat version 2 (15), (https://bcbio-nextgen.
readthedocs.org/)) to obtain normalised count data from
raw fastq files from Lara-Astiaso et al. (16). We report count
data processed using the variance stabilising transformation
method from the DESeq2 package (17).

Abbreviations and sample annotations

Abbreviations for all cell types can be found below the plot
by clicking the ‘Abbreviations’ link. Typically, the user can
find more detailed information about each cell type such as
a longer, more informative name, and for healthy cells data
sets the immunophenotype, when available. Links to the raw
unprocessed data can also be found here.

Available genes

The server is restricted to genes found in our database
of Affymetrix Human 133U plus 2, Affymetrix Human
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Table 3. Data set overview

Normalisation

Data set Features Samples method
Leukemia MILE study 67191 2095 1
Normal human hematopoiesis with AMLs 67191 296 1,7
Immgen Key populations 47273 256 2
AML versus normal 67191 252 3
AML TCGA data set 67191 244 1
AML TCGA data set versus normal 67191 244 3
AML Normal Karyotype 54675 234 1
AML Normal Karyotype versus normal 67191 234 3
Normal human hematopoiesis (DMAP) 35459 211 4
Immgen abT cells 47273 190 2
Immgen Dentritic cells 47273 151 2
Immgen MFs Monocytes Neutrophils 47273 114 2
Immgen B cells 47273 103 2
Normal human hematopoiesis (HemaExplorer) 57270 77 5
Immgen gdT cells 47273 76 2
Immgen Stem and progenitor cells 47273 76 2
Mouse normal hematopoietic system 57613 67 4
Immgen Activated T cells 47273 55 2
Immgen NK cells 47273 47 2
Immgen Stromal cells 47273 39 2
Mouse normal (RNA seq) 45426 52 6
BloodPool 67191 2120 1,7
BloodPool versus normal 67191 2076 3,7

Normalisation method legend:

1 Each cancer sample is normalised together with a set of samples from sorted normal myeloid populations. All samples where normalised using RMA.
Comparison of gene expression values is not possible with other data sets in Bloodspot.

2 All samples from the ImmGen data sets were normalised together with RMA. Samples were subsequently attributed to the different data sets in Blood-
Spot. This means that comparison of gene expression values is possible across all InmGen data sets.

3 The data are normalised according to Rapin ef al. Briefly, each cancer sample is normalised together with a set of samples from sorted normal myeloid
populations. Next, using a PCA-based method, the 5 closest normal samples from the cancer sample are averaged and this computed normal sample are
next compared to the cancer sample allowing for computation of gen expression fold changes. See Supplementary Methods and Rapin et al. (10).

4 All sampleswhere

normalised using RMA. Comparison of gene expression values is not possible with other datasets in Bloodspot.

5
See our previous work (Bagger et al. (3)).

6 The data were processed using the bebio nextgen RNA-seq pipeline. Count data were subsequently processed with DESeq?2’s variance stabilising trans-

formation method.

7 The data was batch corrected using ComBat, taking study number as batch.

133UA and Affymetrix Human 133UB chips for human,
and GeneChip Mouse Genome 430 2.0 and Affymetrix
Mouse Gene 1.0 ST Arrays for mouse. For the RNA-seq
data set UCSC annotation for the mm10 genome was used.

In order to handle gene aliases, a dictionary of gene
aliases was constructed from NCBI ftp:/ftp.ncbi.nlm.
nih.gov/gene/DATA/ and The HUGO Gene Nomencla-
ture Committee (HGNC) www.genenames.org. Ambiguous
gene aliases were not included when constructing the dictio-
nary. The alias conversion is only used when the query is not
an official gene symbol or probe name. The end result allows
for greater flexibility regarding gene names input and faster
browsing.

FUNCTIONALITY UPDATES

Both the back-end and the front-end have been completely
redesigned for interactive usage and speed of execution. The
interface is built with a range of new functionalities, with a
focus on simplicity of use (see Figure 2).

Unified input

BloodSpot takes a single gene name (or unambiguous gene
alias) or gene signature name as query. Users can search
for keywords such as ‘carcinomas’ or ‘cell cycle’ and will
be provided with a list of matching gene signature names.
When relevant, it is possible to select which probe-set to dis-
play from the list in the upper right corner of the main plot.
By default, the probe with the overall highest intensity is at
the top of the list. The option “‘Max probe’ will use the one
probe with the highest intensity within each population.

Default plot

When visiting the interface the plot at the centre of the
screen in the default view. This representation is a novel im-
proved jitter strip chart of gene expression, a swift novel vi-
sualisation plot that draws from bar plots and violin plots
where the jitter is controlled by the density of samples and
normalised over all the columns in the chart. Thus the width
of the data cloud shows how many samples have similar
values (see Figure 3A and a comparison to existing data
plot types in Supplementary Figure S1). For more details
on this visualisation method please see (Sidiropoulos, N.,
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Figure 2. BloodSpot interface details. After a gene alias is submitted to display its expression pattern, any of the top three panels can be clicked to magnify
content. The three panels show, from left to right, a survival plot based on a high-quality AML data set displaying a full Kaplan—Meier analysis for any
query gene or gene signature, an improved jitter strip chart of gene-expression plot that draws from bar plots and violin plots and an interactive hierarchical
tree that shows the relationship between the samples displayed and allows changing the focus of the display. The Select Population button allows the user
to select which populations to display. The Gene Correlations button shows in a table how much other genes or gene signatures correlate with the displayed
gene. It is possible to click on the genes in the table to display their expression profile. The Print as PDF button allows the user to export the current plot
in PDF format. The T-Test button allows you to perform significance test between pairs of populations (legend is as follows: NS: non significant; *P <
0.05; **P < 0.01; ***P < 0.001). The Export Data as Text button allows you to export the raw data as text (CSV format). The Upload your own sample
button allows for the upload of an Affymetrix HU133 plus 2.0 .CEL file and for viewing it in the context of normal haematopoiesis. The drop down menu
in the upper right corner of the main plot can be used to select a probe representing the gene of interest; by default, the probe with the highest intensity is

chosen. At the bottom of the main plot, a list of abbreviations is available that includes immunophenotypes when applicable.

Sohi, S.H., Rapin, N. and Bagger, F.O. (2015) SinaPlot: an
enhanced chart for simple and truthful representation of
single observations over multiple classes. bio Rxiv, http://dx.
doi.org/10.1101/028191). Both an R-package and a web-
server have been implemented for those interested in make
use of this plot type that we have named SinaPlot.

Survival plot

The chart shown to the left of the BloodSpot interface
is a survival plot based on a high-quality AML data set
from The Cancer Genome Atlas (TCGA). It displays a full
Kaplan—Meier analysis of survival. The survival plots are
only available for human data sets, sharing probes with the
microarray platform used by the TCGA (Affymetrix U133
Plus 2) (see Figure 3B).

Tree plot

The chart shown to the right of the BloodSpot interface is
an interactive hierarchical tree that shows the relationship
between the samples displayed and allows changing the fo-
cus of the display. It is possible to mouse over the nodes to
get the full name for long names. Nodes can be clicked to
collapse a branch of the tree—this will also update the de-
fault plot in the middle and remove the same populations
there (see Figure 3C).

Correlation of genes and gene signatures

For each gene and signature in every data set, we report the
top correlating genes or signatures. Taking the haematopoi-
etic fingerprint (e.g. the expression value of one gene over
all haematopoietic cells) of all probe-sets and gene signa-
tures in a given data set, we calculated the correlation ma-
trix (Pearson) and present the highest positive and negative
correlating genes/signatures. This feature allows for inves-
tigation of new associations between putative co-regulated
genes or signatures that exhibit similar or inverse expression
patterns over the course of haematopoiesis (see Figure 3D).

Other built-in tools

Cell populations may be removed from the graphs using the
‘Select population’ button. The current plot displayed can
be exported as PDF in publication-ready quality using the
‘Print as PDF’ button. The ‘“T-Test’ button can be used to
add the results from a students t-test for significance be-
tween pairs of populations to the plot. The legend is as fol-
lowing: NS: non-significant; *P < 0.05; **P < 0.01; ***pP
< 0.001. The significance marks relies on t statistics for un-
equal sample sizes but assuming equal variance and the crit-
ical values are compared with a two-tailed probability. Fi-
nally, raw data can be exported as CSV using the ‘Export
Data as Text’ button.
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Figure 3. Main plots from BloodSpot for MEISI. (A) Default view in BloodSpot. The plot is a novel improved jitter strip chart of gene expression that
draws from bar plots and violin plots where the jitter is controlled by the density of samples and normalised over all the columns in the chart. (B) Survival
plot based on a high-quality AML data set from The Cancer Genome Atlas (TCGA). It displays a full Kaplan—Meier analysis of survival. The survival
plots are only available for human data sets, sharing probes with the microarray platform used by the TCGA. (C) Interactive hierarchical tree that shows
the relationship between the samples displayed. Hovering over the nodes provides the full names of cell populations. Nodes can be clicked to collapse a
branch of the tree—this will also update the default plot in the middle and remove the same populations there. The colour in the nodes represents the
median expression of the queried gene. To accentuate the display in the trees, node size is also proportional to gene expression. Trees are based on literature
(hierarchical differentiation), or overall sample correlation (correlation of samples). (D) Example table of genes and gene signatures correlating with MEIS1
expression in the default data set. This table appears when the user clicks on the ‘correlation’ button.

Upload sample

By clicking the ‘Upload sample’ button it is possible to
analyse user-supplied samples produced on the Affymetrix
U133 plus 2 platform. Significantly, doing so allows for
the comparison of any myeloid microarray data to normal
human haematopoiesis. The resulting analysis is then dis-
played in a private session in the framework of BloodSpot
along with a principal component analysis that shows the
location of the uploaded sample in the hematopoietic sam-
ple space. The analysis is anonymous and requires no login.
The resulting data set, including the uploaded sample, can
then be queried along with the default data sets in a private
session. All names and array information are stripped from
the uploaded file before creating the database for the user
session. Hence, the uploaded sample in the private session
will appear simply as S_1 in all charts. The private sessions
and uploaded data are deleted every day at GMT 1.30 pm.

EXAMPLES OF USE OF BLOODSPOT

To demonstrate the use of BloodSpot, we provide in the fol-
lowing section an example relying on data and analysis pro-
vided by the database.

MEISI is part of a transcriptional program required for
the maintenance of MLL-rearranged AML (18). The ex-
pression of this gene is therefore often up-regulated in MLL
leukaemias. Using Bloodspot, we investigated the expres-
sion pattern of MEISI, and found it to be expressed at high
levels in stem cells with decreasing expression as the cells
differentiate (Figure 3A and C). Using the correlation func-
tion, we find that MEIS1 expression also correlates with
the expression patterns of a number of Homeobox genes,
including HOXA3, HOXA9 and HOXAI0 which are also
typically expressed early during haematopoiesis (19) (Fig-
ure 3D). Switching to the BloodPool data set, MEISI is
found to be up-regulated in MLL leukaemias (Figure 4).
Although the P-value in the survival plot does not reach
statistical significance (0.055; see Figure 3B), the influence
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Figure 4. MEIS] expression relative to the nearest normal counterpart in
different AML subtypes, including MLL-rearranged AML.

of MEISI expression in leukemic patients may be of poten-
tial relevance.

DISCUSSION

Here we have presented a web-based database that al-
lows for browsing of haematopoietic gene-expression fin-
gerprints in human, murine and malignant haematopoiesis
in a large number of high-quality data set containing several
hematopoietic cell types. The tool facilitates the easy assess-
ment of gene-expression data and how this links to patient
survival, investigation of gene-expression signatures, as well
as analysis of user generated data and export of data and
figures. Focusing on simplicity, BloodSpot has features that
allow clinicians or biologists to quickly retrieve relevant in-
formation on the expression of specific genes/pathways, and
further explore co-regulated patterns of gene-expression as
well as impact on patient survival. Our statistical frame-
work supports the upload of user-generated patient data for
integration and comparison with our database of healthy
cells. This will allow assessment of the origin of the blast
population in AML patients as well as assessment of well
known and novel genetic markers in the context of normal
haematopoiesis, both of which could be important for strat-
ification of difficult patient cases.

We have also integrated the largest pool of AML patient
microarray samples to date and have computed gene ex-
pression fold changes for these profiles, thanks to our can-
cer versus normal method previously described in (10) and
curation and labelling of external data followed by Com-
Bat (12). In conclusion, we have curated and populated a
database and developed an analysis platform, which will
allow researchers as well as clinicians to access and anal-
yse gene expression data related to both normal and malig-
nant haematopoiesis. We believe that the database should
be of interest to all researchers and clinicians interested in
haematopoiesis, leukaemia, basic immunology and gene ex-
pression in developmental systems.

Additional to information on gene-expression BloodSpot
addresses two key questions, namely, how gene-expression
patterns of single genes impact on patient survival, and
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which other genes display similar expression patterns in
the haematopoietic system. Thus the platform will help
broaden the basis on which to generate hypotheses about
potential therapeutic targets and expand the understanding
of co-regulated genes and pathways, to support experimen-
tal findings from animal model systems.

AVAILABILITY

Bloodspot is accessible at www.bloodspot.eu

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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