# RAPID COMMUNICATION Global Emergence and Genomic Epidemiology of bla<sub>NDM</sub>-Carrying Klebsiella variicola

Lirong Li<sup>1,\*</sup>, Yawen Zhang<sup>1,\*</sup>, Weizhong Wang<sup>1</sup>, Yanmin Chen<sup>1</sup>, Fang He<sup>1</sup>, Yan Yu<sup>2</sup>

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China; <sup>2</sup>Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China

\*These authors contributed equally to this work

Correspondence: Yan Yu; Fang He, Email yuyan0202@163.com; hetrue@163.com

Purpose: Klebsiella variicola has emerged as a human pathogen in the past decade. Here, we present findings related to a K. variicola strain carrying the bla<sub>NDM-1</sub> gene, which was isolated from a urinary tract infection in China. Global transmission dynamics and genomic epidemiology of *bla*<sub>NDM</sub>-carrying K. variicola were further investigated.

Material and Methods: The complete genome sequence of the strain was determined using the Illumina NovaSeq 6000 and Nanopore MinION sequencer. Genomic features and resistance mechanisms were analyzed through diverse bioinformatics approaches. Additionally, genome sequences of K. variicola strains carrying bla<sub>NDM</sub> were retrieved from the NCBI database, and a comprehensive analysis of the global dissemination trends of these strains was conducted.

Results: K. variicola strain 353 demonstrated resistance to multiple antimicrobials, including carbapenems. Within its genome, we identified fourteen antimicrobial resistance genes associated with β-lactam, aminoglycoside, fosfomycin, quinolone, trimethoprim, rifamycin, and sulfonamide resistance. The carbapenem-resistant gene bla<sub>NDM-1</sub> was located on an IncU-type plasmid spanning 294,608 bp and flanked by ISCR1 and IS26. Downstream of bla<sub>NDM-1</sub>, we identified an Intl1 element housing numerous antibiotic resistance genes. A comprehensive search of the NCBI database revealed 72 K. variicola strains carrying bla<sub>NDM</sub> from twelve different countries, predominantly from clinical sources, with the highest prevalence observed in the USA and China. A total of 28 distinct sequence types (STs) were identified, with ST115 being the most prevalent, followed by ST60.

**Conclusion:** In summary, this study presents the genomic characterization of a K. variicola strain carrying bla<sub>NDM-1</sub> on an IncU-type plasmid. The research highlights the global dissemination of bla<sub>NDM</sub>-carrying K. variicola, observed in both healthcare settings and natural environments. Our data have revealed a diverse array of antimicrobial resistance determinants in K. variicola, providing valuable insights that could aid in the development of strategies for the prevention, diagnosis, and treatment of K. variicola infections. Keywords: Klebsiella variicola, bla<sub>NDM-1</sub>, whole-genome sequencing, IncU type plasmid, urinary tract infection

## Introduction

Klebsiella variicola is a gram-negative, facultative anaerobe, nonsporogenic, and nonmotile rod-shaped bacterium that forms round, convex, and smooth colonies.<sup>1</sup> Initially discovered in bananas in 2004, K. variicola is commonly present in agriculturally sourced soils, plants, freshwater, and sewage.<sup>2</sup> It frequently contributes to nitrogen fixation and promotes plant growth. Moreover, it is recognized as a commensal of insects and can act as a pathogen for both plants and animals.<sup>3–5</sup> Belonging to the Klebsiella genus, K. variicola has historically been prone to misidentification as Klebsiella pneumoniae through traditional biochemical methods. This challenge persisted until the adoption of advanced techniques such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and wholegenome sequencing for accurate species identification.<sup>6,7</sup> The past misidentification, particularly within the K. pneumoniae complex, has hindered comprehensive research on K. variicola within the healthcare system.

K. variicola has emerged as a noteworthy human pathogen, witnessing a consistent rise in clinical infections in recent years.<sup>8</sup> Reports have extensively documented infections involving isolates from various sources, including

CO 0 S 0224 Li et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

fecal, blood, sputum, vaginal, and urine samples.<sup>9,10</sup> Notably, hypermucoviscous strains of *K. variicola* were initially identified in 2015, intensifying the concerns surrounding its clinical impact.<sup>11,12</sup> Adding to these apprehensions, a study highlighted that among hospitalized adults with bloodstream infections, the mortality rate associated with *K. variicola* exceeded that linked to *K. pneumoniae*.<sup>13</sup> This underscores the increasing significance of *K. variicola* as a clinically relevant pathogen, prompting a closer examination of its implications in healthcare settings.

In this investigation, the *K. variicola* strain 353, which carries the  $bla_{NDM-1}$  gene, was isolated from a urinary tract infection in a male patient hospitalized in the department of rehabilitation of a teaching hospital in China. The isolate was preliminarily identified using the VITEK MS system (bioMérieux, France) and was further confirmed by whole-genome sequencing. Bioinformatics analysis was undertaken to delve into the genetic characteristics of both the strain and the plasmid carrying the  $bla_{NDM-1}$  gene. The global transmission dynamics and genomic epidemiology of  $bla_{NDM}$ -carrying *K. variicola* were further investigated.

# **Materials and Methods**

## Antimicrobial Susceptibility Test

Antimicrobial susceptibility testing was performed using the VITEK 2 system (bioMérieux, France) with Gramnegative antimicrobial susceptibility testing cards (AST-GN13) and the Etest method. The testing procedures adhered to the guidelines established by the Clinical and Laboratory Standards Institute (CLSI) M100, 33rd edition. Breakpoints were interpreted in accordance with the recommendations outlined in the CLSI guidelines. In cases where CLSI breakpoints were unavailable for colistin and tigecycline, interpretations for colistin minimum inhibitory concentration (MIC) followed the guidelines of the European Committee on Antimicrobial Susceptibility Testing (EUCAST), while standards set by the US Food and Drug Administration (FDA) were utilized for tigecycline.

# Whole-Genome Sequencing

Whole-genome sequence of the strain was determined utilizing the Illumina NovaSeq 6000 platform (Illumina Inc., San Diego, CA, USA) in the 150-bp paired-end sequencing mode, with an average sequencing depth of  $\geq 100 \times$ . Additionally, long-read sequencing was performed using a Nanopore MinION sequencer (Nanopore, Oxford, UK). Both short Illumina reads and long MinION reads underwent hybrid assembly using Unicycler (v0.4.7) in the conservative mode. This process resulted in complete circular contigs, which underwent further refinement and correction using Pilon with Illumina reads through multiple rounds of iteration until no further changes were detected. The resultant complete genome sequence was subsequently automatically annotated using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) server.

# Genomic Features and Plasmid Characterization

The investigation into the antimicrobial resistance genes and plasmid replicons of the strain was carried out using the BacWGSTdb server.<sup>14,15</sup> MLST (Multi Locus Sequence Typing) analysis was conducted utilizing the database available at <u>http://mlstkv.insp.mx/</u>.<sup>16</sup> Circular comparisons, represented by concentric rings, were performed to examine the  $bla_{\text{NDM-1}}$ -carrying plasmid and its similarity to analogous plasmids. This comparative analysis was visualized using the BLAST Ring Image Generator (BRIG).<sup>17</sup>

# Phylogenetic Analysis

The phylogenetic relationship between *K. variicola* 353 and other *K. variicola* strains obtained from the NCBI GenBank database was assessed using the BacWGSTdb server.<sup>14,15</sup> This server employs single nucleotide polymorphism (SNP) approaches to analyze the phylogenetic relationship of the uploaded genome sequence with sequences available in the database. The resulting phylogenetic tree was enhanced for visual clarity using iTOL.<sup>18</sup>

# Nucleotide Sequence Accession Numbers

The complete genome sequence of *K.variicola* 353 has been submitted to the NCBI GenBank database and is assigned the accession number CP141632-CP141634.

# Ethical Approval

This study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of Zhejiang Provincial People's Hospital (Ethics approval number 2019KY244).

# **Results and Discussion**

*K. variicola* strain 353 was isolated from a urine sample obtained from a male patient who was admitted to a tertiary hospital in China following a cerebral hemorrhage. The genome of the *K. variicola* strain 353 is composed of three contigs, totaling 6,213,895 bp. Notably, one of these contigs, designated as contig 1 and spanning 5,727,068 bp, is associated with the chromosome, while the remaining two contigs correspond to plasmids (contig pCRKP353-NDM1: 294,608 bp and contig 3: 192,219 bp). The genome harbors two distinct plasmid replicons: one on plasmid pCRKP353-NDM1 (IncU) and another on contig 3 (IncFIB(K)). Analysis conducted through the PGAP server yielded predictions for 6001 protein-coding sequences, 88 tRNA genes, and 25 rRNA operons.

The antibiotic susceptibility profiles, as depicted in <u>Table S1</u>, reveal that *K. variicola* 353 exhibited resistance to a broad spectrum of antibiotics, including ceftazidime, ceftriaxone, cefotetan, cefazolin, cefepime, ciprofloxacin, levofloxacin, ertapenem, imipenem, meropenem, ampicillin/sulbactam, and sulfamethoxazole/trimethoprim. However, it demonstrated susceptibility to amikacin, gentamicin, aztreonam, tigecycline, and colistin. Table 1 outlines the resistance genes identified in the genome of the isolate. Notably,  $\beta$ -lactam resistance genes *bla*<sub>LEN-16</sub> and *bla*<sub>NDM-1</sub> were identified, along with aminoglycoside resistance genes *aph*(3')-*Ia*, *aadA16*, *aadA2* and *aac* (6')-*Ib-cr*, fosfomycin resistance gene *fosA*, quinolone resistance genes *oqxB*, *oqxA*, and *qnrS1*, trimethoprim resistance gene *dfrA27*, rifamycin resistance gene *arr-3*, and sulfonamide resistance genes, including *bla*<sub>NDM-1</sub>, are situated on plasmid pCRKP353-NDM1.

The plasmid pCRKP353-NDM1, carrying the  $bla_{NDM}$  gene, was identified as an IncU-type plasmid. Two copies of IS26 are situated upstream of  $bla_{NDM-1}$ , while two ISCR1 (insertion sequence common region 1) elements flank  $bla_{NDM-1}$ . Downstream of  $bla_{NDM-1}$ , an *Intl1* (Class 1 Integron) is present, housing numerous

| Antimicrobial<br>Resistance Gene | Contig        | ldentity (%) | Position          | Antimicrobial<br>Resistance Category |
|----------------------------------|---------------|--------------|-------------------|--------------------------------------|
| oqxB                             | Contigl       | 97.56        | 1,267,999.1271151 | Quinolone                            |
| oqxA                             | ContigI       | 96           | 1,271,175.1272350 | Quinolone                            |
| bla <sub>LEN-16</sub>            | ContigI       | 99.88        | 2,841,905.2842765 | Beta-lactam                          |
| fosA                             | ContigI       | 94.05        | 5,008,144.5008563 | Fosfomycin                           |
| qnrS I                           | PCRKP353-NDM1 | 100.00       | 2947.3603         | Quinolone                            |
| dfrA27                           | pCRKP353-NDM1 | 100.00       | 289,664.290137    | Trimethoprim                         |
| arr-3                            | PCRKP353-NDM1 | 90.79        | 290,270.290762    | Rifamycin                            |
| bla <sub>NDM-1</sub>             | PCRKP353-NDM1 | 100.00       | 282,492.283304    | Beta-lactam                          |
| sull                             | pCRKP353-NDM1 | 100.00       | 258,029.258895    | Sulfonamide                          |
| sull                             | PCRKP353-NDMI | 100.00       | 287,341.288207    | Sulfonamide                          |
| aph(3')-la                       | PCRKP353-NDMI | 100.00       | 265,918.266733    | Aminoglycoside                       |
| aadA16                           | PCRKP353-NDMI | 100.00       | 288,638.289483    | Aminoglycoside                       |
| aac(6')-lb-cr                    | PCRKP353-NDMI | 100.00       | 290,819.291418    | Aminoglycoside                       |
| aadA2                            | PCRKP353-NDMI | 99.27        | 256,739.257551    | Aminoglycoside                       |

 Table I Antimicrobial Resistance Genes in Klebsiella Variicola 353

antibiotic resistance genes such as *sul1*, *aadA16*, *dfrA27*, *arr-3* and *aac(6')-Ib-cr*. IS26 typically plays a pivotal role in disseminating antibiotic resistance genes within Gram-negative bacteria, contributing to their widespread distribution.<sup>19–21</sup> Additionally, ISCR1 is closely associated with various antibiotic resistance determinants, underscoring its significance in this context.<sup>22</sup> This implies that both IS26 and ISCR1 are crucial players in the propagation of  $bla_{NDM}$ . The presence of *Intl1* (Class 1 Integron) downstream of  $bla_{NDM-1}$  enables the plasmid to harbor multiple drug-resistant genes, transforming it into a multi-drug-resistant plasmid. This emphasizes the role of *Intl1* in facilitating the accumulation of diverse drug resistance determinants within the plasmid.

Comparative analysis of pCRKP353-NDM1 with similar plasmids obtained from the NCBI database was performed using the Basic Local Alignment Search Tool (Figure 1). These plasmids, all falling under the IncU type, include three that harbor the  $bla_{NDM}$  gene (Table S2). IncU plasmids are distinguished for their extensive

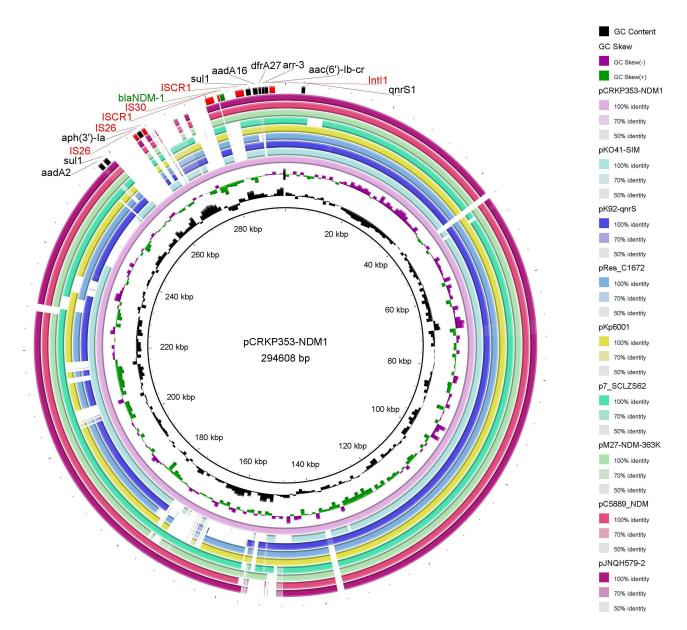



Figure I Circular comparative analysis plasmid pCRKP353-NDMI with similar plasmids retrieved from the NCBI database, including pKO41-SIM (Klebsiella michiganensis strain KM41, accession no. CP090080), pK92-qnrS (Klebsiella michiganensis strain K92, accession no. OL828743), pRes\_C1672 (Klebsiella pneumoniae strain C1672, accession no. CP073918), pKp6001 (Klebsiella pneumoniae strain Kp6, accession no. CP082291), p7\_SCLZS62 (Raoultella planticola strain SCLZS62, accession no. CP082175), pM27-NDM-363K (Raoultella ornithinolytica strain R0M27LC23, accession no. CP130154), pC5889\_NDM (Enterobacter cloacae strain C5889, accession no. MZ532978), and pJNQH579-2 (Klebsiella variicola strain JNQH579, accession no. CP078148).

host ranges, enabling the efficient transmission of antibiotic resistance genes owing to their robust binding and mobility features.<sup>23</sup> Notably, characterized by their high binding and mobility attributes, IncU plasmids demonstrate resilience and adept replication capabilities across diverse bacterial species. Consequently, they serve as crucial vectors in the dissemination of antibiotic resistance genes. It is noteworthy that IncU plasmids carrying  $bla_{\text{NDM-1}}$  genes have begun to proliferate across diverse genera, encompassing *Raoultella ornithinolytica*, *Enterobacter cloacae*, and *K. variicola*.

In order to gain a more profound understanding of global transmission dynamics and genomic epidemiology of bla<sub>NDM</sub>-carrying K. variicola, an extensive search was conducted within the NCBI pathogen database for strains harboring the bla<sub>NDM</sub> gene until December 1, 2023. A total of 72 bla<sub>NDM</sub>-carrying K. variicola strains were identified from the NCBI database (Table 2). These strains were discovered in 12 countries worldwide, with the highest prevalence observed in the USA (32 strains), followed by China (18 strains), Bangladesh (4 strains), and three strains each from the United Kingdom, Switzerland, and South Korea. Additionally, two strains each were found in Australia and Brazil, as well as one strain each from Lebanon, Germany and Canada. This global distribution highlights the widespread dissemination of bla<sub>NDM</sub>-carrying K. variicola. Among these strains, five sub-types of bla<sub>NDM</sub> were identified: 38 strains carried bla<sub>NDM-1</sub>, 13 strains carried bla<sub>NDM-5</sub>, 11 strains carried bla<sub>NDM-4</sub>, 3 strains carried bla<sub>NDM-9</sub>, and 1 strain carried bla<sub>NDM-18</sub>. According to the MLST (Multi Locus Sequence Typing) results available at http://mlstkv.insp.mx/,<sup>16</sup> KV353 is assigned to a newly identified, unnamed sequence type (ST) distinguished by *leuS60*, *pgi39*, *pgk1*, *phoE29*, *pyrG1*, rpoB1 and fusA4. Among the 72 bla<sub>NDM</sub>-carrying K. variicola strains, excluding 20 strains with unclassified sequence types, a total of 28 distinct ST types were identified (Figure 2). ST115 was the most prevalent, comprising 12 strains, followed by ST60 (4 strains), ST10 (3 strains), ST20 (3 strains), ST64 (3 strains), and ST277 (3 strains). Phylogenetic analysis revealed that K. variicola 353 belongs to a distinct clone. Furthermore, eleven strains originating from the United States were identified to be part of a single clone, exhibiting single nucleotide polymorphism (SNP) differences of  $\leq 20$ . This observation suggests that clonal transmission, possibly associated with nosocomial infection, could be contributing to the epidemic of *bla*<sub>NDM</sub>-carrying K. variicola.

Relevant analyses were conducted on the  $bla_{NDM}$ -carrying plasmid. Subsequent investigation into these  $bla_{NDM}$ -carrying strains, among which 34 had complete genome sequences, revealed that all  $bla_{NDM}$ -carrying plasmids were located on plasmids. Specifically, 13 were classified as IncX3 type, 10 as IncA/C2 type, 5 as IncFII type, 3 strains as IncHI1B type, with one each belonging to IncFIA, IncFIB, and IncN types. The occurrence of IncU type  $bla_{NDM}$ -carrying plasmid in *K. variicola* is uncommon.

Remarkably, seven strains from distinct regions were identified to carry multiple carbapenemases, with three strains co-harboring  $bla_{\text{NDM}}$  and  $bla_{\text{IMP}}$ , and four strains co-harboring  $bla_{\text{NDM}}$  and  $bla_{\text{KPC}}$ . Over the past decade, there has been a substantial increase in the proportion of *K. pneumoniae* strains carrying multiple-carbapenemase genes, presenting an elevated threat to public health.<sup>24</sup> The current study suggests that *K. variicola* strains carrying multiple-carbapenemase genes are also undergoing global dissemination. The existence and prevalence of *K. variicola* with multiple carbapenemases pose formidable challenges for clinical treatment.

Among the 72 strains of *K. variicola* obtained from NCBI, there was a notably higher prevalence in urine (18/72), blood (10/72), and sputum (6/72) samples. Additionally, *K. variicola* strains were detected in environmental sewage and fields. It is noteworthy, that one strain carrying the  $bla_{NDM-1}$  gene was detected in hospital wastewater in China, and three strains carrying the  $bla_{NDM-9}$  gene from South Korea were found in river water, while the remaining strains were of clinical origin. This implies that bacteria carrying the  $bla_{NDM}$  gene have transferred between clinical settings and the natural environment.

In summary, our findings reveal the global dissemination of *K. variicola* carrying the  $bla_{NDM}$  gene in both healthcare settings and natural environments. These data have unveiled a diverse array of antimicrobial resistance determinants in *K. variicola*, offering valuable insights that may contribute to the development of strategies for the prevention, diagnosis, and treatment of *K. variicola* infections.

| Assembly        | ocrain               | Councily       |         |                   | Carbapeneniase Cenes                        | bla <sub>NDM</sub> -Carrying Plasmids |     |
|-----------------|----------------------|----------------|---------|-------------------|---------------------------------------------|---------------------------------------|-----|
|                 |                      |                | 2014    |                   |                                             |                                       |     |
| GCA_001989495.1 | GJI                  | South Korea    | 2014    | river water       | bla <sub>NDM-9</sub>                        | IncFII                                | 64  |
| GCA_001989515.1 | GJ2                  | South Korea    | Unknown | river water       | bla <sub>NDM-9</sub>                        | IncFII                                | 64  |
| GCA_001989535.1 | GJ3                  | South Korea    | Unknown | river water       | bla <sub>NDM-9</sub>                        | IncFII                                | 64  |
| GCA_002156765.1 | KPN1481              | USA            | 2014    | urine             | bla <sub>NDM-1</sub>                        |                                       | 76  |
| GCA_002740885.1 | ITM                  | Romania        | 2015    | fecal screen      | bla <sub>NDM-1</sub>                        | IncFII                                | 271 |
| GCA_002740845.1 | 6TM                  | Romania        | 2015    | fecal screen      | bla <sub>NDM-1</sub>                        | IncFII                                | 194 |
| GCA_002853275.1 | SCKV020148           | China          | 2017    | -                 | bla <sub>NDM-5</sub>                        | -                                     | 93  |
| GCA_002855465.1 | BD.DM.165            | Bangladesh     | 2016    | blood             | bla <sub>NDM-1</sub>                        | -                                     | 60  |
| GCA_003384975.1 | BD_DM_166            | Bangladesh     | 2016    | blood             | bla <sub>NDM-1</sub>                        | -                                     | 60  |
| GCA_003386925.1 | BD_DM_97             | Bangladesh     | 2016    | blood             | bla <sub>NDM-1</sub>                        | -                                     | 60  |
| GCA_003386995.1 | BD_DM_169            | Bangladesh     | 2016    | blood             | bla <sub>NDM-1</sub>                        | -                                     | 60  |
| GCA_900607545.1 | ERS2735096           | Switzerland    | 2016    | -                 | bla <sub>NDM-1</sub>                        | IncFIA                                | 277 |
| GCA_009497715.1 | 13,450               | China          | 2013    | -                 | bla <sub>IMP-4</sub> , bla <sub>NDM-1</sub> | IncX3                                 | 10  |
| GCA_011075275.1 | 20-X3                | China          | 2016    | -                 | bla <sub>NDM-5</sub>                        | IncX3                                 | 229 |
| GCA_014595775.1 | CRE135               | USA            | 2018    | surveillance swab | bla <sub>NDM-5</sub>                        | -                                     | 14  |
| GCA_022049985.1 | SRS7259695           | China          | 2017    | bile              | bla <sub>NDM-5</sub>                        | IncX3                                 | 100 |
| GCA_021971215.1 | 2020GO-0202          | USA            | 2021    | sputum            | bla <sub>NDM-5</sub>                        | IncX3                                 | -   |
| GCA_018420335.1 | ur <b>1 907850 1</b> | Germany        | 2019    | urine             | bla <sub>NDM-5</sub>                        | -                                     | 78  |
| GCA_021938995.2 | 2021LY00003          | USA            | 2021    | blood             | bla <sub>NDM-7</sub>                        | -                                     | 94  |
| GCA_019222805.1 | JNQH579              | China          | 2021    | sputum            | bla <sub>NDM-1</sub>                        | IncHIIB                               | -   |
| GCA_020119435.1 | 403,773–16           | Switzerland    | 2016    | -                 | bla <sub>NDM-1</sub>                        | -                                     | 277 |
| GCA_021897435.1 | KPN2043              | Australia      | 2020    | urine             | bla <sub>NDM-1</sub>                        | -                                     | 183 |
| GCA_020857895.1 | KCJ3K605             | USA            | 2019    | -                 | bla <sub>NDM-1</sub>                        | -                                     | -   |
| GCA_020857955.1 | KCJ3K606             | USA            | 2019    | -                 | bla <sub>NDM-1</sub>                        | -                                     | -   |
| GCA_021837705.1 | N1538                | Switzerland    | 2020    | -                 | bla <sub>NDM-1</sub>                        | -                                     | -   |
| GCA_021727155.1 | DY1825               | China          | 2018    | sputum            | bla <sub>NDM-1</sub>                        | -                                     | 32  |
| GCA_021727475.1 | DY1750               | China          | 2017    | blood             | bla <sub>NDM-1</sub>                        | -                                     | -   |
| GCA_021727535.1 | DY1744               | China          | 2017    | blood             | bla <sub>NDM-1</sub>                        | -                                     | -   |
| GCA_022100855.1 | 253,839              | United Kingdom | 2016    | -                 | bla <sub>NDM-1</sub>                        | -                                     | -   |
| GCA_022156125.1 | 243,761              | United Kingdom | Unknown | -                 | bla <sub>NDM-18</sub>                       | -                                     | -   |
| GCA_022099875.1 | 249,330              | United Kingdom | 2016    | -                 | bla <sub>NDM-1</sub>                        | IncX3                                 | 61  |
| GCA_022474435.2 | 2020HL-01140         | USA            | 2020    | wound             | bla <sub>KPC-3</sub> , bla <sub>NDM-1</sub> | -                                     | 10  |
| GCA_022818945.1 | KV214                | Lebanon        | 2018    | urine             | bla <sub>NDM-1</sub>                        | -                                     | -   |
| GCA 022857045.1 | KP100195             | China          | 2019    | -                 | bla <sub>NDM-1</sub>                        | IncX3                                 | -   |
| _               |                      |                |         |                   |                                             |                                       |     |

-

-

Isolation Source

Carbapenemase Genes

bla<sub>NDM-1</sub>

bla<sub>NDM-5</sub>

Replicon of

### Table 2 Clinical Metadata for 72 Klebsiella Variicola Strains Carrying bla<sub>NDM</sub> Retrieved from the NCBI Database

Collection Date

Country

Strain

Assembly

GCA\_022860305.1

GCA\_022861645.1

83,799

75,401

China

China

2018

2018

Dovepress

ST

-

54

-

IncX3

| faction and Drug Resistance |     |
|-----------------------------|-----|
|                             | GCA |
| Deie                        | GCA |
| tan                         | GCA |
| 2                           | GCA |
| 2024-17                     | GCA |
| - 1 7                       | GCA |
|                             | GCA |

|                 |              |           |      |                     | F                                           |         |     |
|-----------------|--------------|-----------|------|---------------------|---------------------------------------------|---------|-----|
| GCA_022861705.1 | 75,260       | China     | 2018 | -                   | bla <sub>NDM-1</sub>                        | IncX3   | 20  |
| GCA_031039815.1 | 2022LY00014  | USA       | 2022 | -                   | bla <sub>NDM-1</sub>                        | -       | 69  |
| GCA_024418895.2 | 2022DK-00076 | USA       | 2022 | rectal swab         | bla <sub>NDM-1</sub>                        | IncX3   | 101 |
| GCA_024855165.2 | 2022SY-00046 | USA       | 2022 | sputum              | bla <sub>KPC-3</sub> , bla <sub>NDM-5</sub> | -       | -   |
| GCA_024855125.2 | 2022SY-00043 | USA       | 2022 | urine               | bla <sub>NDM-7</sub>                        | IncX3   | -   |
| GCA_026222775.1 | 605_17       | Brazil    | 2017 | Infective secretion | bla <sub>NDM-1</sub>                        | -       | -   |
| GCA_026222995.1 | 463_20       | Brazil    | 2020 | surveillance swab   | bla <sub>NDM-1</sub>                        | -       | 78  |
| GCA_026372215.2 | 2022HL-01877 | USA       | 2022 | urine               | bla <sub>NDM-5</sub>                        | -       | 10  |
| GCA_026459905.1 | CHS117       | China     | 2022 | sputum              | bla <sub>NDM-5</sub>                        | -       | 183 |
| GCA_026611755.2 | 2022KU-00273 | USA       | 2022 | urine               | bla <sub>NDM-7</sub>                        | IncX3   | -   |
| GCA_026967735.1 | 2022CK-00564 | USA       | 2022 | urine               | bla <sub>NDM-4</sub>                        | IncA/C2 | 115 |
| GCA_026967755.1 | 2022CK-00565 | USA       | 2022 | urine               | bla <sub>NDM-4</sub>                        | IncA/C2 | 115 |
| GCA_025579445.2 | 2022CK-00500 | USA       | 2022 | urine               | bla <sub>NDM-4</sub>                        | IncA/C2 | 115 |
| GCA_025676585.2 | 2022CK-00501 | USA       | 2022 | urine               | bla <sub>NDM-4</sub>                        | IncA/C2 | 115 |
| GCA_025579405.2 | 2022CK-00502 | USA       | 2022 | urine               | bla <sub>NDM-4</sub>                        | IncA/C2 | 115 |
| GCA_025579525.2 | 2022CK-00503 | USA       | 2022 | urine               | bla <sub>NDM-4</sub>                        | IncA/C2 | 115 |
| GCA_025579425.2 | 2022CK-00504 | USA       | 2022 | urine               | bla <sub>NDM-4</sub>                        | IncA/C2 | 115 |
| GCA_025676845.2 | 2022CK-00505 | USA       | 2022 | urine               | bla <sub>NDM-4</sub>                        | IncA/C2 | 115 |
| GCA_026069065.2 | 2022CK-00567 | USA       | 2022 | wound/abscess       | bla <sub>NDM-4</sub>                        | IncA/C2 | 115 |
| GCA_026069095.2 | 2022CK-00568 | USA       | 2022 | blood               | bla <sub>NDM-4</sub>                        | IncA/C2 | 115 |
| GCA_028114685.1 | 2023EP-00006 | USA       | 2023 | urine               | bla <sub>NDM-7</sub>                        | -       | 172 |
| GCA_028871695.1 | SHET-01      | China     | 2018 | -                   | bla <sub>IMP-4</sub> , bla <sub>NDM-1</sub> | IncHIIB | -   |
| GCA_029617685.1 | 2023LY00015  | USA       | 2023 | -                   | bla <sub>NDM-5</sub>                        | -       | -   |
| GCA_031047475.1 | 2023CB-00243 | USA       | 2023 | urine               | bla <sub>NDM-4</sub>                        | -       | 115 |
| GCA_030294325.1 | CPO293       | Australia | 2019 | wound               | bla <sub>NDM-1</sub>                        | IncN    | 95  |
| GCA_031013925.1 | 2023LY00040  | USA       | 2023 | -                   | bla <sub>NDM-1</sub>                        | -       | 166 |
| GCA_030972385.1 | JXR172       | China     | 2015 | -                   | bla <sub>IMP-4</sub> , bla <sub>NDM-1</sub> | -       | 115 |
| GCA_031056435.1 | 2023BV-00125 | USA       | 2023 | blood               | bla <sub>NDM-7</sub>                        | -       | I   |
| GCA_031435165.1 | 2023SY-00164 | USA       | 2023 | urine               | bla <sub>NDM-5</sub>                        | IncX3   | 41  |
| GCA_032149985.1 | 2023GO-0326  | USA       | 2023 | -                   | bla <sub>NDM-7</sub>                        | -       | I   |
| GCA_032744875.1 | 23-C-YW-22   | China     | 2023 | hospital sewage     | bla <sub>NDM-1</sub>                        | -       | 370 |
| GCA_032984365.1 | 01A19CPO019  | Canada    | 2019 | stool/rectal swab   | bla <sub>KPC-3</sub> , bla <sub>NDM-1</sub> | IncFIB  | 20  |
| GCA_033195215.1 | 2023LY00062  | USA       | 2023 | -                   | bla <sub>NDM-1</sub>                        | -       | 20  |
| GCA_033278505.1 | PS00263.3    | USA       | 2018 | blood               | bla <sub>KPC-5</sub> , bla <sub>NDM-1</sub> | -       | 277 |
| GCA_034363275.1 | CHN10012     | China     | 2018 | shunt fluid         | bla <sub>NDM-5</sub>                        | IncX3   | -   |
| GCA_034394215.1 | CHN22083     | China     | 2019 | sputum              | bla <sub>NDM-1</sub>                        | -       | -   |

#### Tree scale: 0.1




Figure 2 Phylogenetic tree of K. variicola 353, K. variicola ATCC BAA-830 and other bla<sub>NDM</sub>-carrying K. variicola strains retrieved from the NCBI database. Cells with different colors indicate the presence of different antimicrobial resistance genes, whereas blank cells indicate the absence of the gene. The color of each rectangular indicates a specific country.

# Acknowledgments

This work was supported by the Traditional Chinese Medicine Science and Technology Project of Zhejiang Province, China (Grant number 2024ZL253), and the Medicine and Health Science and Technology Project of Zhejiang Province, China (Grant number 2021KY475).

## Disclosure

The authors report no conflicts of interest in this work.

# References

1. Lin L, Wei C, Chen M, et al. Complete genome sequence of endophytic nitrogen-fixing Klebsiella variicola strain DX120E. *Stand Genomic Sci.* 2015;10:22. doi:10.1186/s40793-015-0004-2

- Rosenblueth M, Martinez L, Silva J, Martinez-Romero E. Klebsiella variicola, a novel species with clinical and plant-associated isolates. Syst Appl Microbiol. 2004;27(1):27–35. doi:10.1078/0723-2020-00261
- 3. Martinez-Romero E, Silva-Sanchez J, Barrios H, et al. Draft Genome Sequences of Klebsiella variicola Plant Isolates. *Genome Announc*. 2015;3 (5):15. doi:10.1128/genomeA.01015-15
- Martinez-Romero E, Rodriguez-Medina N, Beltran-Rojel M, et al. Genome misclassification of Klebsiella variicola and Klebsiella quasipneumoniae isolated from plants, animals and humans. Salud Publica Mex. 2018;60(1):56–62. doi:10.21149/8149
- 5. Pinto-Tomas AA, Anderson MA, Suen G, et al. Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. *Science*. 2009;326 (5956):1120–1123. doi:10.1126/science.1173036
- Ohama Y, Nomura Y, Mizoguchi M, Higurashi Y, Okamoto K, Harada S. Accurate Identification of Klebsiella variicola by MALDI-TOF Mass Spectrometry in Clinical Microbiology Laboratories. *Microbiol Spectr.* 2022;10(5):e0284422. doi:10.1128/spectrum.02844-22
- 7. Potter RF, Lainhart W, Twentyman J, et al. Population Structure, Antibiotic Resistance, and Uropathogenicity of Klebsiella variicola. *mBio*. 2018;9 (6):2481. doi:10.1128/mBio.02481-18
- Rodriguez-Medina N, Barrios-Camacho H, Duran-Bedolla J, Garza-Ramos U. Klebsiella variicola: an emerging pathogen in humans. *Emerg Microbes Infect.* 2019;8(1):973–988. doi:10.1080/22221751.2019.1634981
- 9. Holt KE, Wertheim H, Zadoks RN, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. *Proc Natl Acad Sci U S A*. 2015;112(27):E3574–81. doi:10.1073/pnas.1501049112
- Alves MS, Dias RC, de Castro AC, Riley LW, Moreira BM. Identification of clinical isolates of indole-positive and indole-negative Klebsiella spp. J Clin Microbiol. 2006;44(10):3640–3646. doi:10.1128/JCM.00940-06
- Garza-Ramos U, Silva-Sanchez J, Barrios H, Rodriguez-Medina N, Martinez-Barnetche J, Andrade V. Draft Genome Sequence of the First Hypermucoviscous Klebsiella variicola Clinical Isolate. *Genome Announc*. 2015;3(2):14. doi:10.1128/genomeA.01352-14
- Rodriguez-Medina N, Martinez-Romero E, De la Cruz MA, et al. A Klebsiella variicola Plasmid Confers Hypermucoviscosity-Like Phenotype and Alters Capsule Production and Virulence. Front Microbiol. 2020;11:579612. doi:10.3389/fmicb.2020.579612
- Maatallah M, Vading M, Kabir MH, et al. Klebsiella variicola is a frequent cause of bloodstream infection in the Stockholm area, and associated with higher mortality compared to K. pneumoniae. *PLoS One*. 2014;9(11):e113539. doi:10.1371/journal.pone.0113539
- 14. Ruan Z, Feng Y. BacWGSTdb, a database for genotyping and source tracking bacterial pathogens. *Nucleic Acids Res.* 2016;44(D1):D682-7. doi:10.1093/nar/gkv1004
- 15. Ruan Z, Yu Y, Feng Y. The global dissemination of bacterial infections necessitates the study of reverse genomic epidemiology. *Briefings Bioinf.* 2020;21(2):741–750. doi:10.1093/bib/bbz010
- 16. Barrios-Camacho H, Aguilar-Vera A, Beltran-Rojel M, et al. Molecular epidemiology of Klebsiella variicola obtained from different sources. *Sci Rep.* 2019;9(1):10610. doi:10.1038/s41598-019-46998-9
- Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12:402. doi:10.1186/1471-2164-12-402
- Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1): W293–W296. doi:10.1093/nar/gkab301
- Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev. 2018;31 (4):17. doi:10.1128/CMR.00088-17
- Harmer CJ, Moran RA, Hall RM. Movement of IS26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS26 and preferentially inserts adjacent to another IS26. *mBio*. 2014;5(5):e01801–14. doi:10.1128/mBio.01801-14
- 21. He S, Hickman AB, Varani AM, et al. Insertion Sequence IS26 Reorganizes Plasmids in Clinically Isolated Multidrug-Resistant Bacteria by Replicative Transposition. *mBio*. 2015;6(3):e00762. doi:10.1128/mBio.00762-15
- 22. Toleman MA, Bennett PM, Walsh TR. Common regions e.g. orf513 and antibiotic resistance: IS91-like elements evolving complex class 1 integrons. J Antimicrob Chemother. 2006;58(1):1–6. doi:10.1093/jac/dkl204
- 23. Dang B, Xu Y, Mao D, Luo Y. Complete nucleotide sequence of plasmid pNA6 reveals the high plasticity of IncU family plasmids. *Gene*. 2016;591 (1):74–79. doi:10.1016/j.gene.2016.06.060
- 24. Guo H, Wu Y, Li L, Wang J, Xu J, He F. Global emergence of carbapenem-resistant Klebsiella pneumoniae co-carrying multiple carbapenemases. Comput Struct Biotechnol J. 2023;21:3557–3563. doi:10.1016/j.csbj.2023.07.013

Infection and Drug Resistance

### **Dove**press

1901

#### Publish your work in this journal

Infection and Drug Resistance is an international, peer-reviewed open-access journal that focuses on the optimal treatment of infection (bacterial, fungal and viral) and the development and institution of preventive strategies to minimize the development and spread of resistance. The journal is specifically concerned with the epidemiology of antibiotic resistance and the mechanisms of resistance development and diffusion in both hospitals and the community. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/infection-and-drug-resistance-journal

If y in DovePress