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A.; Bilski, P.; Piotrowska-Kempisty, H.;

Józkowiak, M.; Stawny, M.; Dadej, D.;

Mrotek, M.; Jelińska, A.
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Abstract: Improvement of the bioavailability of poorly soluble medicinal substances is currently one
of the major challenges for pharmaceutical industry. Enhancing the dissolution rate of those drugs
using novel methods allows to increase their bioavailability. In recent years, silica-based mesoporous
materials have been proposed as drug delivery systems that augment the dissolution rate. The aim of
this study was to analyse the influence of phenylbutazone adsorption on SBA-15 on its dissolution rate.
Moreover, we examined the cytotoxicity of the analyzed silica. The material was characterized by SEM,
TEM, DSC, 1H-NMR, XRD, and FT-IR. The phenylbutazone did not adsorb on unmodified SBA-15,
while the adsorption on APTES-modified SBA-15 resulted in 50.43 mg/g of loaded phenylbutazone.
Phenylbutazone adsorbed on the APTES-modified SBA-15 was then released in the hydrochloric acidic
medium (pH 1.2) and phosphate buffer (pH 7.4) and compared to the dissolution rate of the crystalline
phenylbutazone. The release profiles of the amorphous form of adsorbed phenylbutazone are constant
in different pH, while the dissolution rate of the crystalline phenylbutazone depends on the pH. The
cytotoxicity assays were performed using the Caco-2 cell line. Our results indicate that the analyzed
material ensured phenylbutazone adsorption in an amorphous state inside the mesopores and increased
its dissolution rate in various pH levels. Furthermore, the cytotoxicity assay proved safety of studied
material. Our study demonstrated that APTES-modified SBA-15 can serve as a non-toxic drug carrier
that improves the bioavailability of phenylbutazone.

Keywords: dissolution rate; SBA-15 mesoporous silica; drug delivery system; phenylbutazone;
physicochemical techniques

1. Introduction

Silica mesoporous materials were first synthetized in 1992 by scientists from Mobil
Oil [1]. In 1998, Zhao et al. obtained a new type of mesoporous material—SBA (Santa
Barbara Amorphous). SBA-15 material presents a highly ordered and a two-dimensional,
hexagonal structure. Compared to the previously obtained MCM-41 (Mobil Composition
of Matter No. 41) material, the walls of SBA-15 are thicker, so that the material exhibits
greater thermal and mechanical stability [2]. Moreover, the specific surface area of SBA-15
is increased due to the presence of additional micropores in the walls of the material [3].
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Over the years, further modifications of the material synthesis have been developed in
order to obtain the desired properties of silicas.

The silanol groups on the surface of mesoporous materials allow surface function-
alization. The incorporation of organic residues enables to obtain the required material
properties. Surface modifications facilitate, among others, the acquisition of acidic, basic,
or optical properties, increasing the adsorption efficiency of molecules and modifying their
release profiles in the organism (time and site of release) [4].

Mesoporous silicas can serve as drug carriers. The first successful adsorption of ibuprofen
on MCM-41 was presented by Vallet-Regi [5]. Further studies demonstrated that SBA-15
material increases the dissolution rate of sparingly soluble medicinal substances. Adsorption
of molecules on SBA-15 silica allows the stabilization of their amorphous state, preventing
the transition into a crystalline state. Compounds in the amorphous form are characterized
by a reduced lattice energy, resulting in a greater dissolution rate and higher bioavailability.
Furthermore, the hydrophilic nature of the mesoporous silica surface facilitates the wetting
and dispersion of the adsorbed molecules, accelerating their dissolution [6]. Dissolution rate
improvement was confirmed for various active substances, such as ampicillin, amoxicillin,
emodin, itraconazole, or naproxen [7–11]. In addition, mesoporous materials based on SBA-15
are also used as catalysts in organic synthesis following the principles of green chemistry [12].

Phenylbutazone is a non-steroidal anti-inflammatory drug, classified as BCS II (Bio-
pharmaceutics Classification System), characterized by good permeability but low solubility.
It was approved by FDA in the middle of the last century, mainly for the treatment of
rheumatoid arthritis. However, side effects, such as gastrointestinal and haematological
disorders, including aplastic anemia, considerably limited the use of this drug in humans.
Still, however, phenylbutazone is widely used in veterinary medicine as an analgesic and
anti-inflammatory agent in horses [13].

There are several reports in the literature concerning methods used to enhance the
dissolution rate of phenylbutazone. Until now, it was proposed to prepare solid dispersions
with polyethylene glycol 8000 [14], formulate Syloids silica-based formulations [15] and
adsorb the drug on non-modified SBA-15 silica [16].

The aim of this study was to analyze the adsorption process of phenylbutazone on
the APTES-modified mesoporous silica SBA-15 and to evaluate the modification of the
phenylbutazone release profile from the carriers in comparison with the crystalline sub-
stance. Additionally, we characterized obtained materials by nitrogen adsorption/desorption
analysis, SEM and TEM imaging, and methods, such as XRD and DSC. We also investigated
the effect of drug adsorption on modified silica on its cytotoxicity.

2. Materials and Methods
2.1. Chemicals and Materials

Tetraethyl orthosilicate (TEOS) (≥99.0%), sodium dodecyl sulfate (≥99.0%), hydrochlo-
ric acid (purum p.a. ≥32.0%), Pluronic®P-123, (3-aminopropyl)triethoxysilane (APTES)
(99%), and anhydrous toluene (99.8%) were supplied from Sigma-Aldrich Co., (St Louis,
MO, USA). Chloroform (p.a. ≥98.5%), propan-2-ol (p.a. ≥99.7%), dipotassium phosphate
(pure p.a.), sodium chloride (pure p.a.), analytical weight of hydrochloric acid 0.1 mol/L
(0.1 N), and sodium hydroxide 0.1 mol/L (0.1 N) were purchased from Avantor Perfor-
mance Materials Poland (Gliwice, Poland). Phenylbutazone (>98%) was supplied from
Tokyo Chemical Industry CO (Zwijndrecht, Belgium).

Mesoporous Material Preparation and Surface Modification

The SBA-15 mesoporous silica was synthesized in accordance with the protocol described
by Zhao et al. [2], with modifications presented in our previous study [17]. The SBA-15 surface
modification process was carried out using the grafting method [17]. Briefly, we dried the
silica for 24 h at 110 ◦C. Then, we mixed 3.0 g of silica with 50 mL of APTES ((3-aminopropyl)
triethoxysilane) solution in toluene (0.10 mol/L). Next, we heated the mixture at 100 ◦C for
24 h. Then, we filtered the obtained product and rinsed it with anhydrous toluene (5 × 75 mL)
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and with chloroform (5 × 75 mL). We dried the modified material at 40 ◦C for 3 h, and at
80 ◦C for next 24 h, to remove the remaining organic solvent. The APTES-modified SBA-15
was designated as SBA-15-pr-NH2.

2.2. Phenylbutazone Adsorption Studies

We conducted the adsorption process of phenylbutazone (PBZ) on SBA-15 and SBA-15-
pr-NH2 as follows. We prepared the 3.0 mg/mL PBZ solution in 2-propanol and combined
5.0 mL of prepared solution with 50.0 mg of SBA-15 or SBA-15-pr-NH2 silica. Then, the
mixture was stirred for 48 h at 25 ◦C to achieve adsorption equilibrium state. Next, we
centrifuged the suspension at 6000 rpm for 15 min. The obtained precipitate was dried
at 50 ◦C for 48 h. We did not obtain adsorption on unmodified material. Samples with
adsorbed PBZ on APTES-modified SBA-15 were designated as SBA-15-pr-NH2:PBZ.

We calculated the amount of adsorbed PBZ as the difference in concentration of the
solutions before and after the adsorption. We evaluated the solutions’ concentrations
using the UV/VIS LAMBDA 20 Perkin Elmer (PerkinElmer, Inc., Waltham, MA, USA)
spectrophotometer at 240 nm.

In order to calculate the drug loading efficiency, we used the following formula:

drug loading efficiency (%) =
weight of PBZ in the sample (mg)

weight of the carrier in the sample (mg)
× 100%. (1)

2.3. Characterization Methods
2.3.1. Powder X-ray Diffraction (XRD)

The small-angle X-ray powder diffraction patterns were performed with Bruker D8
Advance (Billerica, MA, USA) over the range 0.6◦ < 2θ < 8.0◦ with a scan speed 0.02◦/1–2 s.
Wide-angle X-ray powder diffraction patterns were recorded with Bruker D2 Phaser (Biller-
ica, MA, USA) over the range 5.0◦ < 2θ < 45.0◦ with a scan speed 0.02◦/1–2 s.

2.3.2. Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry (DSC) thermograms were recorded using DSC 214
Polyma Netzsch (Netzsch Group, Selb, Germany). All samples weighing approximately
5 mg were scanned from 25 to 170 ◦C at a scanning rate of 5 ◦C/min under nitrogen gas
flow (30 mL/min).

2.3.3. Nitrogen Adsorption/Desorption

Nitrogen adsorption/desorption isotherms were determined at −196 ◦C by Autosorb iQ
analyzer (Quantachrome Instruments, Boynton Beach, FL, USA). The samples of pure silica
and materials with adsorbed PBZ were degassed in vacuum for 24 h at 100 ◦C and room
temperature, respectively. The specific surface area was obtained by BET (Brunauer-Emmett-
Teller) isotherm. The size distribution, pore volume and diameter were estimated from the
desorption branch of the isotherms in accordance with BJH (Barret-Joyner-Halenda) method.

2.3.4. Transmission and Scanning Electron Microscopy (TEM/SEM)

TEM images were recorded by a JOEL JEM 1200 EX electron microscope (JEOL Ltd.,
Tokyo, Japan). operated at 80 kV. SEM images were taken on a Zeiss EVO-40 electron
microscope (Carl Zeiss AG, Oberkochen, Germany).

2.3.5. Fourier Transformed Infrared Spectroscopy (FTIR)

The FTIR spectra were collected using a Bruker FTIR IFS 66/s spectrometer (Billerica,
MA, USA) in the range 400–4000 cm−1 (the resolution of 1 cm−1) with the KBr pellet
technique (1 mg of the studied material and 200 mg of KBr).
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2.3.6. Spectrophotometry

The UV/VIS spectra were performed on UV/VIS LAMBDA 20 Perkin Elmer spec-
trophotometer. The UV method was validated. The selectivity, linearity, precision, and
accuracy were set up according to the ICH Q2(R1) [18]. In order to fit the best statistical
model of the relationships between absorbance and concentration of PBZ, the homoscedas-
ticity of data were checked using F-test. According to the literature [19–21], it is suggested
to evaluate the fit of the ordinary least squares linear (OLS) regression by assessing the
homoscedasticity of data and, in the case of heteroscedasticity, search for other models,
which better defined the correlation between the concentration and the response of the de-
tector [21,22]. When the homogeneity was not found, the homoscedasticity was evaluated
by plotting graphs of the residuals versus concentration. The residuals were established
by the difference between the obtained data at each point of the calibration curve and
the calculated values from the OLS equation. Given the evidence of heteroscedasticity,
the weighted WLS was utilized to calculate the regression line that unifies the differences
between errors throughout the working range. In the course of calculations, the appropriate
weighting factors, wi, i.e., 1

y0.5 , 1
y , 1

y2 , 1
x0.5 , 1

x , and 1
x2 , were used. Subsequently, the sums of

the percentage relative errors (∑ %RE) were calculated for each model to determine the
best fitting weighted regression line.

2.3.7. Solid-State 1H-NMR

Solid-state 1H-NMR measurements were carried out on a pulse spectrometer oper-
ating at a frequency of 25 MHz (El-Lab Tel-Atomic, Jackson, MI, USA) [17]. The samples
of PBZ and SBA-15-pr-NH2:PBZ were sealed in the glass tubes and degassed. Measure-
ments were performed in a temperature range from 80 K to 300 K. The proton spin-
lattice relaxation times T1 in the laboratory frame were estimated by fitting the equation:
Mz(t) = M0*(1 − exp(−t/T1), where: M0 is the equilibrium magnetization, and T1 is the
relaxation time, to the experimental data obtained using a conventional saturation method.
The measurement error was around 3%. For PBZ and SBA-15-pr-NH2:PBZ, the recovery of
magnetization Mz(t) was one-exponential in the entire temperature range.

2.4. Drug Release Studies

We carried out the in vitro PBZ release studies from SBA-15-pr-NH2:PBZ and the
dissolution tests of pure PBZ on an Electrolab EDT 08Lx apparatus (Electrolab, Janki Impex,
Gujarat, India) using a rotating paddle method. During the test, the temperature was
maintained at 37 ◦C, and the mixing speed was set at 70 rpm. In each analysis, we used
silica samples corresponding to 4 mg of PBZ or the same amount of pure compound.
We performed each test in triplicate. We limited the amount of the fluid at 500 mL of
hydrochloric acidic medium at pH 1.2 ± 0.1 and phosphate buffer at pH 7.4 ± 0.1 (Ph. Eur.
X) in order to maintain the sink conditions. After 5, 15, 30, 60, 90, 120 min, and after 3, 4, 5,
6, and 24 h, we removed 4 mL of the liquid from the vessel and filtered it through a 0.22 µm
PTFE filters. We replenished the diminished fluid in the vessel with fresh hydrochloric
acidic medium at pH 1.2 ± 0.1 or the phosphate buffer at pH 7.4 ± 0.1 in the appropriate
volume. We measured the PBZ concentration by UV spectrophotometry at 236 nm. Each
measurement of the samples in the phosphate buffer was preceded by the addition of
0.3 mL of 1 mol/L HCl in order to avoid the occurrence of keto-enol tautomerism.

In order to compare the obtained release profiles, we used a method based on the
calculation of the similarity coefficients f 2. We calculated the similarity factors f 2 according
to Equation (2) [23]:

f2 = 50 ∗ log {[1 + 1
n

n

∑
t=1

(Rt − Tt)
2] −0.5 ∗ 100}, (2)

where n is number of sample points, and Rt and Tt are the percentage of dissolved PBZ
from the reference or released PBZ from the samples, respectively, at time t.
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2.5. Cytotoxicity Study
2.5.1. Cell Culture

Caco-2 human colon adenocarcinoma cell line was obtained from the European Type
Culture Collection (Sigma-Aldrich Co., St Louis, MO, USA). The cell line was maintained
in phenol-free DMEM medium (Sigma-Aldrich Co., St Louis, MO, USA), supplemented
with 10% foetal bovine serum (FBS), streptomycin (0.1 mg/mL), penicillin (100 U/mL), 1%
non-essential amino acids mixture, and 2 mM glutamine (Sigma-Aldrich Co., St Louis, MO,
USA). The assays were carried out with Caco-2 cells from the 20th passage.

2.5.2. Cell Viability

Caco-2 cells were cultivated under the standard conditions at 37 ◦C in a humidified
atmosphere containing 95% air and 5% CO2. To evaluate the effects of PBZ, SBA-15-pr-
NH2 and SBA-15-pr-NH2:PBZ on cell viability, confluent stock cultures were detached
using trypsin and seeded in 96-well plates at a density of 2 × 104 cells/well in 150 µL of
growth medium. The cells were allowed to attach, and, after 48 h, we added the analyzed
compounds. In the assays, we investigated the concentrations of SBA-15-pr-NH2 in the
range of 0.125–1.0 mg/mL and the PBZ concentrations corresponding to the amount of
the PBZ adsorbed on the SBA-15-pr-NH2 used for the assays. After 2 h of incubation,
we measured the cell viability using the CellTiter-Glo® Luminescent Cell Viability Assay
(Promega, Madison, WI, USA), according to the manufacturer’s instruction.

2.6. Statistical Analysis

The data were analyzed using Statistica 12 software (StatSoft, Cracow, Poland). One-
way analysis of variance (ANOVA) was used to determine the statistical significance occur-
ring among the samples. The a priori level of significance was p < 0.05. All measurements
were conducted in triplicate.

3. Results and Discussion
3.1. Powder X-ray Diffraction

We used the XRD analysis to determine amorphous or crystalline state of the samples.
Figure 1a presents the wide-angle diffractograms of PBZ, SBA-15, SBA-15-pr-NH2 and
SBA-15-pr-NH2:PBZ. The diffraction pattern obtained for phenylbutazone shows many
characteristic peaks of the PBZ in crystalline form. The typical reflection peaks for PBZ
are located at diffraction angles (2θ) of 6.3◦, 8.5◦ for main peaks and at 13.5◦, 15.1◦, and
21.9◦ [24]. In contrast, the diffraction pattern for SBA-15 and SBA-15-pr-NH2 shows one
broad peak that confirms the presence of amorphous silica [25]. The diffractogram obtained
for SBA-15-pr-NH2:PBZ is comparable to that of modified silica and shows no characteristic
peaks of crystalline PBZ. These results confirm that adsorbed PBZ is in an amorphous state.
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(b) Small-angle XRD pattern of SBA-15-pr-NH2.
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Figure 1b shows the small-angle diffractogram of SBA-15-pr-NH2. It reveals three well-
resolved peaks, the most intense at 2 Θ ≈ 1◦, corresponding to (100), (110), and (200) planes.
Presented diffractogram indicates an ordered structure of modified material and hexagonal
symmetry with the P6 mm space group. Our results are in line with the literature data [2,7].

3.2. Differential Scanning Calorimetry

The DSC analysis supports our findings from XRD measurements. The results of
the DSC assays are presented in the Figure 2. The DSC thermogram of PBZ shows one
endothermic peak at 107.6 ◦C associated with the solid-liquid transition and confirming the
crystalline state of the drug [24]. For the SBA-15 and SBA-15-pr-NH2, we observe a peak
corresponding to glass transition at 75 ◦C and 65 ◦C, respectively, proving the amorphous
state of the silicas [26]. The absence of melting or degradation peaks indicates the thermal
stability of SBA-15-pr-NH2. Similarly, the DSC curve for SBA-15-pr-NH2:PBZ demonstrates
no melting or decomposition peaks, which proves the amorphous state of PBZ incorporated
inside the mesopores of the SBA-15-pr-NH2 [27].
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Figure 2. DSC thermograms of PBZ, SBA-15, SBA-15-pr-NH2:PBZ, and SBA-15-pr-NH2.

3.3. Nitrogen Adsorption/Desorption

Figure 3 presents the nitrogen adsorption–desorption isotherms for SBA-15-pr-NH2
and SBA-15-pr-NH2:PBZ, and Table 1 shows their textural parameters. The mesoporous
structure with microporous content of analyzed materials is confirmed by the presence of
irreversible type IV isotherms with H1 hysteresis loop (IUPAC classification) [25,27].

Our results show that unmodified SBA-15 silica has the highest specific surface area, pore
volume and pore diameter. As confirmed by earlier studies, the introduction of functional
groups on the surface of silica reduces the above-mentioned parameters. Similarly, in our
research, APTES-functionalization resulted in a reduction of specific surface area, volume,
and diameter of the pores. It is suggested that, during surface functionalization, aminopropyl
groups preferentially bind to the outer parts of mesopores and micropores, resulting in partial
blockage of the pores and reduction of the aforementioned parameters [7,8]. We observed a
further decrease in all values after the adsorption of PBZ to SBA-15-pr-NH2 [25,27].
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Table 1. Textural parameters of SBA-15, SBA-15-pr-NH2, and SBA-15-pr-NH2:PBZ.

Sample Specific Surface Area (SBET) (m2/g) Pore volume (Vp) (cm3/g) Pore Diameter (nm)

SBA-15 789 1.021 6.0

SBA-15-pr-NH2 639 0.995 5.7

SBA-15-pr-NH2:PBZ 455 0.852 5.5

3.4. Transmission Electron Microscopy

We determined the structure of the SBA-15, SBA-15-pr-NH2, and SBA-15-pr-NH2:PBZ
by TEM imaging (Figure 4). All micrographs present parallel mesoporous channels, which
confirms the two-dimensional, ordered structure of the analyzed silicas. Noteworthy is
that neither the modification of the SBA-15 with 3-aminopropyl groups nor the PBZ load-
ing changed the structure of SBA-15-pr-NH2. Our results are in line with previously re-
ported data [9,27].
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3.5. Scanning Electron Microscopy

We investigated the morphology of the SBA-15, SBA-15-pr-NH2, and SBA-15-pr-NH2:PBZ
by SEM imaging. The SEM micrographs presented in Figure 5 show oval, well-formed rod-like
particles. Individual grains with a size of about 1 µm aggregated into larger linear structures.
The functionalization of the silica’s surface did not influence the morphology of analyzed silica.
Micrograph B shows no additional phenylbutazone crystals, indicating drug incorporation
inside the mesopores. Presented results corroborate previous findings [27,28].
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3.6. Fourier Transformed Infrared Spectroscopy

The FT-IR spectra of PBZ, SBA-15-pr-NH2, and SBA-15-pr-NH2:PBZ are presented in
Figure 6. In the spectrum of SBA-15, the broad band around 3430 cm−1 can be assigned
to stretching vibrations of O-H groups (Si-OH), and the band at 1638 cm−1 to bending
vibrations of O-H bonds (OH groups). In the range 1100–1200 cm−1, we detected the
asymmetric stretching vibrations of Si-O-Si [29]. The band at 960 cm−1 can be attributed
to free silanol groups on the surface of silica [30]. Symmetrical stretching vibrations and
deformation vibrations of Si-O-Si bonds are detected at 800 cm−1 and at 465 cm−1 [31].
In the spectrum of the SBA-15-pr-NH2, the broad band at 3430 cm−1 is assigned to the
stretching vibrations of the silanol groups [32]. The band at 2920 cm−1 can be identified
as stretching vibrations from the propyl chain [11]. The peaks at 1550 cm−1 and 1630
cm−1 are identified as the N-H bending vibrations. The broad peak in the range of 1080–
1200 cm−1 can be attributed to the Si–O–Si asymmetric stretching vibrations. This peak
overlaps the C-N stretching vibrations, which are normally located in the range of 1000–
1200 cm−1 [33]. The bands at 800 cm−1 and 460 −1 are assigned to the symmetric stretching
and bending vibrations of Si–O–Si, respectively [32]. The above allows us to conclude that
the functionalization process was carried out correctly.
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Figure 6. FT-IR spectra of SBA-15, SBA-15-pr-NH2, SBA-15-pr-NH2:PBZ, and PBZ.

In the spectrum of PBZ, bands at 1715 cm−1 and 1753 cm−1 are assigned to C=O
stretching vibrations. The peak at 1595 cm−1 corresponds to C=C stretching vibrations of
the phenyl ring. The band at 1486 cm−1 can be identified as C-H vibrations. The C-N bonds
can be detected at 1270 cm−1. The bands at 754 cm−1 and 694 cm−1 are attributed to C-H
vibrations [15,34,35].

The SBA-15-pr-NH2:PBZ spectrum displays additional peaks in comparison to SBA-15-
pr-NH2 located at 690 cm−1, 1493 cm−1, and 1755 cm−1 and an increase in the intensity of
the peak at 2977 cm−1. Additionally, the presence of the hydrogen bonds between phenylbu-
tazone molecules and silica surface results in a broader band between 3441–3600 cm−1. All
of the above proves the successful loading of PBZ.

3.7. Proton Nuclear Magnetic Resonance
1H-NMR technique allows the study of the internal dynamic of molecular groups

existing in a molecule of phenylbutazone (Figure 7). Using the 1H-NMR technique, it is
possible to confirm changes in the structure of phenylbutazone-loaded APTES-modified
SBA-15 mesoporous material, as well as changes in the molecular dynamics of its molecular
groups. Based on the temperature dependence, it is possible to determine the activation
parameters of these molecular movements for which the theoretical description is consistent
with the experimental data. Figure 8 presents the spin-lattice relaxation times T1 in the
laboratory frame as a function of the reciprocal temperature for PBZ and SBA-15-pr-
NH2:PBZ, respectively.
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For PBZ two local minima were observed, as shown in Figure 8. The first one, in
the high-temperature range, with T1 equal to 197 ms, appeared in the vicinity of 197 K,
and the second one, in the low-temperature range, asymmetrical of T1 = 121 ms, was
observed at 127 K. To characterize molecular motions of PBZ, the temperature dependence
of the relaxation times T1 was analyzed in terms of dipole-dipole Bloembergen–Purcell–
Pound (BPP) theory [36]. It was assumed that the T1 values were determined by dipolar
interactions modulated by three different molecular processes: the hindered rotation of
the methyl CH3 group around its threefold axis C3, reorientation of the butyl group, and
reorientation of the whole C4H9 chain. The relaxation rate of the multi-proton system can
be generally described as:

1
T1

= (
1
T1

)
methyl

+ (
1
T1

)
butyl

+ (
1
T1

)
chain

, (3)

where each contribution is expressed by Equation (4). The spin-lattice relaxation rate ( 1
T1
)
∗

is given by the following formula [37,38]:

(
1
T1

)
∗
=

2
3

γ∆M2(
τc

1 + ω2
0τ2

c
+

4τc

1 + 4ω2
0τ2

c
), (4)

where: ∗ concerns the relaxation of the ethyl group, the butyl group, and the whole chain
γ is a gyromagnetic ratio of protons, and ∆M2 is a reduction of the second moment, the
correlation time is given by Arrhenius formula:

τc = τ0 exp
Ea

RT
. (5)

A wide and asymmetric minimum of 121 ms at about 127 K of T1 = 121 ms, depicted
in Figure 8, was attributed to the hindered rotation of the methyl CH3 group around its
threefold axis C3. In the higher temperature region, the occurrence of reorientation of the
butyl group was assumed, and the sharp minimum was attributed to the reorientation of
the whole chain. It was approximated that the proton spin-lattice relaxation time due to
these motions is given by the same Formula (4).
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The best numerical fit of Equations (3) and (4) to the experimental relaxation times in the
whole temperature range is presented as solid lines in Figure 8, while the partial contributions
are presented as dotted lines. The activations parameters are summarized in Table 2.

Table 2. The activation parameters of internal group reorientation of PBZ and SBA-15-pr-NH2:PBZ.
The values of the uncertainty of the estimated parameters were lower than 10%.

Sample 1 Motion 2 Motion 3 Motion

PBZ
τ01 = 3.8·10−13(s)

Ea1 = 16.0 (kJ/mol)
∆M1 = 0.5 (10−8T2)

τ02 = 8.2·10−13(s)
Ea2 = 9.8 (kJ/mol)

∆M2 = 1.3 (10−8T2)

τ03 = 3.9·10−13(s)
Ea3 = 8.8 (kJ/mol)

∆M3 = 1.1 (10−8T2)

SBA-15-pr-NH2:PBZ
τ01 = 4.3·10−15(s)

Ea1 = 24.8 (kJ/mol)
∆M1 = 2.6 (10−8T2)

τ02 = 5.8·10−11(s)
Ea2 = 3.7 (kJ/mol)

∆M2 = 5.4 (10−8T2)

τ03 = 7.8·10−11(s)
Ea3 = 1.8 (kJ/mol)

∆M3 = 14.8 (10−8T2)

For the PBZ, the methyl group reorientation is characterized by the activation energy Ea
of 8.8 kJ/mol and a τ0 value of 3.9× 10−13 s, which is consistent with the literature data [39].

The reorientation of the butyl group is described by activation energy Ea = 9.8 kJ/mol
and the correlation time τ0 = 8.2 × 10−13 s. For the motion of the whole chain C4H9, the
following activation parameters are estimated: activation energy Ea =16 kJ/mol, correlation
time τ0 = 3.8 × 10−13 s.

For the SBA-15-pr-NH2:PBZ, the analysis of 1H-NMR data was performed according
to the procedure described for pure PBZ, and the activation parameters of the assumed
molecular processes were extracted and are shown in Table 2. For PBZ incorporated into
APTES-modified mesoporous silica, different temperature dependence of the relaxation
times, T1, was obtained in comparison to a pure phenylbutazone drug.

Shorter relaxation times mean faster relaxation of phenylbutazone incorporated into
APTES-modified SBA-15 mesoporous material, which is characteristic of amorphous sys-
tems. In the temperature dependence of the relaxation times, only a narrow minimum of
39 ms is observed at 216 K. The shift of this minimum, assigned to the reorientation of the
whole chain of PBZ, towards higher temperatures proves that molecular dynamics of this
group of PBZ is hindered inside the pores. In addition, the estimated activation energy of
the motion of this group is higher compared to a pure drug and is equal to 24.8 (kJ/mol).
For the SBA-15-pr-NH2:PBZ, no other minimum was observed at the low temperatures.

However, by fitting Equations (3) and (4) to the experimental data, the activation
parameters of two additional molecular movements were determined. It was suggested
that motion, which is characterized by the relaxation times τ02 = 5.8 × 10−11 (s) and the
activation energy Ea2 = 3.7 (kJ/mol) can be associated with local motion of the methyl group.
The third low temperature motion described by the relaxation time τ03= 7.8 × 10−11 (s)
and low activation energy Ea3= 1.8 (kJ/mol) may be related to the jumps of the hydrogen
atom in hydrogen bonds, which arise as a result of the interaction of the NH2 amine groups
of the modified silica with the incorporated drug [17].

The 1H-NMR results confirm that loaded phenylbutazone in the SBA-15 mesopores
undergoes structural rearrangements upon transition from the crystalline state to the
amorphous one, which improves the bioavailability of the drug [40,41].

3.8. Validation of UV Method

The method was linear in the range of 0.003–0.03 mg/mL, and the relationships be-
tween absorbance and concentration calculated based on OLS and WLS were characterized
by a high correlation coefficient (Table 3). The homoscedasticity test of the data was per-
formed in order to evaluate the fit of the OLS model, and it was found that the Fcalc was
greater than the Fcrit, and the residues gave a wide distributed band of values around the
axis of concentration. That evidence implied the heteroscedasticity of the data and the
need for using the WLS to calculate the weighted regression parameters. Six empirical
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weights, 1
y0.5 , 1

y , 1
y2 , 1

x0.5 , 1
x , and 1

x2 , were used to convert the regression equation to the
weighted regression equation. The obtained values of equation coefficients slope (a) and
intercept (b), and correlation coefficient (r), are presented in Table 3. The best-fitting model
was determined by comparing the sums of percentage relative errors (∑%RE) and were as
follows: 1

y for PBZ in isopropanol, and 1
y0.5 for PBZ in HCl medium and phosphate buffer.

Table 3. Regression parameters of the analytical curve and sums of the relative errors (Σ%RE).

Regression
Isopropanol HCl Medium (pH 1.2) Phosphate Buffer (pH 7.4)

wi a b r ∑ %ER a b r ∑ %ER a b r ∑ %ER

Ordinary least
squares 1 51.37 0.0170 0.9999 3.81 48.94 0.0169 0.9991 6.76 38.06 0.0151 0.9995 4.23

Weighted least
squares

1
y0.5 51.29 0.0049 0.9999 1.38 49.17 0.0130 0.9991 5.49 37.97 0.0169 0.9995 0.59

1
y 51.21 0.0058 0.9999 0.04 48.94 0.0170 0.9991 6.76 37.91 0.0178 0.9995 2.22

1
y2 51.07 0.0070 0.9999 0.17 48.92 0.0169 0.9908 5.60 37.90 0.0179 0.9995 1.66

1
x0.5 48.88 0.0179 0.9991 43.96 48.88 0.0179 0.9908 9.63 37.97 0.0169 0.9995 1.03

1
x 51.21 0.0059 0.9999 0.19 48.90 0.0176 0.9908 8.52 37.92 0.0178 0.9995 2.80
1
x2 51.07 0.0070 0.9999 0.18 49.23 0.0144 0.9905 7.26 37.92 0.0177 0.9995 2.76

The accuracy and limit of detection (LOD) and quantification (LOQ) were calculated
based on OLS and WLS regression parameters. The relative error (εr) obtained by OLS
was 0.97%, 1.31%, and 0.52%, and by WLS was −0.25%, 1.11%, and 0.55%, for isopropanol,
hydrochloric acidic medium, and phosphate buffer, respectively. The calculated relative
standard deviation (RSD) ranged from 0.09% to 0.59%. The LOD and LOQ that were
calculated by OLS were 0.59 mg/mL and 1.79 mg/mL, respectively. The LOD and LOQ
that were obtained by WLS were 0.57 mg/mL and 1.73 mg/mL, respectively. Table 4
presents the obtained data. The validated UV method met all the requires parameters.

Table 4. Accuracy and precision of the UV method.

Concentration
(mg/mL)

Accuracy (%)
(Expressed as

εr=
Ctheoret − Cexp

Ctheoret
× 100%.)

(n = 6)
Acceptance Limit: εr < 5%

Precision (%)
(Expressed as RSD, n = 6)

Acceptance Limit: RSD < 5%

LOD
(mg/mL)

LOQ
(mg/mL)

OLS
wi = 1

WLS
wi = 1

y

Isopropanol 0.97 −0.25 0.09 3.20 × 10−4 9.70 × 10−4

HCl medium (pH 1.2) 1.31 1.11 0.59 1.13 × 10−3 3.41 × 10−3

Phosphate buffer (pH 7.4) 0.52 0.55 0.35 1.04 × 10−3 3.16 × 10−3

3.9. Drug Release Study

Phenylbutazone is a member of BCS class II that is characterized by high permeability
and low solubility, limiting the absorption of PBZ in gastrointestinal tract. Importantly, the
absorption of PBZ may be improved by increasing its dissolution rate [15].

In our study, we adsorbed PBZ on SBA-15-pr-NH2. The calculated amount of loaded
PBZ obtained from the UV analysis was 5.04%.

Figure 9 demonstrates PBZ release profiles from mesoporous material at pH = 1.2
and pH = 7.4 compared to the dissolution of the crystalline PBZ. The release profiles of
PBZ from SBA-15-pr-NH2:PBZ in both pH values are characterized by the initial burst
release, followed by prolonged release rate. This type of release profile was also observed
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by Xu et al. [42]. In release studies of phenylbutazone from other carriers, such as PLGA
nanocapsules, initial burst release was also observed [43]. In hydrochloric acidic medium
67% of PBZ was released in the first 5 min of the test, reaching almost 100% after 24 h.
By contrast, the crystalline PBZ dissolved only in 43% within 24 h. In phosphate buffer
at pH = 7.4, the differences are less pronounced but still significant. Similarly, in the
first 5 min of the test, 67% of PBZ was released from the SBA-15-pr-NH2, whereas the
phenylbutazone dissolved only in 8%. The initial burst release may result from the presence
of PBZ adsorbed at outer part of the SBA-15-pr-NH2 channels, whereas the sustained
release of PBZ is associated with PBZ loaded within silicas’ pores or electrostatically
attracted to the aminopropyl groups present on modified material. This may be due to the
fact that the diffusion of PBZ adsorbed at the outer part of silica is faster than from the
inside of the materials’ pore [15,44,45]. Significant improvement in the dissolution rate of
PBZ may be due to the property of SBA-15 to provide a more soluble amorphous form
of adsorbed drugs [6]. We confirmed the amorphous state of PBZ in the XRD and DSC
analyses. The calculated similarity coefficients f2 (Table 5) indicate that the release rate of
PBZ from SBA-15-pr-NH2:PBZ was higher than its dissolution rate. It is also worth noting
that the PBZ release from mesoporous carriers remains constant in both pH values, proved
by the value of the similarity coefficient f2 above 50.
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Table 5. Comparison of the similarity coefficients f2 between SBA-15-pr-NH2:PBZ and crystalline
PBZ and between mesoporous silica in various pH.

PBZ (pH 1.2) SBA-15-pr-NH2:PBZ (pH 7.4) PBZ (pH 7.4)

SBA-15-pr-NH2:PBZ (pH 1.2) 7.66 66.21 -

SBA-15-pr-NH2:PBZ (pH 7.4) - - 21.54

The obtained results demonstrate that the adsorption of PBZ on APTES-modified
SBA-15 increases the dissolution rate of the drug, regardless the pH value.

3.10. Cytotoxicity Studies

The biocompatibility of orally administered drugs, such as PBZ, and mesoporous
silicas (SBA-15-pr-NH2, SBA-15-pr-NH2:PBZ) can be assessed using cell visibility tests. The
test assumes that the amount of ATP (adenosine triphosphate) produced by metabolically
active cells is proportional to the number of viable cells. In our study, we used Caco-2
cells (human colorectal adenocarcinoma cells), which are similar to the intestinal epithelial
cells regarding their morphology and physiology [46]. Figure 10 shows the viability of
Caco-2 cells after 2 h of exposure to PBZ (0.0063, 0.0126, 0.0252, 0.0504 mg/mL), SBA-15-
pr-NH2 and SBA-15-pr-NH2:PBZ (0.125, 0.25, 0.50, 1.0 mg/mL). Our study showed no
detrimental effect of analyzed substances on Caco-2 cells at the tested concentrations after 2



Materials 2022, 15, 946 14 of 16

h of exposure. The cell viability did not differ significantly between samples, which allows
us to assume that loading of PBZ to SBA-15-pr-NH2 did not influence the cytotoxicity of
the material itself. Presented results are in agreement with literature data [47].
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4. Conclusions

In this study, we analyzed the possibility of improving the dissolution rate of the
phenylbutazone, a poorly soluble drug, by loading on APTES-modified mesoporous silica.
We successfully synthesized the SBA-15 silica and modified its surface with 3-aminopropyl
groups. We proved that proposed method of PBZ adsorption ensures the amorphous state
of loaded drug, which was confirmed in XRD, DSC, SEM, and 1H-NMR analyses. Our
results demonstrate increased dissolution rate of silica-loaded PBZ at various pH values
compared to crystalline PBZ. Furthermore, contrary to the crystalline phenylbutazone, the
release of amorphous PBZ from the mesoporous materials is not pH-dependent. Moreover,
we revealed the negligible cytotoxicity of SBA-15-pr-NH2 before and after adsorption
of PBZ. Concluding, the APTES-modified SBA-15 can serve as a non-toxic carrier for
phenylbutazone improving its bioavailability.
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