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Abstract

For the last decade, Gaussian process regression (GPR) proved to be a competitive machine 

learning regression algorithm for Earth observation applications, with attractive unique properties 

such as band relevance ranking and uncertainty estimates. More recently, GPR also proved to be 

a proficient time series processor to fill up gaps in optical imagery, typically due to cloud cover. 

This makes GPR perfectly suited for large-scale spatiotemporal processing of satellite imageries 

into cloud-free products of biophysical variables. With the advent of the Google Earth Engine 

(GEE) cloud platform, new opportunities emerged to process local-to-planetary scale satellite data 

using advanced machine learning techniques and convert them into gap-filled vegetation properties 

products. However, GPR is not yet part of the GEE ecosystem. To circumvent this limitation, 

this work proposes a general adaptation of GPR formulation to parallel processing framework and 

its integration into GEE. To demonstrate the functioning and utility of the developed workflow, 

a GPR model predicting green leaf area index (LAIG) from Sentinel-2 imagery was imported. 

Although by running this GPR model into GEE any corner of the world can be mapped into LAIG 

at a resolution of 20 m, here we show some demonstration cases over western Europe with zoom-

ins over Spain. Thanks to the computational power of GEE, the mapping takes place on-the-fly. 

Additionally, a GPR-based gap filling strategy based on pre-optimized kernel hyperparameters is 

also put forward for the generation of multi-orbit cloud-free LAIG maps with an unprecedented 

level of detail, and the extraction of regularly-sampled LAIG time series at a pixel level. The 
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ability to plugin a locally-trained GPR model into the GEE framework and its instant processing 

opens up a new paradigm of remote sensing image processing.
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1 Introduction

The estimation of quantitative vegetation variables is fundamental to assess the dynamic 

response of vegetation to changing environmental conditions [1]. Earth observation 

sensors in the optical domain enable the spatiotemporally-explicit retrieval of plant 

biophysical parameters [2]. Since the advent of optical remote sensing science, a variety 

of retrieval methods for vegetation attribute extraction emerged. Essentially, quantification 

of surface biophysical variables from spectral data always relies on a model, enabling 

the interpretation of spectral observations and their translation into a surface biophysical 

variable. Methodologically, these retrieval models can be classified into the following four 

categories: (1) parametric regression, e.g., spectral indices combined with a fitting function, 

(2) non-parametric regression, e.g., machine learning regression algorithms (MLRAs), (3) 

physically-based, i.e., inverting radiative transfer models (RTMs), and (4) hybrid methods. 

See [3,4] for a comprehensive review of these methods and mapping applications. Each of 

these categories has their benefits and limitations, depending on the targeted application. 

Hybrid methods blend the generic properties of physically-based models combined with 

the flexibility and computational efficiency of MLRAs. Within such a scheme, lookup 

tables (LUT) are generated from RTM simulations. Then, the MLRA learns the (non-linear) 

relationship between the pairs of reflectance and vegetation trait of interest. Hybrid methods 

tend to be preferred when it comes to operational processing to be applied across the globe, 

given their general applicability, processing speed and competitive performances. One of the 

major advantages of these methods is that, once a MLRA is trained, it can process an image 

into a vegetation product quasi-instantaneously. Current hybrid schemes for the generation 

of land products typically rely on neural networks (NNs) trained using a very large amount 

of RTM-simulated data [5]. Previous studies with NNs and LUT-based inversion even 

suggested LUT sizes from 8000–100,000 combinations of input variables [6,7].

In this regard, due to the fast progress in the development of machine learning techniques 

and their applications, for the last few years alternative MLRAs came forth as appealing 

alternatives over conventional NN models into hybrid retrieval strategies [8,9]. Especially, 

the MLRA families of decision trees and kernel-based methods proved to deliver 

outstanding mapping results [3,4]. These methods tend to be simpler to train, i.e., no need 

for such large LUTs, and for vegetation properties estimation can perform more robustly 

than NNs when a reduced number of training samples is available, while maintaining 

competitive accuracies [8,10]. From the kernel-based algorithms, noteworthy are kernel 

ridge regression [11], because of its simplicity and therefore fast run-time, support vector 

regression [12] and Gaussian process regression (GPR) [13]. GPR is particularly attractive 
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because of carrying out statistical learning developed in a Bayesian framework. Lately, GPR 

became one of the main interesting kernel-based ML methods for vegetation properties 

retrievals: GPRs excel other ML algorithms through delivering competitive prediction 

accuracy [8,10,14] and insight in relevant bands [15], and above all, providing a closed 

form expression for the uncertainty intervals of the estimates. This distinct feature provides a 

valuable source of additional information, e.g., to assess the robustness of the predictions at 

varying spatiotemporal scales [16].

Essentially, the entire procedure of learning a GPR model only relies on an appropriate 

selection of the type of kernel and the hyperparameters involved in the estimation of input 

data covariance. Kernels contain assumptions about the function we wish to learn and define 

the closeness and similarity between data points. Once a kernel is selected, the unknown 

hyperparameters of the kernel need to be learned from the training data [17]. Trained GPRs 

are usually highly flexible and accurate for prediction over new inputs closer to training 

data points, whereas their uncertainty increases when the new inputs are further away from 

the available training information. With these appealing properties, apart from retrieval 

applications, recent studies have demonstrated the effectiveness of GPR for time series 

gap-filling applications [18–20].

Given the attractive properties of GPR and with ambition of progressing towards operational 

processing, the algorithm was recently explored as a prototype retrieval algorithm for 

automated processing of Sentinel-2 (S2) tiles into products of green leaf area index (LAIG) 

and brown LAI (LAIB) at a pixel resolution of 20 m [21]. GPR models were developed, 

applied to S2 imagery, and LAI maps were validated across various sites in Europe. In 

addition, LAI time series were processed for the selected sites; the regular occurrence of 

cloud cover in optical data makes that gap-filling and smoothing techniques are mandatory 

for obtaining meaningful phenology profiles. Among multiple gap-filling fitting functions 

analyzed [20,22], GPR appeared to be one of the top performing algorithms in correctly 

reconstructing cloud-free LAIG products [20], and at the same time providing associated 

uncertainties. Altogether, GPR proved to be appealing for spatiotemporal processing optical 

satellite data, i.e., not only for retrieving LAI from S2 data but also for gap-filling processing 

in order to obtain cloud-free LAIG estimates at regular intervals (e.g., each 5 days).

However, when eventually aiming for seamless S2 data processing applicable to any corner 

in the world, more computationally-efficient solutions have to be sought for. While GPR 

processes a single S2 tile reasonably fast (in the order of minutes), GPR processing becomes 

tedious when time series of S2 tiles must be processed, and this is especially true when 

covering larger regions. Moreover, preprocessing steps, such as selecting and preparing S2 

tiles from the Copernicus data hub [23], adds to additional runtime and eventually becomes 

a bottleneck when not fully automated. Altogether, in order to achieve dynamic processing 

of a vast amount of S2 data, it demands for: (1) migrating towards cloud-computing 

platforms, and (2) integrating the GPR algorithm into the cloud-computing platforms. 

Hence, this leads to new challenges to overcome, but also opportunities towards interactive 

on-the-fly processing of vegetation properties estimation in a cloud computing environment. 

Specifically, for the last few years the Google Earth Engine (GEE) platform emerged as 

an attractive high-performance computing platform to enable cloud-based processing of 
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petabytes of S2 data [24]. GEE provides powerful computational capability for planetary-

scale data processing and allows creation and training for well-known machine learning 

algorithms [25]. However, despite the growing capabilities in advanced machine learning 

tools in GEE, the possibility to train and apply GPRs, or even just run already trained GPRs, 

is still lacking. This means that solutions have to be developed to enable integrating GPR 

into the GEE environment. All in all, the ambition to plug in GPR into the GEE platform 

for the generation of vegetation products from S2 satellite data in a flawless cloud-based 

approach brings us to the following main objectives: (1) to adapt the GPR algorithm for 

multispectral data so it is scalable into GEE environment; (2) to optimize and import a 

GPR model for LAIG estimation in GEE; (3) to process S2 multispectral data into LAIG 

in GEE; (4) to tackle the gap-filling of discontinuous LAIG time series by extending the 

GPR modeling to the time domain; and (5) exemplify the processing power of the developed 

framework with a few comprehensive case studies.

The remainder of the paper is structured as follows. The GPR standard theory and a 

simple reformulation tailored to parallelize the prediction process is described in Section 

2. Section 3 outlines the data and the followed methodology for training the GPR models. 

Section 4 summarizes the strategy to plugin GPR into the GEE platform. Section 5 provides 

a demonstration case of reconstructing cloud-free composite LAI maps from Sentinel-2 

acquisitions over wide areas. A discussion on the workflow’s strengths and weaknesses and 

future research lines is presented in Section 6, whereas conclusions are finally presented in 

Section 7.

2 Methodology

2.1 GPR Formulation for Vector Input

Standard GPR models are state-of-the-art statistical methods for non-parametric regression 

and function approximation. In recent years, we have successfully applied GPRs for the 

retrieval of biophysical parameters from optical imagery, see [3,14,16,26–31]. GPR models 

yield predictions of the phenomenon along with an estimation of their uncertainty. A general 

introduction to GPR can be found in [13,30]. In the following, we briefly review the 

standard GPR adapted to the general needs of this study. Bold font is used for variables to 

indicate a vector.

In general, GPR models establish a relation between the input x ∈ ℝD and the output 

variable y ∈ ℝ. Assuming that y corresponds to noisy observations of the true underlying 

function f (x), i.e., y = f (x) + ɛ, and that the noise ɛ is additive dimension-independent 

Gaussian distributed with zero mean and variance σn2, the GPR model assumes that f(x) 

is a Gaussian-distributed random vector with zero-mean and covariance matrix K(x, x), 

i.e., f x ∼ N 0, K . The elements ij of the covariance matrix are calculated by means of 

a kernel function k(xi, xj), which encodes the similarity between input vectors xi and xj. 

Various kernel functions, with associated kernel parameters (i.e., hyperparameters), can be 

employed in a GPR [13,32]: Squared Exponential (SE), Matern 3/2, Matern 5/2 and Rational 

Quadratic (RQ), among others. The choice of the kernel function, and consequently of its 

hyperparameters, is usually referred to as model selection.
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In this study, we pay special attention to the most commonly employed SE covariance 

function (Equation (1)):

k xi, xj = σs2exp − 1
2 ∑

b = 1

D xi b − xj b
σb

2
, (1)

where σs2 > 0 is the signal variance and σb is a dedicated parameter controlling the spread of 

the training information along the input dimension b. Defining σ = [σ1, .., σD], the kernel 

is thus parameterized by a set of hyperparameters, collectively denoted as θ = σs2, σ2, σn2 . 

The term σn2 is the variance of the additive noise affecting the input data. These free 

hyperparameters θ allow for flexible customization of the GPR for a wide variety of 

regression problems, having the following interpretation:

• Length-scale σb describes the smoothness of f (x) dependence along the 

dimension b. Small σb means f (x) changes quickly for variations of x along b; 

large values denote slow changes w.r.t. the b dimension. Alternatively, the inverse 

of σb represents the relevance of band b in the prediction process. Intuitively, 

high values of σb mean that relations largely extend along that band hence 

suggesting a lower informative content.

• Signal variance σs2 is a scaling factor. It determines variation of f (x) from its 

mean. Small value of σs2 characterize functions that stay close to their mean 

value, larger values allow more variation. If σs2 is too large, the modeled function 

will be free to chase outliers.

• Noise variance σn2 is formally not a part of the covariance function itself. It is 

used by the Gaussian process model to account for noise present in training data.

The Bayesian framework allows estimating the distribution of f* at the test point x* 

conditioned on the training data and kernel’s hyperparameters. According to the GPR 

formulation, f (x*) is normally distributed with mean and variance given by:

f x* = k*
T K + σn2IN

−1y

σf
2 x* = c* − k*

T K + σn2IN
−1k*

(2)

where k* = [k(x*, x1), …, k(x*, xN)]T is an N × 1 vector, y = [y1, .., yN]T and 

c* = k x*, x* + σn2.

For Gaussian Process regression with Gaussian noise, it is possible to obtain the probability 

of the data given the hyperparameters p(y|x, θ) by marginalization over the function values f 
[13]. The log marginal likelihood is given by:

log p y x, f = − 1
2yT K + σn2IN

−1y − 1
2 log |K + σn2IN | − n

2 log 2π (3)
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The first term in Equation (3) can be interpreted as a data-fit term, the second term is a 

complexity penalty and the last term is a normalizing constant. From the theoretical point 

of view, any optimization algorithm can be applied to maximize the marginal likelihood in 

Equation (3). Yet, its selection must take into account very carefully the complexity of the 

problem to be solved and the dimensionality of the training data [33]. The optimization steps 

mentioned in the rest of the manuscript have been carried out using the conjugate gradient 

method proposed in [13] and implemented in [34]. We will call this optimization procedure 

training the GPR [13,35].

Once the hyperparameters θ have been estimated, the prediction of y for a new input vector 

x* is given along with its uncertainty by Equation (2). Note that the mean prediction is 

often referred to as a linear predictor, as it can be seen as a linear combination of N kernel 

functions, each one centered on a training point

f x* = ∑
i = 1

N
αik xi, x* = k*

Tα (4)

where xi i = 1
N  are the training vectors contained in the model, k is the Kernel function 

evaluating the similarity between the new input x and the generic training samples xi, i = 1, 

…, N and αi ∈ ℝ is the element i of the vector α = K + σn2IN
−1y.

2.2 GPR Formulation for Space-Spectrum (3D) Input

The training step of a GPR performs a non-linear optimization to provide at once the 

hyperparameters θ and the vector samples contained in the model to be compared to 

each new input for prediction. At this point, GPR prediction becomes a linear operation 

with respect to the number of model samples, as stressed by Equation (4), and a specific 

formulation for parallel computing strategy can be pursued. In addition, several operations 

which are dumbly repeated in a vector-based formulation can be pre-calculated and applied 

a reduced number of times at specific step of the prediction process, significantly reducing 

the overall computational burden of the final estimation. Being α defined once the model is 

trained, the problem reduces to optimize the estimation of k*.

Equation (1) can be expanded for the new input x* and the model sample xi as:

k x*, xi = σs2exp − 1
2 x*

TDx* − 2x*
TDxi + xiTDxi (5)

with D = diag σ1
−2, .., σB

−2 . Grouping the N samples contained in the GPR model as the B × 

N matrix X = [x1, x2, …, xN], k* can be obtained as:

k* = σs2exp −
x*

TDx*
2 exp − 1

2 −2XTDx* + ((XTD)T ∘ X)TJB, 1 (6)
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= σs2exp −
x*

TDx*
2 exp XTDx* − DX ∘ X TJB, 1

2 (7)

where ○ denotes the Hadamard (o element-wise) matrix product, and JB,1 indicates the B 
× 1 unit matrix. Note that the first element within the exponent expression is a scalar term 

which depends just on the new input vector and model’s hyperparameters, but not on its 

training samples X; the third one is related to the information contained in the trained model, 

but not on the new input to be used for prediction. Accordingly, we can give one further step 

towards parallelization, and extend the estimation of k* to a B × M matrix X* = [x*1, .., x*M] 

containing M new input vectors, being M the number of pixels of the multispectral image to 

be processed at once. Defining K* = k*
1, k*

2, ..k*
M , it results:

K* = σs2exp − DX* ∘ X TJN, 1J1, M
2 ∘ exp − DX ∘ X TJB, 1J1, M

2
∘ exp XTDX*

(8)

where J1,M has been introduced to generate a replication of column vectors and achieve 

dimensional equality of the overall matrix expression. Note that the terms within Hadamard 

product in Equation (8) correspond to N × M matrices.

Finally, the expression to predict the mean value f (X*) provided by the trained GPR 

model for an input M-pixel image with B bands X* can directly be obtained by combining 

Equations (4) and (8) as:

f X* = K*
T αJ1, M = JM, 1αTK* . (9)

2.3 GPR Formulation for Space-Time (3D) Input

The formulation presented in Sections 2.1 and 2.2 can be slightly modified to deal with a 

different regression task. Let the maximum number of input vector dimension be known, 

but not the real one, i.e., the number of meaningful bands. This is the case, for instance, of 

any surface parameter time series from satellite optical observations taken over an area of 

interest with a fixed sampling rate. The nominal number of acquisitions is known once the 

observation period is defined, but not the number of meaningful samples for each pixel, as it 

depends on the presence of clouds which may cover entirely or partially the area of interest.

With respect to Equation (1), the input becomes a scalar (D = 1) as it corresponds to time. 

Then, the kernel for covariance estimation is given by

kt ti, tj = σst2 exp − 1
2

ti − tj
σt

2
(10)

where ti and tj denote two generic acquisition dates of non-cloudy acquisitions from which 

the surface parameter of interest PS has been retrieved. Being t = [t1, …tNt]
T the vector of 

Pipia et al. Page 7

Remote Sens (Basel). Author manuscript; available in PMC 2022 September 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



the Nt sample dates for a specific pixel, the GPR estimation of PS at a new dates t* is still 

given by Equation (2) assuming PS t ∼ N 0, Kt t, t . Defining Dt = σ2
−2, the covariance Kt 

can be calculated as

Kt = σst2 exp −Dt
tJ1, Nt − JNt, 1tT

2 , (11)

and the expression to obtain the mean value prediction of PS at t* becomes

PS t* = kt*
T Kt + σnt2 INt

−1PS t = kt*
Tαt (12)

where PS(t) = [PS(t1), …, PS(tNt)]
T is the pixel’s parameter time series, σnt2  is the variance 

of the additive noise of time series PS(t) and σst2  is the time series signal variance. It is 

worth mentioning that in case of cloud-free acquisition set, Equation (11) is the same for 

all the pixels within the scene (but not so αt). Nonetheless, this is an unrealistic case, as the 

presence of clouds produces a spatial variability of the number of valid time samples, even 

within small areas. This pixel-wise dependence makes a parallel implementation of Equation 

(12) not easily achievable. A workaround for this problem, specifically designed for GEE, 

will be put forward in Section 4.2.

3 GPR Models Training

The generic formulation of GPR described in Section 2.1 can easily be employed for 

vegetation parameter retrieval modeling and gapfilling purposes. For the former, we can take 

into account the Sentinel-2 imagery and generate a model for the estimation of green LAI. 

For the latter, we analyze time series of green LAI over different crop regions to characterize 

their dynamics over time.

3.1 Green LAI Model

Green LAI is defined as one half the total green leaf area per unit ground surface area 

(hereafter referred to as ‘LAIG’) [36], and thus for crop fields, this only accounts for 

functioning above-ground parts of the plants that are green and photosynthetically active 

during a significant fraction of the growth cycle [37,38]. A key aspect about implementing 

an LAIG model into GEE was to ensure that a mature, well-validated GPR model was 

chosen. Therefore, a GPR model was selected that was developed and validated as part of 

a recently completed H2020 project called SENSAGRI (Sentinels Synergy for Agriculture-

http://sensagri.eu/) [28]. During that 3-year project, multiple GPR models were trained 

and gradually improved with increasingly available empirical data of LAIG ground-based 

measurements collected from multiple field campaigns [21]. The corresponding reflectance 

information was either synthesized from hyperspectral data covering all S2 spectral bands 

or extracted from simultaneous S2 imagery. According to S2 band settings, only the 10 

and 20 m spatial resolution bands were selected, i.e., 10 bands in total [39]. The training 

dataset includes diverse crop types over different locations across Europe as well as forested 
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areas, as described in [21] and summarized in Table 1. Additionally, the training datasaet 

was expanded with non-vegetated areas spectra. In total, 218 data pairs samples were used 

to train the LAIG GPR model. The final ‘LAIG’ model was validated based on a new 

independent dataset collected during the summer of 2018 on agricultural sites in France, 

Poland and Ukraine. Detailed information about data collection and validation exercises can 

be found in [21].

However, this final model appeared to be too computationally demanding for running into 

GEE, and a lighter surrogate model had to be developed. In order to obtain an optimized 

training set while keeping a model size that does not compromise its portability and 

implementation in GEE, several active learning (AL) [40,41] algorithms were applied in 

the GPR training phase. AL methods are sampling reduction techniques that select the 

most informative samples from the original training dataset, still reaching a high retrieval 

model’s estimation accuracy. AL methods start with a small training set of data pairs and 

iteratively use selection criteria to extract samples from a larger data pool, until reaching an 

optimal final training database, whose size is (1) enough reduced to substantially increase 

computational efficiency of the final prediction model and (2) large enough to capture the 

original training set diversity. The selection criteria aims to extract, from the input larger 

data pool, those samples which would contribute the most to improve the regression model 

[40,41].

The training procedure and AL analysis was conducted within the Automated Radiative 

Transfer Models Operator (ARTMO) scientific package [34] https://artmotoolbox.com/, 

using the MLRA toolbox, which contains over 20 MLRAs that can be trained and validated 

with either user’s experimental data or ARTMO internally synthesized data. Moreover, over 

the years, several additional modules have been added to the MLRA toolbox, such as the 

AL module [40], band analysis module [15], dimensionality reduction module [42]. In 

order to achieve an optimal LAIG estimation with a manageable training dataset, several 

AL techniques were applied, namely: Angle-Based Diversity [ABD], Clustering-Based 

Diversity [CBD], Euclidean Diversity [EBD], Entropy Query-by-Bagging [EQD], Pool 

Active Learning [PAL], Random Sampling [RS], Residual Active Learning [RSAL]. The 

description of the sample selection criteria and utility of these AL algorithms for biophysical 

variables retrieval were previously explained and analyzed in [40,41]. In ARTMO, the initial 

AL sampling configuration was set to a 10% of the input learning set of 218 samples, i.e., 22 

samples. Then, for each AL method, the selected samples were added by 5 per iteration.

AL algorithms applied were compared in terms of accuracy and efficiency, calculating 

various metrics: root mean square error (RMSE), relative RMSE (RRMSE), mean absolute 

error (MAE), coefficient of determination (R2), number of samples integrating the final 

training set and the number of iterations run until no more improvements occur. Figure 

1 (left) shows, for each AL training method, the RMSE obtained from each iteration, 

revealing that all processes tend to converge around 45 iterations, meaning no significant 

improvements were further achieved in terms of accuracy. Sharp increases in the RMSE 

indicate non-informative samples introduced from the input learning set that did not 

contribute to the model predictive capacity and therefore were discarded. In view of all 

AL algorithms performances, EBD was the algorithm most capable of providing a LAIG 
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GPR model both accurate and efficient, and therefore was the one chosen to be implemented 

into GEE. The total number of samples needed to construct the model was 118 in addition to 

the initial training dataset. Thus, in total the final LAIG model was trained with 140 samples. 

This LAIG GPR model has also been validated against the independent validation dataset as 

described in [21], and summarized in Table 2. It led to an RMSE of 0.73 m2/m2 and an R2 

of 0.63 (see Figure 1, right). It must be remarked that the model provides a somewhat poorer 

validation as opposed to the original LAIG model, developed with the full training dataset, 

reported in [21] (R2 of 0.70), but is still considered as valid for usage as a demonstration 

case into the GEE environment.

3.2 Gapfilling Model

In general, modeling phenological evolution represents a challenging task mainly because of 

time series gaps due to clouds and calibration or atmospheric correction residual errors[43–

46]. Reliable gap-filling fitting functions and smoothing filters are frequently required for 

retrievals at the highest feasible accuracy [47,48]. Of specific interest to filling gaps in 

time series is the emergence of machine learning regression algorithms (MLRAs) which 

can serve as fitting functions. Among the multiple MLRA approaches currently available, 

the kernel-based methods developed in a Bayesian framework deserve special attention, 

such as GPR [13]. Recent studies demonstrated the effectiveness of GPR for gap-filling of 

biophysical parameter time series [18–20] because the hyperparameters can be optimally set 

for each time series (one for each pixel in the area) with a single optimization procedure. 

Despite its clear strategic advantage, the most important shortcomings of this technique are 

their (1) high computational cost and (2) memory requirements [49] for hyperparameter 

optimization, which grows cubically and quadratically with the number of training points, 

respectively [50,51]. This can become problematic in view of processing a large amount of 

data, such as in S2 time series tiles. Parallelization strategies for advanced computation 

platforms such as GEE need to be developed to speed up the GPR processing while 

maintaining the superior performance in terms of accuracy, being these facilities are not 

devised for per-pixel iterative optimization tasks.

To mitigate this computational burden and address such shortcoming and repetitive 

procedure, we propose the approach pursued in Belda et al. [22]. Here, the model in 

[28] was applied to generate LAIG time series over an agricultural region in Castile and 

Leon, North-West Spain, and the performance of gapfilling task using GPR per-pixel 

optimization (θpp) versus cropland-based (θpc) and global precalculated (θgl) SE-kernel 

hyperparameters were compared. Table 3 summarizes hyperparameters’ mean values for the 

different approaches, whereas Table 4 described the variation in percentage of the gapfilled 

time series with respect to the input ones for the different approaches. The main conclusion 

of this study is that using the same pre-optimized hyperparameters for all crop types, the 

performance degraded between 2% and 7% with respect to per-pixel optimization, whilst the 

processing speed is 90 times faster than the standard GPR estimations.

Since accurate spatiotemporally-explicit knowledge of vegetation phenology is critical to 

understand the changing trend of natural seasonal phenomena and serve for agricultural 

production and global change studies, this comparison becomes crucial to assess the 
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sensitivity of the phenological parameters to the variations in the hyperparameters. The 

crop phenology indicators were already studied and compared for these three different 

approaches in [22]. Results showed analogous crop temporal patterns, with differences in 

start and end of growing season no more than five days. This again confirms that the 

reconstruction of multiple season vegetation temporal patterns are rather insensitive to fixed 

hyperparameters optimized over either homogeneous and heterogeneous agricultural areas. 

In all the evidences, the global hyperparameters for the SE kernel function can be used 

for the optimized implementation of the gapfilling model in Equation (10) in the GEE 

environment.

4 GEE Implementation and Assessment

GEE is an online service that applies state-of-the-art cloud computing and storage 

infrastructures for geospatial analysis. The archive contains a large catalog of Earth 

observation data which enables the scientific community to perform calculations on high 

numbers of images in parallel [24,52–54]. The procedure to request data, perform spatial 

calculations and serve the information is carried out with code developed from either 

JavaScript or Python APIs instructions, which are interpreted and sent by the client to 

Google servers as JSON request objects. The exploitation of GEE computational power 

is achieved by minimizing the operation on the client side and client-server data transfer, 

which constitutes a real bottleneck for any algorithm to be efficient. In addition, algorithms’ 

processing flowchart must generally be reviewed to optimize the usage of parallel computing 

resources with respect to client stand-alone implementation. For instance, this last step is 

key when migrating the client-side GPR coding to GEE, because its typical pixel-wise 

implementation turns out to be very inefficient. Conversely, implementing the matrix 

reformulation of Equations (8) and (9) proposed in Section 2.2 allows taking profit of 

the cloud-computing strategy for LAI estimation and LAI gap-filling over wide area at the 

maximum spatial resolution provided by S2 multispectral imagery. The implementation of 

the two models in GEE backs up entirely on the use of functionalities provided by the ee 
library, which is available in both JavaScript and Python API interfaces. This choice allows 

an efficient usage of the imagery catalogues GEE contains, as well as its highly paralleled 

computational power. Additionally, code migration between the two programming languages 

is almost immediate.

4.1 LAIG Mapping

The key function of the GPR model for LAIG estimation from S2 imagery is summarized 

in the few code lines in Table 5. For readers interested in the methodology, the link to a toy 

example with the complete LAI prediction code is available in the Supplementary Material. 

Here, mathematical instead of standard GEE code editor notation is used for variables to 

ease the identification of the parameters in Equation (9). The word var is put between 

parenthesis as this variable declaration is required in Java Script but not in Python scripting.

Note that the overall number of code lines for the GPR-based prediction of the mean 

LAIG is incredibly low. The reason is that ee API provided by GEE library allows the 

implementation of even complicated Matrix algebra operations very easily. [TS_ID] is the 
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ee.List() of training samples text labels required to shape an image turned into an array back 

to a multispectral image format; XDX correspond to the third element of Equation (8); the 

input to the function, i.e., “image”, represents the element of S2 collection the model is 

applied to.

A comparison of the LAI map at 20 m retrieved by ARTMO (used for the GPR model 

training) and by GEE implementation is given in Figure 2. The area shown corresponds 

to the S2 acquisition taken on 2 May 2019, over the Tile 30TUM in Castille and Leon, 

North Spain, corrected for the atmospheric contribution (level L2A). The input S2 imagery 

for ARTMO retrieval came from the S2 distribution of ESA Scientific Data Hub [55]. 

Input information to GEE-based estimation was the ESA L2A product directly available 

in the platform. The qualitative assessment from the visual inspection does not reveal any 

significant differences: the dynamic range of LAIG is almost identical and spatial patterns 

agree perfectly everywhere. The quantitative assessment of Figure 3a shows the histograms 

of the two LAIG maps overlap everywhere but for two narrow zones around 1 and 2.2. The 

analysis of the 2D histogram between the two maps of Figure 3b reveals slight differences 

are present, leading to a R2 = 0.89. The dispersion of the bin scatterplot was initially 

ascribed to the single-precision of GEE implementation vs. double-precision ARTMO 

estimations. A more careful analysis of the two input imageries revealed the existence of 

a slight mismatch between the 10 m bands upscaled to 20 m (B2,B3,B4,B8) distributed 

by ESA and those available in GEE. The histograms of the differences between the two 

distributions are shown in Figure 3c. Note that the discrepancies are higher for NIR(B08) 

than RGB bands(B04,B03,B02), being null for the 20 m native resolution bands. This 

difference, visually corresponding to geometric slight unmatching, generate the differences 

emphasized by Figure 3b. Nonetheless, the high resemblance between the two products 

corroborates the correctness of the GEE implementation of GPR model LAIG mean value 

estimation with respect to pixel’s radiance information.

The time required for ARTMO processing is in order of a few minutes, visualization in 

GEE takes a few seconds whereas downloading the full-resolution LAIG product might take 

between less than a minutes up to 2/3 min, depending on the GEE servers’ computational 

load in that moment. Note that for a fair comparison, the time required for L2A file 

downloading from Copernicus webpage [23] should be also taken into account, being this 

task instantaneous in GEE.

The undisputed advantage of GEE vs. any local-processing solution arises when it comes to 

processing very large areas. In the classical approach, this involves dealing with a very long 

image downloading process, computational burden, storage and mosaicking issues, pyramids 

generation for quick visualization. Moreover, any mistake often causes repeating this process 

partially or even entirely, depending on the step of the chain it takes places. Applying the 

LAIG model to a large collection of S2 images over a variable time span is extremely 

easy and the visualization of the mosaicked result available in less than one minute at the 

resolution active in the display panel of GEE code editor. In addition, exploring any pixel’s 

LAI time series at any spatial resolution becomes extremely practical. Figure 4 provides an 

example of the maximum LAIG value within the first two weeks of July 2019 over western 

Europe. The maximum resolution of the map is 20 m, as shown in the zoomed area of 
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Castille and Leon, whereas the time series of a pixel selected within a pivot parcel highlights 

the possibility to identify the different crop seasons. The chance to visually compare so 

wide area up to so high spatial resolution in terms of a parameters obtained by an advanced 

machine learning modeling as GPR is something never shown before. Different climatic 

areas can be easily identified while moving from north to south, or from east to west, 

both at continental and national scales. For instance France with respect to Spain, north 

Spain vs. south Spain, or east vs. southwest Italy. Quite continuous maps are obtained over 

Mediterranean areas, which are characterized by low presence clouds in July. Yet, orbit 

discontinuities over more cloudy regions are visible, and along with the map gaps moving 

towards east Europe make such mapping approach useful but still incomplete. For this 

reason, after being able to implement the LAIG GPR model for S2 imagery, in the next 

section we tackle the problem of time series gapfilling.

4.2 LAIG Time Series Gapfilling

It was earlier demonstrated that the SE kernel function provides high performance to fill 

the gaps of LAIG time series induced by cloud presence, and so can also mitigate the 

effects of reflectance atmospheric correction residual errors [20]. The rationale of the 

kernel-based approach for the time domain has been briefly described in Section 2.3, 

whereas the precalculated optmimum global hyperparameters θgl to be applied for a whole 

S2 tile have been reported in Table 3. In the computational approach pursued in [22], 

each pixel is analyzed independently because the length of the time series as well as the 

corresponding time stamps change spatially. The main drawback of this formulation is that 

the dimension of covariance matrix K in Equation (10) is pixel-dependent. In standard 

sequential computation, each time series is processed separately, and any length can be 

nicely dealt with. In a parallel computing approach, this length variability hinders its parallel 

implementation in any cloud platform, in particular GEE. The reason is that in GEE any 

cloudy pixel is dealt with as a masked pixel (i.e., a not-a-number), and any operation 

involving its use generates by default a non-valid output. Should we substitute them with 

zeros, these new values would compromise the time series reconstruction.

A workaround to these two issues deals with modifying the dates of the input time series. 

Being the nominal time vector t common to all the pixels of S2 image collection over 

the same tile, we first convert each acquisition date in a numeric format. We choose to 

express it in terms of number of days with respect to the GPS time reference, i.e., 1 

January 1970. As an example, according to this criterion the date 20 July 2019 becomes 

the number 18,097. Afterwards, we add (1) a new constant band to each S2 image of 

the collection corresponding to its numeric date (band t*), and (2) a copy of this new 

band where we set to 0 (i.e., not masked anymore) all the pixels labeled as cloud. Cloudy 

pixel identify backs up on the S2 classification product [56] distributed along with L2A 

multispectral reflectance (band tmsk). Similarly, we set to zero also the reflectance values of 

these cloudy pixels in each element of the S2 collection. Summing up, in the time series of 

a generic pixels from the S2 collection, the time associated to cloudy samples is 0 as well 

as their multispectral radiometric values. Taking into account that the input time series for 

calculating the temporal Covariance matrix Kt must not be time ordered, the contribution of 

all these cloudy captures to the estimation of LAIG at any S2 acquisition date, i.e., the value 
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of k(0, ti) in Equation (10), becomes negligible. This is shown in Figure 5, where we analyze 

the LAIG time series of a pixel belonging to a vegetated area in Castille and Leon, Spain. 

As expected, the collection presents both meaningful (cloud-free) and non-valid (cloudy) 

samples. These two cases are described by the meaningful (MTS) and cloudy (CD) time 

series points. CD dates correspond to S2 acquisitions where the chosen pixel but not the 

whole tile is cloudy; completely cloudy captures over tile 30TUM have been discarded. The 

blue plot (GTS) describes the result obtained with the standard approach, i.e., all the cloudy 

samples are eliminated and only MTS is used for the GPR model prediction; in red the 

result provided by the proposed strategy (GTS2Z), i.e., by substituting (0,0) for each (date, 

LAIG) pair from a cloudy capture and performing the prediction using all the samples. The 

gapfilling has been performed over the whole observation period with a 5-day sampling step. 

It can be observed that GTS and GTS2Z plots perfectly match, and the overall difference 

between the two estimation is utterly negligible (RMSE = 2.9 × 10–14, R2 = 1). For the sake 

of completeness, we show in black (GTSZ) the result obtained when cloudy samples are set 

to 0 to demonstrate that this substitution leads to incorrect estimations of LAIG and should 

not be used.

The main advantage of the proposed workaround, i.e., GTS2Z, is that the dimension of the 

time series being processed for LAIG gapfilling at any time t* is the same for all the pixels 

of the tile. This way, calculatingkt and then αt in Equation (12) can be tackled with a parallel 

computing strategy.

Following the same idea described in Section 3.1, in Table 6 we provide here a few keylines 

of GEE pseudo-code implementing the core of the GPR-based gapfilling method. The link to 

a toy example with the complete gapfilling code is available in the Supplementary Material. 

Again, the variable names are assigned using the mathematical notation of Equations (11) 

and (12) to make the identification of the different terms easier: LAIGc indicates the 

collection of LAIG maps obtained from a S2 reflectance imagery over the same tile during 

a specific time interval; 1 denotes a matrix of ones; bold font defines variables which take 

into account all the pixels of the collection at once. The final prediction corresponds to 

the LAIG cloud-free map at time t*. Details on the GPR formulation here implemented can 

be found in [13]. The key steps are (1) the implementation of Equation (11) by defining 

the 1msk and 1* vectors, and (2) the parallel calculation of L matrix using the Cholesky 

Decomposition available in ee library. In this case too, the matrix algebra operation can be 

performed by casting the multiband images from image to array data type. The final result 

is converted back to image using the arrayProject functions to add geocoordinates and turn 

it into a map. As dealing with array type means asking for chunks of contiguous memory 

[57], care must be taken to the global volume of data involved in the process. Note that the 

theoretical computational complexity of LAI prediction as well as gapfilling steps is O(n3), 

being n the number of bands for the former and time series length for the latter. For this 

reason, the gapfilling task over multiple-tile areas must be carried out by looping over tiles 

and considering one date at a time. This way, memory exceeded errors are nicely avoided.

An example of the high performance of the proposed gapfilling strategy is provided in 

Figure 6. Here we present the case of a cloudy capture of 30TUM S2 tile over Castille 

and Leon taken in Spring 2019: (a) the RGB image (bands B4,B3,B2), (b) the LAIG map 
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obtained as explained in Section 4.1, (c) the gap filled map. It can be seen as the patterns of 

non-cloudy areas are generally maintained, and how the new areas added perfectly match the 

surrounding information creating seamless mapping. Images (d), (e) and (f) detail the same 

information over a zoomed area of the right-bottom corner. Again, no gapfilling artifact 

is detectable, even over small isolated cloud often not included in the L2A classification 

layer. The reason is that GPR is able to identify time series isolated outliers and reduce 

their effect. This can be observed in the original and gapfilled time series of a pixel 

selected in the studied area, shown in Figure 7. The image corresponds to a screenshot 

of the interactive panel we developed for inspection purposes with the GEE integrated 

development environment (IDE). The time window corresponds to the whole collection of 

S2 images distributed by ESA and available in GEE, spanning from January 2017 up to July 

2020, when the study here described was finished. The different crop seasons can be easily 

distinguished, as they correspond to clear patterns along the LAIG phenology evolution. 

Links to working code for LAIG estimation and gapfilling implementation are available in 

Supplementary Materials for interested readers.

5 Cloud-Free Seamless Mapping of Wide Areas

The aim of this section was to demonstrate the great potential of the methodology here 

proposed for wide areas monitoring. It is often of key importance being able to provide 

continuous mapping of LAIG at a specific time all over the area of interest, but the 

presence of clouds usually hinders or makes unfeasible the comparison of zones evolution 

on the same dates. The area chosen as demonstration case is the whole Iberian peninsula, 

then including Portugal, Spain and the south area of France along Pyrenees. In terms of 

extension, an overall number of 127 tiles from 6 different orbits (relative number from 

east to west 8, 51, 37, 80, 94, 173) are required for the complete coverage. A detail of 

tile distribution is shown in the top-left image (a) in Figure 8. To stress the different 

evolutions of LAIG according to geographical coordinates of zones, we selected 3 different 

dates: 2 February, 30 March and 30 June, 2019. For each date, we create a collection 

of S2 reflectance images within the time span given by the date ± 3 months. Note that 

this time span corresponds to approximately 6 times the lengthscale hyperparameter in θgl 

(Section 3.2), which ensures all the samples that contribute meaningfully to the prediction in 

Equation (12) are accounted for.

The result of the LAIG mapping at 20 m for the three dates is shown in the images (b–d) 

of Figure 8, each one representative of a different season: Winter, Spring and Summer. The 

quality of the reconstructed LAIG maps is evident. No orbit artifact is detectable for the 

three dates, confirming the capability of the proposed methodology to guarantee a spatial 

continuity of the result even if it is applied in a pixel-wise fashion. Clear temporal patterns 

can be observed by comparing the three maps. For instance the north area of Spain and 

Portugal are characterized by very high values of LAIG, indicating the presence of dense 

forests, with respect to the central and south part of the peninsula, where seasonal vegetation 

growth is more common. In addition, the presence of large areas where not significant LAIG 

is detectable during the three seasons here monitored (and probably during autumn too) can 

be also observed. Note that the usage of an advanced machine learning model for LAIG such 

as GPR, which exploits the whole multispectral information of S2 data, allows enhancing 
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the dynamic range of the model, overcoming saturation issues usually exhibited by models 

based on vegetation indexes.

Different climatic areas can also be deduced from this mapping, which resemble the 

distribution of the average total precipitation in the Iberian Peninsula (see Figure 69 in 

[58]) and confirm the identification of areas characterized by desertification in the Köppen– 

Geiger Climatic Classification of Iberian Peninsula (see Figure 1 in [58]). Finally, it is worth 

emphasizing that the spatial continuity is also maintained at the 20m resolution. The visual 

inspection of the maps at the maximum detail did not reveal any radiometric discontinuity. 

The need to visualize a wide area oblige to compress the whole information in a small 

representation, so that details of the maximum resolution map cannot be appreciated. This 

is the purpose of image (e) in Figure 8, which provide a zoom of the LAIG map of 30 June 

over the so-called Atlantic Mountain Range and the Pyrenees. This subset area represents a 

critical test site, being characterized by a severe cloud presence (probability between 60% 

and 70% between April and October [59]). Again, no radiometric discontinuities or artifacts 

can be detected both in coastal and mountainous zones, confirming the high reliability of the 

kernel-based gap-filling regression method we proposed over multi-tiled areas of study.

One closing comment about computational time. The processing of each tile takes about 

1 min, and an average of 26 min were necessary for tile downloading to Google Drive at 

20 m; the overall time required for downloading the 127 tiles composing each map was in 

average 26 h. When setting the output resolution to higher values, the overall time drops 

significantly. For instance, less than 2 h were required to get a complete LAIG map at 300 m 

spatial resolution.

6 Discussion

This work presented the integration of GPR into GEE for seamless vegetation properties 

mapping. The advantages of GEE as an image processing platform are unprecedented: 

GEE has opened a new big data paradigm for storage and analysis of open-access Earth 

observation (EO) data over areas with a spatial extension and at a spatial resolution that was 

not feasible using any desktop processing machines [24]. In the following, we will discuss 

its strengths and weaknesses.

In GEE, whole data collections of multiple EO missions from medium to coarse spatial 

resolution are available on line for free, and the user-friendly Java coding editor allows 

launching computational-demanding processes over multiple distributed platforms. In 

addition, efficient mosaicking tools make it possible to deal with raster and vector 

information at once for selecting specific areas to be studied, or extend the analysis to 

nationwide coverage [60,61]. GEE Python coding is also possible using specific wrapper 

of the ee library, giving the opportunity to link GEE data catalogue to GIS environment 

such as QGIS [62,63], and use it as a starting point for more advanced client-side analysis. 

Finally, information down- and up-loading can be carried out very efficiently using solution 

as Google Data Cloud or Google Drive [64]. All these aspects make GEE extremely 

appealing for the development of EO applications. Yet, also some inconveniences need to be 

addressed.
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First of all, scarce supporting documentation is provided in the official webpage. Error 

description during debugging is not exhaustive [57], and becoming aware of library changes 

due to continuous updates is not straightforward. To a certain point, the bug report official 

channel is helpful to find how-to-do examples, but these gaps are mitigated mostly by 

the ever-growing numbers of users sharing their experience in forums [65] and unofficial 

users’ blogs [66,67]. Materials shared by the GEE community provide enlightening pieces 

of code that allowed us to look into ee methods and clarify the input-output specific 

formats they require. The main GEE limitation we had to circumvent is that despite the 

rapid progress in cloud-based algorithm development, not all MLRAs have been developed 

into the GEE ecosystem. Particularly, the GPR algorithm appeared to be lacking, which 

eventually became the rationale of investing into its implementation and the here presented 

work.

Secondly, although GPR is a highly competitive regression algorithm and has appealing 

advantages over other MLRAs such as uncertainty estimates and band ranking properties 

[3,8,14–16,26], one reason why GPR did not find its way yet into GEE is likely due to the 

heavy usage of contiguous memory allocation required by the GEE array data type. Matrix 

algebra operations involved in the GPR regression implementation cannot be performed 

using directly the image data type in which all the GEE catalog imageries are made 

available. To apply these specific algebra operations, the conversion from image to array 
data type is compulsory. Unfortunately, due to the particular usage of computational memory 

array type performs, using array type generates “memory exceeded” error messages much 

more frequently than using image type, even if the number of acquisitions to be processed is 

low (<40). To avoid these errors, computational workarounds must be devised.

In order to bypass these memory-related limitations, we had to introduce multiple 

adaptations, which are summarized as follows. We (1) expanded the formulation of standard 

GPR, (2) aggregated all terms independent of pixel’s hyperspectral information that can 

be precalculated to avoid repeating cumbersome operations for each pixel, (3) performed 

data manipulation that can be carried out using image datatype format before moving to 

array data type, (4) implemented GPR into a matrix algebra formulation and (5) converted 

the results back to image format adding coordinates information, mandatory for mapping 

purposes. These main steps have been followed for the implementation of the LAIG model, 

but also for the gapfilling technique based on GPR, and constitute the result of pursuing a 

non-straightforward optimization of GEE coding. This is the main reason why we decided 

to add a few lines of pseudo-code (Tables 5 and 6), where we used mathematical symbology 

of Section 2 for variable names and amethyst colored for specific ee library functions. The 

scarce documentation and the few examples available online on this subject made complex 

algorithm development challenging, and sharing the core part is going to be key for anyone 

interested in implementing its own GPR model.

On the bright side, the presented workflow provides a generic strategy for importing any 

SE kernel-based GPR model in GEE. To demonstrate the functioning of the workflow, 

here we focused on the implementation of the LAIG model for national mapping. This 

demonstration case was chosen for two reasons. Firstly, LAIG is a key vegetation variable 

for many applications dealing with permanent (e.g., forests) and seasonal (e.g., croplands) 
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vegetation phenology evolution. Secondly, the imported LAIG model is trustworthy for 

wide area mapping as: (1) it was trained on agriculture areas, bare soils and dense forests, 

allowing to cover a dynamic range of this parameter from 0 up to 10 [m2m–2] [21], and 

(2) a thorough assessment on the hyperparameter optimization was conducted and reported 

in [20,22]. Although the LAIG product was shown to be consistent, in principle any kind 

of vegetation property can be mapped as long as the model is accurate and robust [10]. 

In this respect and moving ahead towards mapping of other biophysical variables, once 

having an already trained GPR model at disposal, it is possible to integrate it into the 

developed workflow after substituting the new hyperparameter values and the corresponding 

training samples and normalization matrices. Although the latter step still requires manual 

implementation, it is foreseen that in the near future these steps will be further optimized 

and automated so that eventually GPR models can be smoothly imported into GEE. One last 

warning deals with the maximum number of samples the GPR model can contain. Keeping 

it below 150 prevents out-of-memory errors from occurring frequently. As demonstrated in 

Section 3.1, active learning optimization constitutes an efficient tool to slim down heavy 

models but preserve the original training set diversity. Concerning the estimation of GPR 

uncertainty described in Equation (2), which represents a property only GPRs offer with 

respect to any other ML technique, a deeper development is still needed. First tests allowed 

its estimation for LAI model only over small areas, but the higher amount of information 

data to be kept in memory makes this issue still pending for multi-tile mapping.

To this end, an alternative research line to be explored in the future deals with using 

Bayesian Neural Networks, which are currently the state-of-the-art for estimating NN 

predictive uncertainty [68,69]. Recent works have shown the tight relationship between NNs 

and GPs [70] and how in particular scenarios NNs can outperform GPs [71]. The limited 

number of samples in case only in-situ data are to be used might still represent an issue for 

proper training purposes, but hybrid solutions able to blend simulated information and real 

data might offer a feasible workaround.

Another point worth addressing is the resolved temporal aspect. The proposed gapfilling 

strategy yielded promising and consistent results. The examples of seamless mosaicking of 

cloud-free LAIG collections demonstrate the great potentials of this regression technique as 

a gap filler. Although this approach was so far only demonstrated over small areas within the 

same S2 tile [20,22], this work presents the first proof that it is robust to radiometric spatial 

discontinuities over very large areas even if applied pixel-wise, and hence suitable to blend 

information from different S2 orbits and perform high-quality large-scale mapping. Despite 

its promising perspectives, it must also be remarked that the gapfilling processing chain 

can still be improved. For instance, residual atmospheric errors affecting input reflectance 

may generate inconsistent intervals along the time series. The GPR model assumes all of 

them are valid samples, and performs a smoothing effect that may lead to underestimate 

local LAIG peaks. This can be observed by comparing original and gapfilled LAIG time 

series shown in Figure 7. As an attempt to minimize the effect of these unlikely outliers, 

an additional cleaning step before the gapfilling procedure, or even an iterative or two-step 

gapfilling approach might be considered.
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A final aspect that merits further consideration is the all-comprehensive generic model we 

trained over multiple vegetated land covers [28] to ensure consistent any-image processing. 

As an alternative strategy, rather than relying on one generic model, the use multiple light 

models might also be considered. For instance, coarse scale classification map from MODIS 

or Corine can segment the area of interest to enable running multiple GPR models, each 

of them specialized for the LAI calculation over a specific vegetation class. This approach 

would not only help to achieve a more reliable information using lighter, dedicated models 

with beneficial computational time. Moving towards land cover specific processing also 

opens the possibility to develop further processing schemes depending on the land cover 

type. For instance for croplands one can think of the determination of key phenological 

descriptors such as start-of-season, end-of-season or area under the curve [72–76]; and 

for evergreen forests the detection of disturbances (e.g., logging, fires) [77–81] or sudden 

discontinuities [82]. There is no doubt that it will eventually become possible to combine 

all these advanced processing schemes into the GEE framework. Moving further along this 

line, the usage of lighter GPR models can pave the way towards a multi-model framework 

to retrieve and combine multiple vegetation variables over the same area. This is of interest 

for a range of purposes. For instance, apart from LAIG, other vegetation variables such 

as chlorophyll, fractional vegetation cover or fAPAR are considered of key importance for 

monitoring applications, e.g., related to crop productivity and safeguarding food security, for 

the estimation of the gross primary production (GPP) at ecosystem level [83], and ultimately 

for the estimation of carbon sequestration at global scale [84,85].

7 Conclusions

This paper presents a workflow for the implementation of GPR models into the GEE 

cloud platform. While GPR has emerged as a powerful machine learning regression 

algorithm for processing optical satellite data into biophysical variables, it is not yet part 

of the GEE ecosystem. To make this integration possible, it has been necessary to: (1) 

review the standard GPR regression formulation to achieve a factorization suitable for a 

parallel computing, and (2) implement the corresponding matrix algebra transformation 

using ee library APIs optimized for server-side distributed operations. As a showcase, we 

subsequently integrated an earlier-developed GPR model for the mapping of LAIG derived 

from 20 m Sentinel-2 data. We used active learning techniques to reduce the original training 

set without losing diversity, and hence achieved a light model fulfilling GEE memory 

restriction. With the developed workflow, not only on-the-fly any region across the world 

can be mapped at a resolution of 20 m, but by including temporal processing also gap-filled, 

i.e., without the occurrence of clouds. Thanks to the computational power of GEE and the 

fitting efficiency of the GPR model, perspectives are opened that in the near future any 

locally trained GPR model can be plugged into GEE for the spatiotemporal mapping of any 

retrievable biophysical variable.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Pipia et al. Page 19

Remote Sens (Basel). Author manuscript; available in PMC 2022 September 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Acknowledgments

The authors would like to thank Dr. Álvaro Moreno Martínez from Universitat de València (UV) for the helpful 
discussions on efficient coding with the ee library, as well as the anonymous reviewers for their careful reading of 
our manuscript and their insightful comments and suggestions.

Funding

This work was supported by the European Research Council (ERC) under the ERC-2017-STG SENTIFLEX project 
(grant agreement 755617). J.V. was additionally funded by Ramón y Cajal Contract (Spanish Ministry of Science, 
Innovation and Universities).

References

1. Weiss M, Jacob F, Duveiller G. Remote sensing for agricultural applications: A meta-review. 
Remote Sens Environ. 2020; 236 111402 

2. Malenovský Z, Homolová L, Lukeš P, Buddenbaum H, Verrelst J, Alonso L, Schaepman ME, Lauret 
N, Gastellu-Etchegorry JP. Variability and uncertainty challenges in scaling imaging spectroscopy 
retrievals and validations from leaves up to vegetation canopies. Surv Geophys. 2019; 40: 631–656. 

3. Verrelst J, Rivera JP, Veroustraete F, Muñoz-Marí J, Clevers JG, Camps-Valls G, Moreno J. 
Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval 
methods—A comparison. ISPRS J Photogramm. Remote Sens. 2015; 108: 260–272. DOI: 10.1016/
j.isprsjprs.2015.04.013 

4. Verrelst J, Malenovský Z, Van der Tol C, Camps-Valls G, Gastellu-Etchegorry JP, Lewis P, North P, 
Moreno J. Quantifying vegetation biophysical variables from imaging spectroscopy data: A review 
on retrieval methods. Surv Geophys. 2019; 40: 589–629. 

5. Baret F, Weiss M, Lacaze R, Camacho F, Makhmara H, Pacholcyzk P, Smets B. GEOV1: LAI 
and FAPAR essential climate variables and FCOVER global time series capitalizing over existing 
products. Part1: Principles of development and production. Remote Sens Environ. 2013; 137: 299–
309. 

6. Weiss M, Baret F, Myneni R, Pragnère A, Knyazikhin Y. Investigation of a model inversion 
technique to estimate canopy biophysical variables from spectral and directional reflectance data. 
Agronomie. 2000; 20: 3–22. 

7. Combal B, Baret F, Weiss M. Improving canopy variables estimation from remote sensing data 
by exploiting ancillary information. Case study on sugar beet canopies. Agronomie. 2002; 22: 205–
215. 

8. Verrelst J, Muñoz J, Alonso L, Delegido J, Rivera J, Camps-Valls G, Moreno J. Machine learning 
regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. 
Remote Sens Environ. 2012; 118: 127–139. 

9. Upreti D, Huang W, Kong W, Pascucci S, Pignatti S, Zhou X, Ye H, Casa R. A Comparison 
of Hybrid Machine Learning Algorithms for the Retrieval of Wheat Biophysical Variables from 
Sentinel-2. Remote Sens. 2019; 11 481 

10. Verrelst J, Camps-Valls G, Munoz-Marí J, Rivera JP, Veroustraete F, Clevers JG, Moreno J. Optical 
remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review. 
ISPRS J Photogramm Remote Sens. 2015; 108: 273–290. DOI: 10.1016/j.isprsjprs.2015.05.005 

11. Suykens J, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett. 
1999; 9: 293–300. 

12. Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression 
estimation, and signal processing. Adv Neural Inf Process Syst. 1997; 9: 281–287. 

13. Rasmussen, CE, Williams, CKI. Gaussian Processes for Machine Learning. New York, NY, USA: 
The MIT Press; 2006. 

14. Verrelst J, Alonso L, Camps-Valls G, Delegido J, Moreno J. Retrieval of Vegetation Biophysical 
Parameters Using Gaussian Process Techniques. IEEE Trans Geosci Remote Sens. 2012; 50: 
1832–1843. DOI: 10.1109/TGRS.2011.2168962 

Pipia et al. Page 20

Remote Sens (Basel). Author manuscript; available in PMC 2022 September 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



15. Verrelst J, Rivera JP, Gitelson A, Delegido J, Moreno J, Camps-Valls G. Spectral band selection for 
vegetation properties retrieval using Gaussian processes regression. Int J Appl Earth Obs Geoinf. 
2016; 52: 554–567. 

16. Verrelst J, Rivera J, Moreno J, Camps-Valls G. Gaussian processes uncertainty estimates in 
experimental Sentinel-2 LAI and leaf chlorophyll content retrieval. ISPRS J Photogramm Remote 
Sens. 2013; 86: 157–167. 

17. Chen Z, Wang B. How priors of initial hyperparameters affect Gaussian process regression models. 
Neurocomputing. 2018; 275: 1702–1710. DOI: 10.1016/j.neucom.2017.10.028 

18. Mateo-Sanchis, A; Muñoz-Marí, J; Campos-Taberner, M; García-Haro, J; Camps-Valls, G. Gap 
filling of biophysical parameter time series with multi-output Gaussian Processes; Proceedings 
of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium; 
Valencia, Spain. 22–27 July 2018; 4039–4042. 

19. Pipia L, Muñoz-Marí J, Amin E, Belda S, Camps-Valls G, Verrelst J. Fusing optical and SAR time 
series for LAI gap filling with multioutput Gaussian processes. Remote Sens Environ. 2019; 235 
111452 

20. Belda S, Pipia L, Morcillo-Pallarés P, Rivera-Caicedo JP, Amin E, de Grave C, Verrelst J. 
DATimeS: A machine learning time series GUI toolbox for gap-filling and vegetation phenology 
trends detection. Environ Model Softw. 2020; 104666 doi: 10.1016/j.envsoft.2020.104666 

21. Amin E, Verrelst J, Rivera-Caicedo JP, Pipia L, Ruiz-Verdú A, Moreno J. Prototyping Sentinel-2 
green LAI and brown LAI products for cropland monitoring. Remote Sens Environ. 2020; 112168 
doi: 10.1016/j.rse.2020.112168 [PubMed: 36060228] 

22. Belda S, Pipia L, Morcillo-Pallarés P, Verrelst J. Optimizing Gaussian Process Regression for 
Image Time Series Gap-Filling and Crop Monitoring. Agronomy. 2020; 10 618 doi: 10.3390/
agronomy10050618 

23. Tona, C; Bua, R. Open Source Data Hub System: Free and open framework to enable cooperation 
to disseminate Earth Observation data and geo-spatial information; Proceedings of the 20th EGU 
General Assembly, EGU2018, Proceedings from the Conference; Vienna, Austria. 8–13 April 
2018; 

24. Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. Google Earth Engine: 
Planetary-scale geospatial analysis for everyone. Remote Sens Environ. 2017; 202: 18–27. 

25. Kumar L, Mutanga O. Google Earth Engine applications since inception: Usage, trends, and 
potential. Remote Sens. 2018; 10 1509 

26. Verrelst J, Alonso L, Rivera Caicedo J, Moreno J, Camps-Valls G. Gaussian Process Retrieval of 
Chlorophyll Content From Imaging Spectroscopy Data. IEEE J Sel Top Appl Earth Obs Remote 
Sens. 2013; 6: 867–874. 

27. Campos-Taberner M, García-Haro FJ, Camps-Valls G, Grau-Muedra G, Nutini F, Crema A, 
Boschetti M. Multitemporal and multiresolution leaf area index retrieval for operational local rice 
crop monitoring. Remote Sens Environ. 2016; 187: 102–118. 

28. Amin, E; Verrelst, J; Rivera-Caicedo, JP; Pasqualotto, N; Delegido, J; Verdú, AR; Moreno, J. 
The Sensagri Sentinel-2 LAI Green and Brown Product: From Algorithm Development Towards 
Operational Mapping; Proceedings of the IGARSS 2018—2018 IEEE International Geoscience 
and Remote Sensing Symposium; Valencia, Spain. 22–27 July 2018; 1822–1825. 

29. Camps-Valls, G; Jung, M; Ichii, K; Papale, D; Tramontana, G; Bodesheim, P; Schwalm, C; 
Zscheischler, J; Mahecha, M; Reichstein, M. Ranking drivers of global carbon and energy 
fluxes over land; Proceedings of the 2015 IEEE International Geoscience and Remote Sensing 
Symposium (IGARSS); Milan, Italy. 26–31 July 2015; 4416–4419. 

30. Camps-Valls G, Verrelst J, Muñoz-Marí J, Laparra V, Mateo-Jiménez F, Gómez-Dans J. A Survey 
on Gaussian Processes for Earth Observation Data Analysis. IEEE Geosci Remote Sens Mag. 
2016; 4: 58–78. 

31. Camps-Valls, Gustau; Sejdinovic, Dino; R, J; R, M. A Prspective on Gaussian Processes for Earth 
Observation. Natl Sci Rev. 2019 doi: 10.1093/nsr/nwz028 

32. Aye S, Heyns P. An integrated Gaussian process regression for prediction of remaining useful life 
of slow speed bearings based on acoustic emission. Mech Syst Signal Process. 2017; 84: 485–498. 
DOI: 10.1016/j.ymssp.2016.07.039 

Pipia et al. Page 21

Remote Sens (Basel). Author manuscript; available in PMC 2022 September 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



33. Calandriello, D; Carratino, L; Lazaric, A; Valko, M; Rosasco, L. Near-linear time Gaussian process 
optimization with adaptive batching and resparsification; Proceedings of the 37th International 
Conference on Machine Learning; Vienna, Austria. 13–18 July 2020; 1295–1305. 

34. Verrelst, J; Rivera, J; Alonso, L; Moreno, J. ARTMO: An Automated Radiative Transfer Models 
Operator toolbox for automated retrieval of biophysical parameters through model inversion; 
Proceedings of the 7th EARSeL Workshop on Imaging Spectrometry; Brno, Czech Republic. 6–8 
February 2011; 

35. Blum, M; Riedmiller, M. Optimization of Gaussian Process Hyperparameters using Rprop; 
Proceedings of the 21th European Symposium on Artificial Neural Networks, Computational 
Intelligence and Machine Learning; Bruges, Belgium. 24–26 April 2013; 

36. Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F. Review of methods 
for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography. 
Agric For Meteorol. 2004; 121: 19–35. DOI: 10.1016/j.agrformet.2003.08.027 

37. Boegh E, Søgaard H, Broge N, Hasager C, Jensen N, Schelde K, Thomsen A. Airborne 
multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic 
efficiency in agriculture. Remote Sens Environ. 2002; 81: 179–193. 

38. Duveiller G, Baret F, Defourny P. Remotely sensed green area index for winter wheat crop 
monitoring: 10-Year assessment at regional scale over a fragmented landscape. Agric For 
Meteorol. 2012; 166: 156–168. 

39. Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti 
P, Martimort P, et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational 
Services. Remote Sens Environ. 2012; 120: 25–36. DOI: 10.1016/j.rse.2011.11.026 

40. Verrelst J, Dethier S, Rivera JP, Munoz-Mari J, Camps-Valls G, Moreno J. Active Learning 
Methods for Efficient Hybrid Biophysical Variable Retrieval. IEEE Geosci Remote Sens Lett. 
2016; 13: 1012–1016. 

41. Verrelst J, Berger K, Rivera-Caicedo JP. Intelligent sampling for vegetation nitrogen mapping 
based on hybrid machine learning algorithms. IEEE Geosci Remote Sens Lett. 2020; doi: 10.1109/
LGRS.2020.3014676 

42. Rivera-Caicedo JP, Verrelst J, Muñoz-Marí J, Camps-Valls G, Moreno J. Hyperspectral 
dimensionality reduction for biophysical variable statistical retrieval. ISPRS J Photogramm 
Remote Sens. 2017; 132: 88–101. 

43. D’Odorico P, Gonsamo A, Gough CM, Bohrer G, Morison J, Wilkinson M, Hanson PJ, Gianelle D, 
Fuentes JD, Buchmann N. The match and mismatch between photosynthesis and land surface 
phenology of deciduous forests. Agric For Meteorol. 2015; 214–215: 25–38. DOI: 10.1016/
j.agrformet.2015.07.005 

44. Kuenzer C, Dech S, Wagner W. Remote Sensing Time Series Revealing Land Surface Dynamics. 
Remote Sens Time Ser. 2015; 22 doi: 10.1007/978-3-319-15967-6 

45. Weiss DJ, Atkinson PM, Bhatt S, Mappin B, Hay SI, Gething PW. An effective approach for 
gap-filling continental scale remotely sensed time-series. ISPRS J Photogramm Remote Sens. 
2014; 98: 106–118. DOI: 10.1016/j.isprsjprs.2014.10.001 [PubMed: 25642100] 

46. Mariethoz G, McCabe M, Renard P. Spatiotemporal reconstruction of gaps in multivariate fields 
using the direct sampling approach. Water Resour Res. 2012; 48 doi: 10.1029/2012WR012115 

47. Chen J, Boccelli DL. Real-time forecasting and visualization toolkit for multi-seasonal time series. 
Environ Model Softw. 2018; 105: 244–256. DOI: 10.1016/j.envsoft.2018.03.034 

48. Jönsson P, Cai Z, Melaas E, Friedl MA, Eklundh L. A Method for Robust Estimation of Vegetation 
Seasonality from Landsat and Sentinel-2 Time Series Data. Remote Sens. 2018; 10 635 doi: 
10.3390/rs10040635 

49. Camps-Valls G, Martino L, Svendsen DH, Campos-Taberner M, Muñoz-Marí J, Laparra V, Luengo 
D, García-Haro FJ. Physics-aware Gaussian processes in remote sensing. Appl Soft Comput. 2018; 
68: 69–82. DOI: 10.1016/j.asoc.2018.03.021 

50. Hensman J, Fusi N, Lawrence ND. Gaussian Processes for Big Data. arXiv. 2013. arXiv:1309.6835 

51. Moore C, Chua A, Berry C, Gair J. Fast methods for training gaussian processes on large datasets. 
R Soc Open Sci. 2016; 3 doi: 10.1098/rsos.160125 

Pipia et al. Page 22

Remote Sens (Basel). Author manuscript; available in PMC 2022 September 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



52. Klein T, Nilsson M, Persson A, Håkansson B. From Open Data to Open Analyses—New 
Opportunities for Environmental Applications? Environments. 2017; 4 32 

53. Chen B, Xiao X, Li X, Pan L, Doughty R, Ma J, Dong J, Qin Y, Zhao B, Wu Z, et al. A mangrove 
forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in 
Google Earth Engine cloud computing platform. ISPRS J Photogramm Remote Sens. 2017; 131: 
104–120. 

54. Deines JM, Kendall AD, Hyndman DW. Annual irrigation dynamics in the US Northern High 
Plains derived from Landsat satellite data. Geophys Res Lett. 2017; 44: 9350–9360. 

55. ESA. ESA Scientific Hub. accessed on 10 January 2021 Available online: https://
scihub.copernicus.eu/dhus/#/home

56. Louis, J; Debaecker, V; Pflug, B; Main-Knorn, M; Bieniarz, J; Mueller-Wilm, U; Cadau, E; 
Gascon, F. Sentinel-2 Sen2Cor: L2A processor for users; Proceedings of the Living Planet 
Symposium; Prague, Czech Republic. 9–13 May 2016; 2016. 1–8. 

57. Google Earth Engine Debugging Guide. accessed on 10 January 2021 Available online: https://
developers.google.com/earth-engine/guides

58. AEMET, I. Agencia Estatal de Meteorología, Ministerio de Medio Ambiente y Rural y Marino. 
Instituto de Meteorologia de Portugal; Madrid, Spain: 2011. 

59. Azorin-Molina C, Vicente-Serrano SM, Chen D, Connell BH, Domínguez-Durán MÁ, Revuelto 
J, López-Moreno JI. AVHRR warm-season cloud climatologies under various synoptic regimes 
across the Iberian Peninsula and the Balearic Islands. Int J Climatol. 2015; 35: 1984–2002. 

60. Li H, Wan W, Fang Y, Zhu S, Chen X, Liu B, Hong Y. A Google Earth Engine-enabled software 
for efficiently generating high-quality user-ready Landsat mosaic images. Environ Model Softw. 
2019; 112: 16–22. DOI: 10.1016/j.envsoft.2018.11.004 

61. Tamiminia H, Salehi B, Mahdianpari M, Quackenbush L, Adeli S, Brisco B. Google Earth Engine 
for geo-big data applications: A meta-analysis and systematic review. ISPRS J Photogramm 
Remote Sens. 2020; 164: 152–170. 

62. Wu Q, Lane CR, Li X, Zhao K, Zhou Y, Clinton N, DeVries B, Golden HE, Lang MW. Integrating 
LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google 
Earth Engine. Remote Sens Environ. 2019; 228: 1–13. [PubMed: 33776151] 

63. Wu Q. Geemap: A Python package for interactive mapping with Google Earth Engine. J Open 
Source Softw. 2020; 5 2305 

64. Kennedy RE, Yang Z, Gorelick N, Braaten J, Cavalcante L, Cohen WB, Healey S. Implementation 
of the LandTrendr algorithm on google earth engine. Remote Sens. 2018; 10 691 

65. Google Earth Engine Developers’ Forum Guide. accessed on 10 January 2021 Available online: 
https://groups.google.com/g/google-earth-enginedevelopers?pli=1

66. Qiusheng, Wu. Earth Engine Python Tutorials. accessed on 10 January 2021 Available online: 
https://www.youtube.com/c/QiushengWu/featured/

67. Gisandbeers. Scripts for Google Earth Engine. accessed on 10 January 2021 Available online: 
http://www.gisandbeers.com/scripts-para-google-earth-engine/

68. Lakshminarayanan B, Pritzel A, Blundell C. Simple and scalable predictive uncertainty estimation 
using deep ensembles. Adv Neural Inf Process Syst. 2017; 30: 6402–6413. 

69. Novak R, Xiao L, Hron J, Lee J, Alemi AA, Sohl-Dickstein J, Schoenholz SS. Neural tangents: 
Fast and easy infinite neural networks in python. arXiv. 2019. arXiv:1912.02803 

70. Lee J, Bahri Y, Novak R, Schoenholz SS, Pennington J, Sohl-Dickstein J. Deep neural networks as 
gaussian processes. arXiv. 2017. arXiv:1711.00165 

71. Novak R, Xiao L, Lee J, Bahri Y, Yang G, Hron J, Abolafia DA, Pennington J, Sohl-Dickstein J. 
Bayesian deep convolutional networks with many channels are gaussian processes. arXiv. 2018. 
arXiv:1810.05148 

72. Sobrino J, Julien Y. Global trends in NDVI-derived parameters obtained from GIMMS data. Int J 
Remote Sens. 2011; 32: 4267–4279. DOI: 10.1080/01431161.2010.486414 

73. Richardson A, Keenan T, Migliavacca M, Ryu Y, Sonnentag O, Toomey M. Climate change, 
phenology, and phenological control of vegetation feedbacks to the climate system. Agric For 
Meteorol. 2013; 169: 156–173. 

Pipia et al. Page 23

Remote Sens (Basel). Author manuscript; available in PMC 2022 September 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
https://developers.google.com/earth-engine/guides
https://developers.google.com/earth-engine/guides
https://groups.google.com/g/google-earth-enginedevelopers?pli=1
https://www.youtube.com/c/QiushengWu/featured/
http://www.gisandbeers.com/scripts-para-google-earth-engine/


74. Atzberger C. Advances in remote sensing of agriculture: Context description, existing operational 
monitoring systems and major information needs. Remote Sens. 2013; 5: 949–981. 

75. Sobrino JA, Julien Y, Sòria G. Phenology Estimation From Meteosat Second Generation Data. 
IEEE J Sel Top Appl Earth Obs Remote Sens. 2013; 6: 1653–1659. 

76. Hill MJ, Donald GE. Estimating spatio-temporal patterns of agricultural productivity in fragmented 
landscapes using AVHRR NDVI time series. Remote Sens Environ. 2003; 84: 367–384. DOI: 
10.1016/S0034-4257(02)00128-1 

77. Overpeck JT, Rind D, Goldberg R. Climate-induced changes in forest disturbance and vegetation. 
Nature. 1990; 343: 51–53. 

78. Frantz D, Röder A, Udelhoven T, Schmidt M. Forest disturbance mapping using dense synthetic 
landsat/MODIS time-series and permutation-based disturbance index detection. Remote Sens. 
2016; 8 277 

79. Masek JG, Huang C, Wolfe R, Cohen W, Hall F, Kutler J, Nelson P. North American forest 
disturbance mapped from a decadal Landsat record. Remote Sens Environ. 2008; 112: 2914–2926. 

80. Zhao K, Wulder MA, Hu T, Bright R, Wu Q, Qin H, Li Y, Toman E, Mallick B, Zhang X, Brown 
M. Detecting change-point, trend, and seasonality in satellite time series data to track abrupt 
changes and nonlinear dynamics: A Bayesian ensemble algorithm. Remote Sens Environ. 2019; 
232 111181 doi: 10.1016/j.rse.2019.04.034 

81. Lastovicka J, Svec P, Paluba D, Kobliuk N, Svoboda J, Hladky R, Stych P. Sentinel-2 Data in an 
Evaluation of the Impact of the Disturbances on Forest Vegetation. Remote Sens. 2020; 12 1914 
doi: 10.3390/rs12121914 

82. Verbesselt J, Hyndman R, Newnham G, Culvenor D. Detecting Trend and Seasonal Changes 
in Satellite Image Time Series. Remote Sens Environ. 2010; 114: 106–115. DOI: 10.1016/
j.rse.2009.08.014 

83. Zhang X, Zhang Q. Monitoring interannual variation in global crop yield using long-term 
AVHRR and MODIS observations. ISPRS J Photogramm Remote Sens. 2016; 114: 191–205. 
DOI: 10.1016/j.isprsjprs.2016.02.010 [PubMed: 32713992] 

84. Baker N. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu Rev Plant Biol. 2008; 
59: 89–113. DOI: 10.1146/annurev.arplant.59.032607.092759 [PubMed: 18444897] 

85. Mohammed GH, Colombo R, Middleton EM, Rascher U, van der Tol C, Nedbal L, Goulas 
Y, Pérez-Priego O, Damm A, Meroni M, et al. Remote sensing of solar-induced chlorophyll 
fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens Environ. 2019; 231 111177 
doi: 10.1016/j.rse.2019.04.030 [PubMed: 33414568] 

Pipia et al. Page 24

Remote Sens (Basel). Author manuscript; available in PMC 2022 September 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. 
Comparison of the RMSE evolution performance of all active learning (AL) methods (a), 

and scatterplot with goodness-of-fit statistics of validation LAIG data against estimations 

using the best Euclidean Diversity (EBD)-reduced LAIG GPR model (b).
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Figure 2. 
Comparison between green LAI maps retrieved by Automated Radiative Transfer Models 

Operator (ARTMO) (a) and GEE GPR coding (b) from S2 acquisition over tile 30TUM on 2 

May 2019.
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Figure 3. 
Comparison of green LAI maps estimated by ARTMO and GEE GPR implementations: 

histograms (a) and scatterplot density (b). In (c), the histogram of pixel-by-pixel difference 

between 10 m bands resampled at 20 m distributed by ESA and available in GEE.
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Figure 4. Big Scale LAIG Mosaic over Europe with 1 July to 15 July 2019 time span using 
maximum value strategy.
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Figure 5. 
Result of GPR gapfilling of input LAIG time series—meaning values (MTS) plus cloudy 

acquisitions (CD)—using different approaches: standard GPR prediction (GTS), CD 

substitutions with 0 (GTSZ) and the proposed parallel implementation (GTS2Z).
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Figure 6. 
S2 acquisition over tile 30TUM on 27 May 2019: RGB (a), LAIG map (b) and gapfilled 

LAIG map (c) from GPR model applied in GEE to ± 35 dd span S2 collection. In (d–f), the 

same quantity zoomed onto the bottom-right corner.
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Figure 7. 
Original and gapfilled LAIG time series of a crop pixel with the area of study generated 

using GEE visualization APIs. The time span corresponds to the whole collection of S2 L2A 

imagery distributed by ESA available in GEE.
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Figure 8. 
Mosaic of gapfilled green LAI maps over Iberian Peninsula from S2-tiling (a) on 2 February 

(b), 30 March (c) and 30 June (d), 2019. In (e), zoom of 30 June mosaic over the Atlantic 

coast and Pyrenees Area.
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Table 1
Overview of field campaigns for leaf area index (LAIG) collection used for training the 

Gaussian process regression (GPR) retrieval models.

Location Period #Points Range Instrument Vegetation Type Spectral Data

Barrax, Spain 3 July 102 0.4–6.2 LAI-2000 Alfalfa, corn, garlic, onion, 
potato, sugar beet, wheat

HyMap

Valencia, Spain May–17 November  34 0.41–5.41 LAI-2200 Alfalfa, artichoke, lettuce, onion, 
potato

S2

Biely Kr í z, Czech 
Republic

16 August 7 5.3–9.3 LAI-2200 Spruce forest S2

Foggia, Italy 17 March 6 3.08–4.23 LAI-2200 Wheat S2

Poznań, Poland 17 July 6 2.69–4.2 LAI-2200 Maize, triticale, wheat S2

Kiev Oblast, Ukraine 18 June 3 0.27–0.56 DHP Maize, soybean S2

Toulouse, France 18 August 1 1.77 DHP Maize S2
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Table 2
Overview of campaigns for LAIG in-situ data collection used for LAIG GPR model 

validation.

Location Period #Points Range Instrument Vegetation Type Spectral Data

Toulouse, France Nov17/Mar-May-Jul-Aug 
18

52 0.03–3.84 DHP Maize, soybean, sunflower S2

Poznań, Poland Apr-Jun-Aug 18 50 0.96–4.23 LAI-2200 Beetroot, maize, triticale, 
wheat

S2

Kiev Oblast, 
Ukraine

May-Jun-Aug 18 40 0.04–4.81 DHP Maize, soybean, sunflower, 
wheat

S2
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Table 3

Averaged hyperparameters estimated using fixed crop-type and global approaches : σt defines the gap-filled 

time series smoothness, σst is the amplitude scaling factor and σn accounts for the noise variance

Wheat Corn Barley Sunflower Rape Pea Alfalfa Beet Potato Global

σt 32.6018 41.0726 36.0351 23.0815 35.0548 23.9367 29.8602 47.3544 25.5081 32.7282

σst 0.8776 1.0018 0.8395 0.5670 1.2058 0.8415 0.6465 1.1465 1.1870 0.9237

σn 0.3377 0.4395 0.2833 0.2355 0.5085 0.2778 0.4028 0.3794 0.3620 0.3585
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Table 4

Variation in percentage of LAIG obtained with precalculated hyperparameters with respect to the original LAI 

time series (lowest values in bold). Last column exhibits the variance in the percentage.

Crop 
Type

Per-pixel 
Hyperpar.

Averaged Hyperparameters Variance

Wheat Corn Barley Sunflower Rape Pea Alfalfa Beet Potato Global

Wheat 9.064 10.078 10.845 10.240 9.072 10.372 8.851 10.519 10.996 8.995 10.097 0.787

Corn 10.660 10.794 11.614 10.952 9.821 11.100 9.675 11.174 11.752 9.812 10.813 0.708

Barley 8.206 8.593 9.282 8.707 7.932 8.834 7.739 9.058 9.435 7.826 8.608 0.580

Sunflower 8.455 11.238 12.366 11.474 9.928 11.642 9.752 11.646 12.633 9.929 11.263 1.265

Rape 10.222 10.798 11.483 10.950 9.576 11.070 9.351 11.207 11.598 9.573 10.816 0.799

Pea 7.634 10.017 11.601 10.314 8.719 10.557 8.485 10.671 12.026 8.624 10.050 1.371

Alfalfa 11.833 14.001 14.999 14.222 12.659 14.368 12.496 14.360 15.210 12.734 14.024 1.108

Beet 8.975 8.975 9.629 9.083 8.207 9.223 8.054 9.389 9.714 8.149 8.991 0.577

Potato 7.477 9.456 10.566 9.647 8.311 9.848 8.130 9.993 10.769 8.262 9.481 1.070
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Table 5
Lines of pseudo-code of GPR core implementation in Google Earth Engine (GEE) with 
mathematical notation for variable easy identification.

(var) calculate_LAI_GREEN = function(image){

(var) X*
TD =image.multiply(D).toArray().toArray(1);

(var) X* = image.toArray().toArray(1);

(var) Term1 = X*
TD.matrixTranspose().matrixMultiply(X*).arrayProject([0]).multiply(—0.5).exp().multiply(σf

2)

(var) PtTDX= ee.Image(X).matrixMultiply(X*
TD).arrayProject([0]).arrayFlatten([TS_ID]);

(var) K* = PtTDX.subtract(XDX.multiply(0.5)).exp().toArray()

(var) f(X*) = K*.arrayDotProduct(α.toArray()).multiply(Term1).toArray(1).arrayProject([0]).arrayFlatten([[’LAIG’]]);

return image.select(‘LAIG’)}
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Table 6
Lines of pseudo-code of GPR gap-filling core implementation in GEE with mathematical 
notation for variable easy identification.

(var) Nt=LAIGc.size();

(var) 1msk = tmsk.multiply(0).add(1.0);

(var) 1* = t* multiply(0).add(1.0);

(var) I = ee.Image(ee.Array.identity(Nt));

(var) prod = tmsk.matrixMultiply(1msk.matrixTranspose());

(var) Kt = prod.subtract(prod.matrixTranspose()).pow(2).multiply(Dt).multiply(–0.5).exp().multiply(σf t);

(var) L = I.multiply(σnt2 ).add(Kt).matrixCholeskyDecomposition();

(var) αtmp = L.matrixInverse().matrixMultiply(LAIGc.toBands().unmask().toArray().toArray(1));

(var) αt = L.matrixTranspose().matrixInverse().matrixMultiply(αtmp);

(var) T* = t*.matrixMultiply(1msk.matrixTranspose());

(var) Tmsk = tmsk.matrixMultiply(1.matrixTranspose()).matrixTranspose();

(var) K*= T*.subtract(Tmsk).pow(2).multiply(Dt).multiply(–0.5).exp().multiply(σf t);

(var) LAIG(t*) = K*.matrixMultiply(αt).arrayProject([0]).arrayFlatten([[’LAIG’]]);
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