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Since its inception in December 2019, many safe and effective vaccines have been invented and 
approved for use against COVID-19 along with various non-pharmaceutical interventions. But 
the emergence of numerous SARS-CoV-2 variants has put the effectiveness of these vaccines, 
and other intervention measures under threat. So it is important to understand the dynamics 
of COVID-19 in the presence of its variants of concern (VOC) in controlling the spread of the 
disease. To address these situations and to find a way out of this problem, a new mathematical 
model consisting of a system of non-linear differential equations considering the original COVID-

19 strain with its two variants of concern (Delta and Omicron) has been proposed and formulated 
in this paper. We then analyzed the proposed model to study the transmission dynamics of this 
multi-strain model and to investigate the consequences of the emergence of multiple new SARS-

CoV-2 variants which are more transmissible than the previous ones. The control reproduction 
number, an important threshold parameter, is then calculated using the next-generation matrix 
method. Further, we presented the discussion about the stability of the model equilibrium. It is 
shown that the disease-free equilibrium (DFE) of the model is locally asymptotic stable when the 
control reproduction is less than unity. It is also shown that the model has a unique endemic 
equilibrium (EEP) which is locally asymptotic stable when the control reproduction number is 
greater than unity. Using the Center Manifold theory it is shown that the model also exhibits 
the backward bifurcation phenomenon when the control reproduction number is less than unity. 
Again without considering the re-infection of the recovered individuals, it is proved that the 
disease-free equilibrium is globally asymptotically stable when the reproduction threshold is 
less than unity. Finally, numerical simulations are performed to verify the analytic results and 
to show the impact of multiple new SARS-CoV-2 variants in the population which are more 
contagious than the previous variants. Global uncertainty and sensitivity analysis has been done 
to identify which parameters have a greater impact on disease dynamics and control disease 
transmission. Numerical simulation suggests that the emergence of new variants of concern 
increases COVID-19 infection and related deaths. It also reveals that a combination of non-

pharmaceutical interventions with vaccination programs of new more effective vaccines should 
be continued to control the disease outbreak. This study also suggests that more doses of vaccine 
should provide to combat new and deadly variants like Delta and Omicron.
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1. Introduction

The first reported case of COVID-19 was in December 2019 and since then, it has become a global epidemic [1]. As of February 
2023, approximately 6.8 million people have died, and approximately 760 million people have been infected which testifies how 
deadly it is [2]. Before the invention of vaccines, the use of face masks, lock-down, and other non-pharmaceutical interventions 
and community mitigation strategies (such as: washing and sanitizing hands frequently, and isolation of suspected individuals) were 
thought to be the effective way to mitigate the disease spread [3,4]. These intervention measures did prove their effectiveness theo-

retically and mathematically against the pandemic [5,6] but were sometimes insufficient to stop the disease outbreak. So vaccination 
is thought to be the most effective way to confront this issue and hence vaccinologists worked tirelessly to develop vaccines for 
preventing COVID-19. At the end of 2020, the first vaccine was approved by World Health Organization (WHO) [7] and it was 
assumed that vaccination can lead to the end of this pandemic. After that multiple effective vaccines were approved by WHO [7], 
but the emergence of various new and deadly COVID-19 variants makes it difficult to curtail the disease burden.

It is common for the virus to change over time [8]. In most cases, these changes have little or no impact. But as the variants 
appear with different forms of mutations, sometimes these changes may affect the level of infectiousness, the severity of the disease, 
and the vaccine performance [8]. Variants, those that pose an increased risk to public health and the economy, are specified as 
Variants of Concern (VOCs) and are called so to promote global monitoring and research [9,10]. This feature of viruses is also visible 
in the case of COVID-19 and till now we have witnessed many variants of COVID-19. Alpha variant (B.1.1.7), having a 75% higher 
transmission rate than the wild strain, was one of the variants that were listed for SARS-CoV-2 VOC [11]. Delta variant (B.1.617.2), 
60% more transmissible than the alpha variant, was another VOC that was first identified in December 2020 and became the most 
common and dominant one by April 2021 [12]. The last variant, which was listed as a VOC and proved its supremacy over all other 
variants, was the Omicron variant [13]. It is three times more infectious than the Delta variant [14]. So it is a matter of concern for 
public health workers and general people as it is seen that the mutated ones may vary in the level of infectiousness and response to 
the existing vaccines [8].

After the approval of the first vaccine (Pfizer/BioNTech) against COVID-19, mass vaccination programs started in the USA [7,

15]. After that many more vaccines have been approved for use against COVID-19 (Moderna, Janssen J & J, SII/COVIDSHIELD, 
AstraZeneca/AZD122, Sinopharm, Sinovac-CoronaVac, Bharat Biotech BBV152 COVAXIN, Nuvaxovid) [7]. These vaccines were 
highly effective against the wild strain but they show varying levels of effectiveness against the new variants like Delta and Omicron 
[15,16]. Thus the dynamics of COVID-19 in the presence of Delta and Omicron variants will vary significantly and hence it has 
become necessary for researchers to study the dynamics of COVID-19 in the presence of Delta and Omicron variants to control the 
disease spread.

In this scenario mathematical model can be used to get insight into the transmission dynamics of COVID-19. Mathematical models 
can also be analyzed numerically to evaluate the consequences of the new SARS-CoV-2 mutants. There are lots of mathematical 
models to evaluate the transmission dynamics of COVID-19 [17,6,18–22,16,23,24] and so on. But there are only a few mathematical 
models to describe the behavior of the COVID-19 wild strain in the presence of its variants of concern [25–28]. Model in [25]

considered multiple strains with optimal control theory and waning of immunity. Again model described in [26], evaluated the 
impact of a new variant for generating more infections, hospitalizations, and deaths. Authors in [27], using a mathematical model, 
depicted the dynamics of the two strains model under one vaccination regime. They showed the impact of multiple variants and 
their response to the vaccine and also on developing new infections and deaths. Incorporating vaccination in a two-strain COVID-19 
model, authors in [28] showed that a variant would become dominant if it had a higher reproduction number with respect to the 
other strain. Motivated by the above-mentioned papers, in this paper we formulated and developed a new mathematical model 
considering the wild strain and its two other variants, Delta and Omicron, to understand the dynamics of COVID-19 transmission. 
Our goal is to assess the impact of the original strain and its other two variants on developing new infections, hospitalizations, and 
deaths. Our model is novel in the sense we have considered a three-strain model which has not been investigated before. We have 
also assessed the effect of the Delta variant and Omicron variant using numerical simulation which is also a new feature of this paper. 
We have included a compartment for the quarantined individuals in our model as it is known that the most effective way to reduce 
infection is to isolate the infected individuals. Many studies confirm the re-infection of recovered individuals [29,30] and hence we 
have considered re-infection of recovered individuals. Global uncertainty and sensitivity analysis is performed in this paper to detect 
the top-ranked parameters that control the control reproduction number and hence the dynamics of the model.

The entire paper is designed as follows. The formulation of the model is described in section 2. Rigorous and qualitative mathemat-

ical analysis of the model has been carried out and the control reproduction number has been calculated in section 3. Vaccine-derived 
herd immunity threshold has also been calculated in this section. In section 4, numerical results and related discussions are presented. 
Global uncertainty and sensitivity analysis have also been performed in this section to identify the most influential parameters. Re-

sults obtained in theoretical analysis and numerical simulations are summarized in section 5.

2. Materials and methods

2.1. Model formulation

A mathematical model, in the form of a system of non-linear differential equations, has been developed considering the original 
strain with its two other variants: Delta and Omicron. It has been considered that the wild strain and the mutants have different 
2

levels of contagiousness. The compartments: exposed class, pre-symptomatic class, symptomatic class, and asymptomatic class, are 



Heliyon 9 (2023) e17900S. Saha and A.K. Saha

Fig. 1. Schematic diagram of the COVID-19 model (5).

considered separately for each of the strains. The total human population, 𝑁(𝑡), is divided into the following mutually exclusive 
compartments (equation (1)): susceptible (𝑆), vaccinated individuals (𝑉 ), exposed (𝐸𝑗 ), pre-symptomatic (𝑃𝑗 ), symptomatic infected 
(𝐼𝑗 ), asymptomatic infected (𝐴𝑗 ), quarantined (𝑄), hospitalized (𝐻) and recovered individuals (𝑅), where 𝑗 = 1, 2, 3, and so we have

𝑁(𝑡) = 𝑆(𝑡) + 𝑉 (𝑡) +𝐸𝑗 (𝑡) + 𝑃𝑗 (𝑡) + 𝐼𝑗 (𝑡) +𝐴𝑗 (𝑡) +𝑄(𝑡) +𝐻(𝑡) +𝑅(𝑡). (1)

Some of the important assumptions in the model formulation are listed below:

Assumption-1: Birth rate (natural recruitment) is not considered.

Assumption-2: Individuals exposed to COVID-19 are unable to infect others.

Assumption-3: Pre-symptomatic and asymptomatic individuals are able to transmit infection.

Assumption-4: Recovered individuals may become susceptible again.

Assumption-5: Preexisting SARS-CoV-2 variants are less contagious than the new variant.

Susceptible individuals acquire infection with the original strain at a rate 𝜆1, given by

𝜆1 =
𝛽1 (1 − 𝑒𝑚) (𝜂1 𝑃1 + 𝐼1 + 𝜃1𝐴1)

𝑁
, (2)

Again, susceptible individuals acquire infection with the Delta variant at a rate 𝜆2, given by

𝜆2 =
𝛽2 (1 − 𝑒𝑚) (𝜂2 𝑃2 + 𝐼2 + 𝜃2𝐴2)

𝑁
, (3)

Similarly, susceptible individuals acquire infection with the Omicron variant at a rate 𝜆3, given by

𝜆3 =
𝛽3 (1 − 𝑒𝑚) (𝜂3 𝑃3 + 𝐼3 + 𝜃3𝐴3)

𝑁
. (4)

Here 𝛽𝑗 , 𝑗 = 1, 2, 3 is the effective contact rate of disease transmission for the original strain, Delta strain, and Omicron strain, 
respectively. It is assumed that people use face masks at a rate 𝑚, and 𝑒 represents face mask efficacy. 0 < 𝜂𝑗 , 𝜃𝑗 < 1 are modification 
parameters indicating low infectiousness of pre-symptomatic and asymptomatic individuals in the 𝑃𝑗 and 𝐴𝑗 classes compared to the 
individuals in the 𝐼𝑗 classes, respectively.

Graphical representation of the 3-strain COVID-19 model is shown in Fig. 1. The model is presented in the form of a system of 
nonlinear differential equations (where a dot represents differentiation with respect to time) as follows:

𝑆̇ = Λ+ 𝜁 𝑉 + 𝛼𝑅− 𝜆1 𝑆 −𝜔1 𝜆2 𝑆 −𝜔2 𝜆3 𝑆 − 𝜌𝑆 − 𝜇𝑆,

𝑉̇ = 𝜌𝑆 − [(1 − 𝜖1)𝜆1 +𝜔1 (1 − 𝜖2)𝜆2 +𝜔2 (1 − 𝜖3)𝜆3]𝑉 − (𝜁 + 𝜇)𝑉 ,

𝐸̇1 = 𝜆1 𝑆 + (1 − 𝜖1)𝜆1 𝑉 − (𝜎1 + 𝜇)𝐸1,
3

𝑃̇1 = 𝜎1𝐸1 − (𝜎2 + 𝜇)𝑃1,
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̇𝐼1 = 𝑏𝜎2 𝑃1 − (𝜎𝑞 +𝜙𝑖1 +𝜓𝑖1 + 𝛿𝑖1 + 𝜇)𝐼1,

𝐴̇1 = (1 − 𝑏)𝜎2 𝑃1 − (𝜓𝑎1 + 𝛿𝑎1 + 𝜇)𝐴1,

𝐸̇2 = 𝜔1 𝜆2 𝑆 +𝜔1 (1 − 𝜖2)𝜆2 𝑉 − (𝜎1 + 𝜇)𝐸2,

𝑃̇2 = 𝜎2𝐸2 − (𝜎2 + 𝜇)𝑃2,

̇𝐼2 = 𝑏𝜎2 𝑃2 − (𝜎𝑞 +𝜙𝑖2 +𝜓𝑖2 + 𝛿𝑖2 + 𝜇)𝐼2,

𝐴̇2 = (1 − 𝑏)𝜎2 𝑃2 − (𝜓𝑎2 + 𝛿𝑎2 + 𝜇)𝐴2,

𝐸̇3 = 𝜔2 𝜆3 𝑆 +𝜔2 (1 − 𝜖3)𝜆3 𝑉 − (𝜎1 + 𝜇)𝐸3,

𝑃̇3 = 𝜎1𝐸3 − (𝜎2 + 𝜇)𝑃3,

̇𝐼3 = 𝑏𝜎2 𝑃3 − (𝜎𝑞 +𝜙𝑖3 +𝜓𝑖3 + 𝛿𝑖3 + 𝜇)𝐼3,

𝐴̇3 = (1 − 𝑏)𝜎2 𝑃3 − (𝜓𝑎3 + 𝛿𝑎3 + 𝜇)𝐴3,

𝑄̇ = 𝜎𝑞 𝐼1 + 𝜎𝑞 𝐼2 + 𝜎𝑞 𝐼3 − (𝜙𝑞 +𝜓𝑞 + 𝛿𝑞 + 𝜇)𝑄,

𝐻̇ = 𝜙𝑖1
𝐼1 +𝜙𝑖2 𝐼2 +𝜙𝑖3 𝐼3 +𝜙𝑞 𝑄− (𝜓ℎ + 𝛿ℎ + 𝜇)𝐻,

𝑅̇ = 𝜓𝑖1
𝐼1 +𝜓𝑎1 𝐴1 +𝜓𝑖2 𝐼2 +𝜓𝑎2 𝐴2 +𝜓𝑖3 𝐼3 +𝜓𝑎3 𝐴3 +𝜓𝑞 𝑄+𝜓ℎ𝐻 − (𝛼 + 𝜇)𝑅. (5)

In the model (5), Λ is the recruitment rate of individuals. 𝜌 represents the rate at which susceptible individuals are vaccinated. 
Vaccinated population further moves to the susceptible class due to the loss of acquired immunity from vaccine at a rate 𝜁 . Individuals 
exposed to the original strain of COVID-19 move to the pre-symptomatic stage at a rate 𝜎1. Pre-symptomatic individuals gain infection 
at a rate 𝜎2. Among the infected individuals who show the symptoms of COVID-19 are generated at a proportion 𝑏. As we know, 
individuals infected with COVID-19 may not show the symptoms of the disease but at the same time, they are capable of infecting 
others. We have considered a class for these asymptomatic individuals as they play an important role in the transmission dynamics 
of COVID-19. Among the infected individuals who do not show the symptoms of COVID-19 are generated at a proportion 1 − 𝑏. 
𝜎𝑞 is the rate at which infected individuals are sent to quarantine. Symptomatic infected individuals in the 𝐼1, 𝐼2 and 𝐼3 classes are 
hospitalized at a rate 𝜙𝑖1 , 𝜙𝑖2 and 𝜙𝑖3 , respectively. Individuals in the 𝐼1, 𝐴1, 𝐼2, 𝐴2, 𝐼3 and 𝐴3 classes recover from COVID-19 at a 
rate 𝜓𝑖1 , 𝜓𝑎1 , 𝜓𝑖2 , 𝜓𝑎2 , 𝜓𝑖3 and 𝜓𝑎3 , respectively. COVID-19 induced death rates for individuals in the 𝐼1, 𝐴1, 𝐼2, 𝐴2, 𝐼3 and 𝐴3 classes 
are 𝛿𝑖1 , 𝛿𝑎1 , 𝛿𝑖2 , 𝛿𝑎2 , 𝛿𝑖3 and 𝛿𝑎3 , respectively. Recovered individuals become susceptible again at a reduced rate 𝛼. 𝜔2 > 𝜔1 > 1 are 
modification parameters indicating high infectiousness of the Omicron variant and Delta variant with respect to the original strain. 
𝜇 represents the natural death rate.

3. Mathematical analysis of the model

3.1. Local asymptotic stability of the DFE

From the COVID-19 model (5), the disease-free equilibrium, 0, is obtained as

0 =
(
𝑆∗, 𝑉 ∗, 𝐸∗

𝑗
, 𝑃 ∗

𝑗
, 𝐼∗

𝑗
, 𝐴∗

𝑗
, 𝑄∗, 𝐻∗, 𝑅∗

)
=

(
Λ𝑘2

𝑘1 𝑘2 − 𝜁 𝜌
,

Λ𝜌
𝑘1 𝑘2 − 𝜁 𝜌

0, 0, 0, 0, 0, 0, 0

)
. (6)

The asymptotic stability of the DFE can be established using the next-generation operator method [31,32] on the system (5). For 
the system (5), using the notation of [32], the next generation matrices for the new infection terms and remaining transfer terms, 
denoted by 𝐹 and 𝑉 respectively, are given by

𝐹 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

0 𝜂1 𝛽1 1 𝛽1 1 𝜃1 𝛽1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 𝜂2 𝛽2 2 𝛽2 2 𝜃2 𝛽2 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 𝜂3 𝛽3 3 𝛽3 3 𝜃3 𝛽3 3
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

,

4

⎜⎝0 0 0 0 0 0 0 0 0 0 0 0 ⎟⎠
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𝑉 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘3 0 0 0 0 0 0 0 0 0 0 0
−𝜎1 𝑘4 0 0 0 0 0 0 0 0 0 0
0 −𝑏𝜎2 𝑘5 0 0 0 0 0 0 0 0 0
0 −(1 − 𝑏)𝜎2 0 𝑘6 0 0 0 0 0 0 0 0
0 0 0 0 𝑘3 0 0 0 0 0 0 0
0 0 0 0 −𝜎1 𝑘4 0 0 0 0 0 0
0 0 0 0 0 −𝑏𝜎2 𝑘7 0 0 0 0 0
0 0 0 0 0 −(1 − 𝑏)𝜎2 0 𝑘8 0 0 0 0
0 0 0 0 0 0 0 0 𝑘3 0 0 0
0 0 0 0 0 0 0 0 −𝜎1 𝑘4 0 0
0 0 0 0 0 0 0 0 0 −𝑏𝜎2 𝑘9 0
0 0 0 0 0 0 0 0 0 −(1 − 𝑏)𝜎2 0 𝑘10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where,

1 = (1 − 𝑒 𝑚) 
𝑆∗ + (1 − 𝜖1)𝑉 ∗

𝑁∗ , 2 = (1 − 𝑒 𝑚) 
𝑆∗ + (1 − 𝜖2)𝑉 ∗

𝑁∗ , 3 = (1 − 𝑒 𝑚) 
𝑆∗ + (1 − 𝜖3)𝑉 ∗

𝑁∗ ,

𝑘1 = 𝜌 + 𝜇, 𝑘2 = 𝜁 + 𝜇, 𝑘3 = 𝜎1 + 𝜇, 𝑘4 = 𝜎2 + 𝜇, 𝑘5 = 𝜎𝑞 + 𝜙𝑖1 +𝜓𝑖1 + 𝛿𝑖1 + 𝜇, 𝑘6 = 𝜓𝑎1
+ 𝛿𝑎1 + 𝜇,

𝑘7 = 𝜎𝑞 +𝜙𝑖2 +𝜓𝑖2 + 𝛿𝑖2 + 𝜇, 𝑘8 = 𝜓𝑎2
+ 𝛿𝑎2 + 𝜇, 𝑘9 = 𝜎𝑞 + 𝜙𝑖3 +𝜓𝑖3 + 𝛿𝑖3 + 𝜇, 𝑘10 = 𝜓𝑎3

+ 𝛿𝑎3 + 𝜇,

𝑘11 = 𝜙𝑞 +𝜓𝑞 + 𝛿𝑞 + 𝜇, 𝑘12 = 𝜓ℎ + 𝛿ℎ + 𝜇, 𝑘13 = 𝛼 + 𝜇.

Following the approach described in [33,34], it can be shown that the control reproduction number, denoted by 𝑐 , is given by

𝑐 = 𝜌 (𝐹 𝑉 −1) = max
{
1, 2, 3

}
, (7)

where, 𝜌 represents the spectral radius of the next generation matrix 𝐹 𝑉 −1 and

1 =
𝜂1 𝛽1 1 𝜎1
𝑘3 𝑘4

+
𝛽1 1 𝑏𝜎2 𝜎1
𝑘3 𝑘4 𝑘5

+
𝜃1 𝛽1 1 (1 − 𝑏) 𝜎1 𝜎2

𝑘3 𝑘4 𝑘6
. (8)

2 =
𝜂2 𝛽2 2 𝜎1
𝑘3 𝑘4

+
𝛽2 2 𝑏 𝜎1 𝜎2
𝑘3 𝑘4 𝑘7

+
𝜃2 𝛽2 2 (1 − 𝑏)𝜎1 𝜎2

𝑘3 𝑘4 𝑘8
. (9)

3 =
𝜂3 𝛽3 3 𝜎1
𝑘3 𝑘4

+
𝛽3 3 𝑏𝜎1 𝜎2
𝑘3 𝑘4 𝑘9

+
𝜃3 𝛽3 3 (1 − 𝑏)𝜎1 𝜎2

𝑘3 𝑘4 𝑘10
. (10)

Consequently, using Theorem 2 of [32] the following result can be established.

Lemma 1. The DFE of the COVID-19 model (5), given by (6), is locally-asymptotically stable (LAS) if 𝑐 < 1, and unstable if 𝑐 > 1.

The threshold quantity 𝑐 , given by (7), represents the average number of secondary infections that one infected case can 
produce in a completely susceptible population. Lemma 1 implies that, in general, when 𝑐 is less than one, a small influx of 
infected individuals into the population would not generate a large epidemic and hence the disease will be eradicated in time. 
However, in the subsection 3.3 we will see that the disease may still exist even when 𝑐 < 1.

3.2. Derivation of vaccine-induced herd immunity threshold to reduce the spread of COVID-19

In this subsection, we will compute the minimum number of populations that should be brought under vaccination to achieve 
herd immunity. To do this, we will follow the procedure as described in [35]. From equations (8), (9), and (10) we get,

1 = (1 − 𝑒𝑚)

[(
𝜂1 𝛽1 𝜎1
𝑘3 𝑘4

+
𝛽1 𝑏𝜎2 𝜎1
𝑘3 𝑘4 𝑘5

+
𝜃1 𝛽1 (1 − 𝑏) 𝜎1 𝜎2

𝑘3 𝑘4 𝑘6

)(
𝑆∗

𝑁∗ + 𝑉 ∗

𝑁∗ − 𝜖1
𝑉 ∗

𝑁∗

)]
. (11)

2 = (1 − 𝑒𝑚)

[(
𝜂2 𝛽2 𝜎1
𝑘3 𝑘4

+
𝛽2 𝑏 𝜎1 𝜎2
𝑘3 𝑘4 𝑘7

+
𝜃2 𝛽2 (1 − 𝑏)𝜎1 𝜎2

𝑘3 𝑘4 𝑘8

)(
𝑆∗

𝑁∗ + 𝑉 ∗

𝑁∗ − 𝜖2
𝑉 ∗

𝑁∗

)]
. (12)

3 = (1 − 𝑒𝑚)

[(
𝜂3 𝛽3 𝜎1
𝑘3 𝑘4

+
𝛽3 𝑏𝜎1 𝜎2
𝑘3 𝑘4 𝑘9

+
𝜃3 𝛽3 (1 − 𝑏)𝜎1 𝜎2

𝑘3 𝑘4 𝑘10

)(
𝑆∗

𝑁∗ + 𝑉 ∗

𝑁∗ − 𝜖3
𝑉 ∗

𝑁∗

)]
. (13)

At the DFE, we have

𝑁∗ = 𝑆∗ + 𝑉 ∗ =
Λ(𝑘2 + 𝜌)
𝑘1 𝑘2 − 𝜁 𝜌

. (14)

Using expression (14), equations (11), (12), and (13) become

1 = (1 − 𝑒𝑚)

[
𝜂1 𝛽1 𝜎1

(
1 − 𝜖1

𝑉 ∗

∗

)
+
𝛽1 𝑏𝜎2 𝜎1

(
1 − 𝜖1

𝑉 ∗

∗

)
+
𝜃1 𝛽1 (1 − 𝑏) 𝜎1 𝜎2

(
1 − 𝜖1

𝑉 ∗

∗

)]
. (15)
5

𝑘3 𝑘4 𝑁 𝑘3 𝑘4 𝑘5 𝑁 𝑘3 𝑘4 𝑘6 𝑁
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2 = (1 − 𝑒𝑚)

[
𝜂2 𝛽2 𝜎1
𝑘3 𝑘4

(
1 − 𝜖2

𝑉 ∗

𝑁∗

)
+
𝛽2 𝑏 𝜎1 𝜎2
𝑘3 𝑘4 𝑘7

(
1 − 𝜖2

𝑉 ∗

𝑁∗

)
+
𝜃2 𝛽2 (1 − 𝑏)𝜎1 𝜎2

𝑘3 𝑘4 𝑘8

(
1 − 𝜖2

𝑉 ∗

𝑁∗

)]
. (16)

3 = (1 − 𝑒𝑚)

[
𝜂3 𝛽3 𝜎1
𝑘3 𝑘4

(
1 − 𝜖3

𝑉 ∗

𝑁∗

)
+
𝛽3 𝑏𝜎1 𝜎2
𝑘3 𝑘4 𝑘9

(
1 − 𝜖3

𝑉 ∗

𝑁∗

)
+
𝜃3 𝛽3 (1 − 𝑏)𝜎1 𝜎2

𝑘3 𝑘4 𝑘10

(
1 − 𝜖3

𝑉 ∗

𝑁∗

)]
. (17)

Now using the expressions of 𝑆∗, 𝑉 ∗, and 𝑁∗, from equations (6) and (14), in equations (15), (16), and (17) we get

1 = (1 − 𝑒𝑚)

[
𝜂1 𝛽1 𝜎1
𝑘3 𝑘4

(
1 − 𝜖1

𝜌

𝑘2 + 𝜌

)
+
𝛽1 𝑏𝜎2 𝜎1
𝑘3 𝑘4 𝑘5

(
1 − 𝜖1

𝜌

𝑘2 + 𝜌

)
+
𝜃1 𝛽1 (1 − 𝑏) 𝜎1 𝜎2

𝑘3 𝑘4 𝑘6

(
1 − 𝜖1

𝜌

𝑘2 + 𝜌

)]
. (18)

2 = (1 − 𝑒𝑚)

[
𝜂2 𝛽2 𝜎1
𝑘3 𝑘4

(
1 − 𝜖2

𝜌

𝑘2 + 𝜌

)
+
𝛽2 𝑏 𝜎1 𝜎2
𝑘3 𝑘4 𝑘7

(
1 − 𝜖2

𝜌

𝑘2 + 𝜌

)
+
𝜃2 𝛽2 (1 − 𝑏)𝜎1 𝜎2

𝑘3 𝑘4 𝑘8

(
1 − 𝜖2

𝜌

𝑘2 + 𝜌

)]
. (19)

3 = (1 − 𝑒𝑚)

[
𝜂3 𝛽3 𝜎1
𝑘3 𝑘4

(
1 − 𝜖3

𝜌

𝑘2 + 𝜌

)
+
𝛽3 𝑏𝜎1 𝜎2
𝑘3 𝑘4 𝑘9

(
1 − 𝜖3

𝜌

𝑘2 + 𝜌

)
+
𝜃3 𝛽3 (1 − 𝑏)𝜎1 𝜎2

𝑘3 𝑘4 𝑘10

(
1 − 𝜖3

𝜌

𝑘2 + 𝜌

)]
. (20)

To find an expression for the vaccine-derived herd immunity threshold, we will use the expression for the basic reproduction number 
which is obtained by setting 𝑉 ∗ = 0 and 𝜖𝑗 = 0. Again, suppose that

𝑓𝑣 = 𝑉 ∗

𝑁∗ , (21)

where 𝑓𝑣 represents the proportion of individuals who are fully vaccinated. Thus, using the expression (21) in equations (18), (19), 
and (20), we obtain

1 = (1 − 𝑒𝑚)

[
𝜂1 𝛽1 𝜎1
𝑘3 𝑘4

(
1 − 𝜖1 𝑓𝑣

)
+
𝛽1 𝑏𝜎2 𝜎1
𝑘3 𝑘4 𝑘5

(
1 − 𝜖1 𝑓𝑣

)
+
𝜃1 𝛽1 (1 − 𝑏) 𝜎1 𝜎2

𝑘3 𝑘4 𝑘6

(
1 − 𝜖1 𝑓𝑣

)]
. (22)

2 = (1 − 𝑒𝑚)

[
𝜂2 𝛽2 𝜎1
𝑘3 𝑘4

(
1 − 𝜖2 𝑓𝑣

)
+
𝛽2 𝑏 𝜎1 𝜎2
𝑘3 𝑘4 𝑘7

(
1 − 𝜖2 𝑓𝑣

)
+
𝜃2 𝛽2 (1 − 𝑏)𝜎1 𝜎2

𝑘3 𝑘4 𝑘8

(
1 − 𝜖2 𝑓𝑣

)]
. (23)

3 = (1 − 𝑒𝑚)

[
𝜂3 𝛽3 𝜎1
𝑘3 𝑘4

(
1 − 𝜖3 𝑓𝑣

)
+
𝛽3 𝑏𝜎1 𝜎2
𝑘3 𝑘4 𝑘9

(
1 − 𝜖3 𝑓𝑣

)
+
𝜃3 𝛽3 (1 − 𝑏)𝜎1 𝜎2

𝑘3 𝑘4 𝑘10

(
1 − 𝜖3 𝑓𝑣

)]
. (24)

Let 0𝑗 = 𝑗 |𝑉 ∗ =0, 𝜖𝑗 =0 𝑗 = 1, 2, 3
Setting 1 = 1 in (22) and solving for 𝑓𝑣, the herd immunity threshold for the model with the original strain only can be obtained 

as

𝑓𝑣 = 1
𝜖1

(
1 − 1

01

)
. (25)

Similarly, setting 2 = 1 in (23) and solving for 𝑓𝑣, the herd immunity threshold for the model with the original strain and the Delta 
variant can be obtained as

𝑓𝑣 = 1
𝜖2

(
1 − 1

02

)
. (26)

Finally, setting 3 = 1 in (24) and solving for 𝑓𝑣, the herd immunity threshold for the model with the original strain and the Delta 
and Omicron variants can be obtained as

𝑓𝑣 = 1
𝜖3

(
1 − 1

03

)
. (27)

In general, equations (25), (26), and (27) can be written as

𝑓𝑣 = 1
𝜖𝑗

(
1 − 1

0𝑗

)
. (28)

It follows from (28) that 𝑐 < 1 if 𝑓𝑣 >
1
𝜖𝑗

(
1 − 1

0𝑗

)
and hence the disease can be eliminated. Lemma 1 can be re-stated in terms 

of the herd immunity threshold as follows.

Lemma 2. The DFE of the COVID-19 model (5), is locally-asymptotically stable (LAS) if 𝑓𝑣 >
1
𝜖𝑗

(
1 − 1

0𝑗

)
and unstable if 𝑓𝑣 <

1
𝜖𝑗

(
1 −

1
)

6

0𝑗
.
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3.3. Endemic equilibrium point (EEP) and existence of backward bifurcation

Setting the left-hand side of the model (5) equal to zero, we get the following system of equations:

0 = Λ+ 𝜁 𝑉 ∗ + 𝛼𝑅∗ − 𝜆1 𝑆∗ − 𝜆2 𝑆∗ − 𝜆3 𝑆∗ − 𝑘1 𝑆∗,

0 = 𝜌𝑆∗ −
[
(1 − 𝜖1)𝜆1 + (1 − 𝜖2)𝜆2 + (1 − 𝜖3)𝜆3

]
𝑉 ∗ − 𝑘2 𝑉 ∗,

0 = 𝜆1 𝑆
∗ + (1 − 𝜖1)𝜆1 𝑉 ∗ − 𝑘3𝐸∗

1 ,

0 = 𝜎1𝐸
∗
1 − 𝑘4 𝑃

∗
1 ,

0 = 𝑏𝜎2 𝑃
∗
1 − 𝑘5 𝐼∗1 ,

0 = (1 − 𝑏)𝜎2 𝑃 ∗
1 − 𝑘6𝐴∗

1 ,

0 = 𝜆2 𝑆
∗ + (1 − 𝜖2)𝜆2 𝑉 ∗ − 𝑘3𝐸∗

2 ,

0 = 𝜎2𝐸
∗
2 − 𝑘4 𝑃

∗
2 ,

0 = 𝑏𝜎2 𝑃
∗
2 − 𝑘7 𝐼∗2 ,

0 = (1 − 𝑏)𝜎2 𝑃 ∗
2 − 𝑘8𝐴∗

2 ,

0 = 𝜆3 𝑆 + (1 − 𝜖3)𝜆3 𝑉 ∗ − 𝑘3𝐸∗
3 ,

0 = 𝜎1𝐸
∗
3 − 𝑘4 𝑃

∗
3 ,

0 = 𝑏𝜎2 𝑃
∗
3 − 𝑘9 𝐼∗3 ,

0 = (1 − 𝑏)𝜎2 𝑃 ∗
3 − 𝑘10𝐴∗

3 ,

0 = 𝜎𝑞 𝐼
∗
1 + 𝜎𝑞 𝐼∗2 + 𝜎𝑞 𝐼∗3 − 𝑘11𝑄∗,

0 = 𝜙𝑖1
𝐼∗1 +𝜙𝑖2 𝐼

∗
2 +𝜙𝑖3 𝐼

∗
3 + 𝜙𝑞 𝑄∗ − 𝑘12𝐻∗,

0 = 𝜓𝑖1
𝐼∗1 +𝜓𝑎1 𝐴

∗
1 +𝜓𝑖2 𝐼

∗
2 +𝜓𝑎2 𝐴

∗
2 +𝜓𝑖3 𝐼

∗
3 +𝜓𝑎3 𝐴

∗
3 +𝜓𝑞 𝑄

∗ +𝜓ℎ𝐻∗ − 𝑘13𝑅∗, (29)

3.3.1. Endemic equilibria and backward bifurcation for the model with the original strain only

First, suppose that there is only the original strain. Then we can consider 𝐸∗
2 = 𝑃 ∗

2 = 𝐼∗2 = 𝐴∗
2 = 𝐸∗

3 = 𝑃 ∗
3 = 𝐼∗3 = 𝐴∗

3 = 0.

Let 1 = (𝑆∗, 𝑉 ∗, 𝐸∗
1 , 𝑃

∗
1 , 𝐼

∗
1 , 𝐴

∗
1 , 0, 0, 0, 0, 0, 0, 0, 0, 𝑄

∗, 𝐻∗, 𝑅∗) be any arbitrary equilibrium of the model (5) when there is only the 
original strain and hence equation (2) can be written as

𝜆∗1 =
𝛽1 (1 − 𝑒𝑚) (𝜂1 𝑃 ∗

1 + 𝐼∗1 + 𝜃1𝐴∗
1)

𝑁∗
(30)

be the force of infection at steady-state. Therefore, from the system (29) we have,

𝑆∗ =
Λ𝑘3

{
(1 − 𝜖1)𝜆∗1 + 𝑘2

}
𝑀11 𝜆

∗
1
2 +𝑀21 𝜆

∗
1 +𝑀31

, 𝑉 ∗ =
𝜌Λ𝑘3

𝑀11 𝜆
∗
1
2 +𝑀21 𝜆

∗
1 +𝑀31

, 𝐸∗
1 =

𝜆∗1 (𝑀41 𝜆
∗
1 +𝑀51 )

𝑀11 𝜆
∗
1
2 +𝑀21 𝜆

∗
1 +𝑀31

,

𝑃 ∗
1 = 𝐵𝑝1

𝐸∗
1 , 𝐼∗1 = 𝐵𝑖1

𝐸∗
1 , 𝐴∗

1 = 𝐵𝑎1
𝐸∗
1 , 𝑄∗ = 𝐵𝑞1

𝐸∗
1 , 𝐻∗ = 𝐵ℎ1

𝐸∗
1 , 𝑅∗ = 𝐵𝑟1

𝐸∗
1 , (31)

where,

𝐵𝑝1
=

𝜎1
𝑘4
, 𝐵𝑖1

=
𝑏𝜎2
𝑘5

, 𝐵𝑎1
=

(1 − 𝑏)𝜎2
𝑘6

, 𝐵𝑞1
=
𝑏𝜎1 𝜎2 𝜎𝑞

𝑘4 𝑘5 𝑘11
, 𝐵ℎ1

=
𝜙𝑖1

𝐵𝑖1
+ 𝜙𝑞 𝐵𝑞1
𝑘12

,

𝐵𝑟1
=
𝜓𝑖1

𝐵𝑖1
+𝜓𝑎1 𝐵𝑎1 +𝜓𝑞 𝐵𝑞1 +𝜓ℎ 𝐵ℎ1

𝑘13
,

𝑀11 = (1 − 𝜖1) (𝑘3 + 𝛼𝐵𝑟1 ), 𝑀21 = (1 − 𝜖1)𝑘1 𝑘3 + 𝑘2 (1 − 𝛼𝐵𝑟1 ) − 𝛼𝐵𝑟1 (1 − 𝜖1)𝜌, 𝑀31 = −𝜂 𝜌𝑘2, 𝑀41 = Λ(1 − 𝜖1),

𝑀51 = Λ𝑘2 + Λ(1 − 𝜖1)𝜌.

Substituting (31) into (30) gives

𝜆∗1 =
𝛽1 (1 − 𝑒𝑚) (𝜂1𝐵𝑝1 +𝐵𝑖1 + 𝜃1𝐵𝑎1 )

(
𝑀41 𝜆

∗2
1 +𝑀51 𝜆

∗
1

)
Λ𝑘3

{
(1 − 𝜖1)𝜆∗1 + 𝑘2

}
+ 𝜌Λ𝑘3 +𝐵𝑐1

(
𝑀41 𝜆

∗2
1 +𝑀51 𝜆

∗
1

) , (32)

where,

𝐵𝑐1
= 1 +𝐵𝑝1 +𝐵𝑖1 +𝐵𝑎1 +𝐵𝑞1 +𝐵ℎ1 +𝐵𝑟1 .
7

After some algebraic calculation, the following polynomial equation in terms of 𝜆∗1 can be obtained from equation (32) as
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Table 1

Numerical values of the parameters for the model (5).

Parameter Baseline Values Units References

Λ 10000 Day-1 Assumed

𝛽1 , 𝛽2 , 𝛽3 0.35, 0.39, 0.45 Day-1 Fitted

𝑚 0.4 - Fitted

𝑒 0.5 - [5]

𝜂1 , 𝜂2 , 𝜂3 0.75, 0.75, 0.75 - Fitted

𝜃1 , 𝜃2 , 𝜃3 0.85, 0.85, 0.85 - Fitted

𝜔1 , 𝜔2 2.25, 7.5 - Fitted

𝜌, 𝜁 , 𝛼 0.78, 0.05, 0.003 Day-1 Fitted

𝜖1 , 𝜖2 , 𝜖3 0.85, 0.75, 0.8 - Fitted

𝜎1 , 𝜎2 , 𝜎𝑞 0.2, 0.25 0.12 Day-1 Estimated from [36]

𝑏 and 1 − 𝑏 0.45, 0.55 - Assumed

𝜙𝑖1 , 𝜙𝑖2 , 𝜙𝑖3 and 𝜙𝑞 0.12, 0.17, 0.12, 0.15 Day-1 Fitted

𝜓𝑖1 , 𝜓𝑖2 , 𝜓𝑖3 , 𝜓𝑎1 , 0.14, 0.12, 0.13, 0.17, Day-1 Estimated from [36]

𝜓𝑎2 , 𝜓𝑎3 , 𝜓𝑞 and𝜓ℎ 0.15, 0.19, 0.2, 0.15, Day-1 Estimated from [36]

𝛿𝑖1 , 𝛿𝑖2 , 𝛿𝑖3 , 𝛿𝑎1 , 0.007, 0.009, 0.006, 0.001 Day-1 Estimated from [36]

𝛿𝑎2 , 𝛿𝑎3 , 𝛿𝑞 and 𝛿ℎ 0.001, 0.003, 0.004, 0.006 Day-1 Estimated from [36]

𝜇 0.00004 Day-1 [6]

𝜆∗1

{
𝑃21 𝜆

∗
1
2
+ 𝑃11 𝜆

∗
1 + 𝑃01

}
= 0, (33)

where,

𝑃21 = 𝐵𝑐1
𝑀41 ,

𝑃11 = 𝐵𝑐1
𝑀51 + Λ𝑘3 (1 − 𝜖1) −𝑀41 𝛽1 (1 − 𝑒𝑚) (𝜂1𝐵𝑝1 +𝐵𝑖1 + 𝜃1𝐵𝑎1 ),

𝑃01 = Λ𝑘3 (𝜌+ 𝑘2) (1 −1).

Out of the three roots, the root 𝜆∗1 = 0, of (33), corresponds to the DFE 0. Equation (33) says that the non-zero equilibria of the 
model satisfy

𝑓 (𝜆∗1) = 𝑃21 𝜆
∗
1
2
+ 𝑃11 𝜆

∗
1 + 𝑃01 = 0, (34)

so that the quadratic (34) can be analyzed for the possibility of multiple equilibria. If multiple non-zero equilibria exist then backward 
bifurcation may occur.

Endemic equilibria: From the above, we see that the coefficient 𝑃21 is always positive and 𝑃01 is positive if 1 is less than one and 
𝑃01 is negative if 1 is greater than one. Hence, we have the following result.

Theorem 1. The model (5) with the original strain only has

(i) a unique endemic equilibrium if 𝑃01 < 0 (i.e., 1 > 1),

(ii) a unique endemic equilibrium if 𝑃11 < 0, and 𝑃01 = 0 or 𝑃 2
11

− 4 𝑃21 𝑃01 = 0,

(iii) two endemic equilibria if 𝑃11 < 0, 𝑃01 > 0 (i.e., 1 < 1) and 𝑃 2
11

− 4 𝑃21 𝑃01 > 0,

(iv) no endemic equilibrium otherwise.

Condition-i of Theorem 1 says that the model with the original strain only has a unique endemic equilibrium when 1 > 1. 
Using the parameter values as given in Table 1 with 𝛼 = 0 it can be shown that 1 > 1 which implies there exists a unique endemic 
equilibrium. Again from the expressions of 𝑎1 and 𝑏1, we get 𝑎1 < 0 and 𝑏1 > 0. Thus according to the Center Manifold theory 
[37,32,38], this unique endemic equilibrium is locally asymptotically stable when 1 > 1. Hence, we have the following theorem.

Theorem 2. The model (5) with the original strain only and with 𝛼 = 0 has a unique endemic equilibrium which is locally asymptotically 
stable when 1 > 1.

Backward bifurcation analysis: Condition-iii of Theorem 1, implies the possibility of having two endemic equilibria (co-

existence of locally-asymptotically stable DFE with a locally asymptotically stable endemic equilibrium) whenever 1 < 1 and 
hence implies the occurrence of backward bifurcation phenomenon. Since there exists a stable endemic equilibrium with the stable 
DFE, the condition 1 < 1 is no longer sufficient (although necessary) for disease elimination. The significance of the existence of 
backward bifurcation is that COVID-19 will persist in the community even when 1 < 1. Thus, disease elimination will depend not 
only on the condition 1 < 1 but also on the initial sizes of the state variables of the model. Now, using the parameter values as 
given in Table 1 with 𝜌 = 0.002, 𝜁 = 0.000004 we have 𝑃11 < 0 and 𝑃01 > 0 indicating the possibility of the existence of backward 
8

bifurcation. Now this will be explained using the Center Manifold theory [37,32,38]. The procedure is described in Appendix A. The 
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graphical representation of the backward bifurcation of the model (5) with the original strain only is shown in Fig. 2. We claim the 
following result.

Theorem 3. The model (5) with the original strain only exhibits backward bifurcation whenever the coefficients 𝑎1 and 𝑏1, given by (A.3), 
are positive.

3.3.2. Endemic equilibria and backward bifurcation for the model with the original strain and the Delta variant

Now we will consider the case when there exists the Delta variant with the original strain. Here, we will consider that the 
transmission rate of the Delta variant is higher than the existing one. That is, 𝛽2 > 𝛽1. In this case, we will not consider any term and 
equation involving the Omicron variant. Then we have the following theorem.

Theorem 4. Suppose that 𝛽2 > 𝛽1. Then 𝐸∗
1 = 𝑃 ∗

1 = 𝐼∗1 = 𝐴∗
1 = 0.

Proof. We will prove this by the method of contradiction as described in [26]. So suppose that 𝛽2 > 𝛽1 and also suppose that 
𝐸∗
1 = 𝑃 ∗

1 = 𝐼∗1 = 𝐴∗
1 ≠ 0. Then from the 4th and 8th equations of system (29) we have

𝑃 ∗
2 =

𝑃 ∗
1 𝐸

∗
2

𝐸∗
1

, (35)

Similarly,

𝐼∗2 =
𝐼∗1 𝐸

∗
2

𝐸∗
1
, (36)

And

𝐴∗
2 =

𝐴∗
1 𝐸

∗
2

𝐸∗
1

. (37)

Thus using equations (35), (36) and (37), the 7th equation of system (29) becomes

(𝜎1 + 𝜇)𝐸∗
2 = 𝜆2

{
𝑆∗ + (1 − 𝜖2)𝑉 ∗

}
. (38)

Hence, from equation (38), we obtain

(𝜎1 + 𝜇)𝐸∗
2 >

𝐸∗
2

𝑛𝐸∗
1

{
𝑆∗ + (1 − 𝜖2)𝑉 ∗

}(
𝛽1 𝜂1 𝑃

∗
1 + 𝛽1 𝐼∗1 + 𝛽1 𝜃1𝐴

∗
1

)
. (39)

Thus, equation (39) implies

(𝜎1 + 𝜇)𝐸∗
1 >

{
𝑆∗ + (1 − 𝜖2)𝑉 ∗

}
𝜆1. (40)

Hence equation (40) contradicts the 3rd equation of the system (29). This implies 𝐸∗
1 = 𝑃 ∗

1 = 𝐼∗1 = 𝐴∗
1 = 0 holds if 𝛽2 > 𝛽1.

The detailed calculation of the endemic equilibria and the existence of backward bifurcation for the original model with the Delta 
variant has been provided in Appendix C.

Endemic equilibria: Depending on the sign of the coefficients 𝑃02 , 𝑃12 , and𝑃22 given by (C.5) and considering the equation (C.6), we 
have the following result.

Theorem 5. The model (5) with the original strain and the Delta variant has

(i) a unique endemic equilibrium if 𝑃02 < 0 (i.e., 2 > 1),

(ii) a unique endemic equilibrium if 𝑃12 < 0, and 𝑃02 = 0 or 𝑃 2
12

− 4 𝑃22 𝑃02 = 0,

(iii) two endemic equilibria if 𝑃12 < 0, 𝑃02 > 0 (i.e., 2 < 1) and 𝑃 2
12

− 4 𝑃22 𝑃02 > 0,

(iv) no endemic equilibrium otherwise.

Using the parameter values as given in Table 1 with 𝛼 = 0 it can be shown that 2 > 1 which implies the existence of a unique 
endemic equilibrium. Also from the expressions of 𝑎2 and 𝑏2, we get 𝑎2 < 0 and 𝑏2 > 0. Thus according to the Center Manifold theory 
[37,32,38], this unique endemic equilibrium is locally asymptotically stable when 2 > 1.

Hence, we have the following theorem.

Theorem 6. The model (5) with the original strain and the Delta variant and with 𝛼 = 0 has a unique endemic equilibrium which is locally 
9

asymptotically stable when 2 > 1.
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Backward bifurcation analysis: Now, using the parameter values as given in Table 1 with 𝜌 = 0.002, 𝜁 = 0.000004 we have 𝑃12 <
0 and 𝑃02 > 0. Thus Condition-iii of Theorem 5 says that the model with the original strain and the Delta variant has two endemic 
equilibria which indicate the possibility of the occurrence of backward bifurcation. The procedure is described in Appendix C. We 
claim the following result.

Theorem 7. The model (5) with the original strain and the Delta variant exhibits backward bifurcation whenever the coefficients 𝑎2, and 𝑏2
given by (C.7) are positive.

3.3.3. Endemic equilibria and backward bifurcation for the model with the original strain and the Delta and Omicron variants

Finally, we will consider the case when there exists both the Omicron variant and the Delta variant with the original strain.

Theorem 8. Suppose that 𝛽3 > 𝛽2 > 𝛽1. Then 𝐸∗
1 = 𝑃 ∗

1 = 𝐼∗1 = 𝐴∗
1 = 𝐸∗

2 = 𝑃 ∗
2 = 𝐼∗2 = 𝐴∗

2 = 0.

Proof. Using the same procedure as described in Theorem 4, it can be shown that if we consider 𝛽3 > 𝛽2 > 𝛽1, then 𝐸∗
1 = 𝑃 ∗

1 = 𝐼∗1 =
𝐴∗
1 = 𝐸∗

2 = 𝑃 ∗
2 = 𝐼∗2 = 𝐴∗

2 = 0.

The detailed calculation of the endemic equilibria and the existence of backward bifurcation for the original model with the Delta 
and Omicron variants has been provided in Appendix D.

Endemic equilibria: Depending on the sign of the coefficients 𝑃03 , 𝑃13 , and 𝑃23 given by (D.5) and considering the equation (D.6), 
we have the following theorem.

Theorem 9. The model (5) with the original strain and the Delta and Omicron variants has

(i) a unique endemic equilibrium if 𝑃03 < 0 (i.e., 3 > 1),

(ii) a unique endemic equilibrium if 𝑃13 < 0, and 𝑃03 = 0 or 𝑃 2
13

− 4 𝑃23 𝑃03 = 0,

(iii) two endemic equilibria if 𝑃13 < 0, 𝑃03 > 0 (i.e., 3 < 1) and 𝑃 2
13

− 4 𝑃23 𝑃03 > 0,

(iv) no endemic equilibrium otherwise.

Using the parameter values as given in Table 1 with 𝛼 = 0 it can be shown that 3 > 1 which implies the existence of a unique 
endemic equilibrium. Also from the expressions of 𝑎3 and 𝑏3, we get 𝑎3 < 0 and 𝑏3 > 0. Thus according to the Center Manifold theory 
[37,32,38], this unique endemic equilibrium is locally asymptotically stable when 3 > 1.

Hence, we have the following theorem.

Theorem 10. The model (5) with the original strain and the Delta and Omicron variants and with 𝛼 = 0 has a unique endemic equilibrium 
which is locally asymptotically stable when 3 > 1.

Backward bifurcation analysis: Now, using the parameter values as given in Table 1 with 𝜌 = 0.002, 𝜁 = 0.000004 we have 
𝑃13 < 0 and 𝑃03 > 0. Thus Condition-iii of Theorem 9 says that the model with the original strain and the Delta and Omicron variants 
has two endemic equilibria which indicate the possibility of the existence of backward bifurcation. The procedure is described in 
Appendix D. We claim the following result.

Theorem 11. The model (5) with the original strain and the Delta and Omicron variants exhibit backward bifurcation whenever the coeffi-

cients 𝑎3, and 𝑏3 given by (D.7) are positive.

3.4. Global stability of DFE when there is no re-infection

Define the region

 =

{(
𝑆∗, 𝑉 ∗, 𝐸∗

𝑗
, 𝑃 ∗

𝑗
, 𝐼∗

𝑗
, 𝐴∗

𝑗
, 𝑄∗, 𝐻∗, 𝑅∗

)
∈ ℝ17

+ ∶ 𝑁 ≤
Λ
𝜇

}
. (41)

We claim the following.

Lemma 3. The region , given by equation (41), is positively-invariant and attracting with respect to the model (5).

Proof. Using the same procedure as described in [6] and performing some calculations, it can be easily shown that the region  is 
positively-invariant and attracting.
10

Now, we claim the following theorem.
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Fig. 2. Backward bifurcation of the model (5) with the original strain only. Parameter values are used as given in Table 1 with 𝜌 = 0.002, 𝜁 = 0.000004.

Fig. 3. Validation of the model (5), showing the model’s output for the daily infected cases vs the daily confirmed cases for the United States starting from December 
13, 2020, to May 23, 2022, using baseline parameter values given in Table 1.

Theorem 12. The DFE of the COVID-19 model (5) with no re-infection, given by 0, is globally asymptotically stable (GAS) whenever 
𝑐 ≤ 1.

The detailed calculation of the proof of this theorem is provided in Appendix B.

4. Results and discussions

Numerical simulations of the COVID-19 original strain with the Delta and Omicron variants in the form of model (5) are performed 
and results have been discussed in this section. To perform numerical simulations we consider that the new variant is more infectious 
than the previous ones and we use the parameter values as given in Table 1. Values of parameters with the same biological meaning 
are taken from some already-existing articles. Some parameter values are obtained by fitting the daily infected cases of the USA 
with our model solution using the MATLAB fminsearchbnd function. Some values are estimated from available COVID-19 data and 
sources from published articles. Other parameter values are assumed.

4.1. Model validation

In this section, real data of daily infected cases for the entire USA population [2] is shown using bar diagram (blue colored) and 
in the same figure window we have drawn the infected class of our model to compare our model with the real-time data and hence 
11

to verify the reliability of our model. Fig. 3 presents the real-time data vs the model outcome which tests the validity of our model.
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Fig. 4. Simulation of the model (5) showing the effect of variants of concern (Delta and Omicron) on daily infected cases for the model (5). Fig. 4 (a) shows the 
simulation result when there is only the original strain. Fig. 4 (b) shows the simulation result when there exists the Delta variant with the original strain. Fig. 4 (c) 
shows the simulation result when there exist both the Delta and Omicron variants with the original strain.

4.2. Effect of the emergence of new Sars-CoV-2 variants

Now we will discuss the effect of the emergence of new SARS-CoV-2 variants (Delta and Omicron) on daily infected cases, daily 
hospitalized cases, and daily death cases. For this, we will consider three cases:

Case 1: Existence of the original strain only.

Case 2: Existence of the original strain with the Delta variant.

Case 3: Existence of the original strain with the Delta and Omicron variants.

Fig. 4 depicts the effect of the emergence of new variants of concern on the daily infected cases. Fig. 4 (a) shows that when there is 
no other variant other than the original one, the maximum number of daily infected cases is 240893 which occurs on January 2, 2021 
After that, the number of daily infected cases starts decreasing. Again from August 9, 2021, the number of daily infected cases starts 
increasing and we witness a second wave where the peak value (80152) is much smaller than the previous peak. But considering the 
existence of the Delta variant with the original one (Fig. 4 (b)), we see that the second wave starts faster (May 20, 2021) than the 
previous case (Fig. 4 (a)) and here the peak value is 215331 which occurs on August 4, 2021, and is almost close to the first peak 
for the original strain. This figure also shows a third wave which starts on January 10, 2022, and here the peak value (72106) is 
much smaller than the peaks observed in the first wave and the second wave respectively. Again, considering both the Delta variant 
and Omicron variant with the original strain (Fig. 4 (c)), it is seen that the third wave emerges faster (November 29, 2021) than the 
previous case (Fig. 4 (b)) and here the peak value is (928719) which occurs on January 12, 2022, and is much much larger than the 
peak occurred in the third wave of the second case. This figure also exhibits the starting of a fourth wave. These results suggest that 
during the time period considered in this simulation, total infected cases increase by 14% due to the presence of the Delta variant. 
Cumulative infected cases almost doubled when both the Delta and Omicron variants are present. Similarly, during this time period 
cumulative death cases increase by 5.4% due to the emergence of the Delta variant (Fig. 6 (b)), and death cases increase by 19% if 
both the Delta and Omicron variants appear (Fig. 6 (c)). The same pattern is observed for daily hospitalized cases (Fig. 5). Thus, 
from these discussions, it is clear that the number of infected cases, hospitalized cases, and death cases increase due to the presence 
of Delta and Omicron variants.

4.3. Global sensitivity and uncertainty analysis

Now to identify which parameters have a greater impact on the dynamics of our model, we perform global uncertainty and 
sensitivity analysis [39,40]. For this, we applied the method discussed in [41] to our model. In this paper, we have sampled 37
parameters of our model using Latin hyperbolic sampling and considering uniform distribution. Parameters with PRCC values greater 
or equal to 0.5 and less or equal to − 0.5 are considered to be highly correlated with the response function [42]. Performing the global 
uncertainty and sensitivity analysis for the symptomatic infected class (𝐼1) of the model with the original strain only and the model 
parameters (Fig. 7 (a)), we see that the top-ranked parameters those can affect the dynamics of the model (5) with the original strain 
only are 𝛽1, 𝜎1, 𝜎2, 𝜖1, 𝜓𝑖1 , 𝜓𝑎1 , 𝜙𝑖1 , 𝜁, 𝜌, 𝑒, 𝑚. Again considering 1 as the response function (Fig. 7 (b)), it is seen that parameters 
those affect the dynamics of the model (5) with original variant only are 𝛽1, 𝜎2, 𝜖1, 𝜓𝑖1 , 𝜓ℎ1 , 𝜙𝑖1 , 𝜌, 𝑚. Again performing the global 
12

uncertainty and sensitivity analysis for the symptomatic infected class (𝐼2) of the model with the original strain and the Delta 
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Fig. 5. Simulation of the model (5) showing the effect of variants of concern (Delta and Omicron) on daily hospitalized cases for the model (5). Fig. 5 (a) shows the 
simulation result when there is only the original strain. Fig. 5 (b) shows the simulation result when there exists the Delta variant with the original strain. Fig. 5 (c) 
shows the simulation result when there exist both the Delta and Omicron variants with the original strain.

Fig. 6. Simulation of the model (5) showing the effect of variants of concern (Delta and Omicron) on daily death cases for the model (5). Fig. 6 (a) shows the 
simulation result when there is only the original strain. Fig. 6 (b) shows the simulation result when there exists the Delta variant with the original strain. Fig. 6 (c) 
shows the simulation result when there exist both the Delta and Omicron variants with the original strain.

variant and the model parameters (Fig. 8 (a)), it is observed that the top-ranked parameters are 𝜔1, 𝛽2, 𝜎1, 𝜎2, 𝜖2, 𝜓𝑖2 , 𝜙𝑖2 , 𝜁, 𝜌, 𝑒, 𝑚
those can control the dynamics of the model. Again considering 2 as the response function (Fig. 8 (b)), it is seen that parameters 
that affect the dynamics of the model (5) with the original strain and the Delta variant are 𝛽2, 𝜎2, 𝜖2, 𝜓𝑖2 , 𝜓𝑎2 , 𝜙𝑖2 , 𝜌, 𝑚. Similarly 
calculating the global sensitivity analysis for the symptomatic infected class (𝐼3) of the model with the original strain and the Delta 
and Omicron variants and the model parameters (Fig. 9 (a)), it is observed that parameters that can affect the model dynamics 
are 𝜔2, 𝛽3, 𝜎1, 𝜎2, 𝜖3, 𝜁, 𝜌, 𝑒, 𝑚. Parameters 𝛽2, 𝜖3, 𝜓𝑖3 , 𝜓𝑎3 , 𝜙𝑖3 , 𝜌, 𝑚 are found as the top-ranked parameters while performing global 
uncertainty analysis for the response function 3 and the model parameters (Fig. 9 (b)).

4.4. Effect of vaccination

The impact of vaccination coverage is assessed by simulating the model (5) with different values of vaccination rate (𝜌). For this, 
we have considered BNT162b2 vaccine against the original strain of COVID-19 and its two other variants: Delta and Omicron. As 
it is observed that due to the change in genetic pattern, new variants of concern are emerging very frequently, and hence vaccine 
efficacy (𝜖𝑗 ) may change over time. The results obtained from the simulation are depicted in Fig. 10. From this figure, a significant 
13

decrease in daily infected cases, daily hospitalized cases, and daily deaths are observed when the vaccination rate is increased. For 
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Fig. 7. Global uncertainty and sensitivity analysis of the system of differential equations (5). Fig. 7 (a) shows the partial rank correlation coefficient and P-value 
among the model parameters and the response function 𝐼1 . Fig. 7 (b) shows the partial rank correlation coefficient and P-value among the model parameters and the 
response function 1 .

Fig. 8. Global uncertainty and sensitivity analysis of the system of differential equations (5). Fig. 8 (a) shows the partial rank correlation coefficient and P-value 
among the model parameters and the response function 𝐼2 . Fig. 8 (b) shows the partial rank correlation coefficient and P-value among the model parameters and the 
response function 2 .

Fig. 9. Global uncertainty and sensitivity analysis of the system of differential equations (5). Fig. 9 (a) shows the partial rank correlation coefficient and P-value 
among the model parameters and the response function 𝐼3 . Fig. 9 (b) shows the partial rank correlation coefficient and P-value among the model parameters and the 
response function 3 .

example, Fig. 10 (a) shows that if there is no immunization program, the peak value of the daily infected cases is 1577690. If 25% of 
the population are vaccinated the peak of the daily infected cases decreases by 41%. The peak value of daily infected cases further 
decreases by 17% when 50% of the population is vaccinated. The figure further depicts a 12% decrease in the peak value of daily 
infected cases when 90% of the population is vaccinated. Similar trends are observed in daily hospitalized cases and daily death cases 
with an increasing rate of vaccine coverage. As a whole Fig. 10 shows that the peak of daily infected cases, daily hospitalized cases, 
and daily death cases can be decreased with an increase in the vaccination rate. To assess the combined effect of vaccine coverage 
and vaccine efficacy, contour plot of the control reproduction number of the model (5) as a function of vaccine efficacy (𝜖𝑗 ) and the 
14

fraction of the population fully vaccinated (𝑓𝑣) is presented in Fig. 11. Fig. 11 (a) shows that when there exists only the original 
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Fig. 10. Simulation of the model (5) showing the effect of vaccine coverage (𝜌) on daily infected cases, daily hospitalized cases, and daily deaths. Fig. 10 (a) shows 
the daily infected cases for different percentages of vaccine coverage. Fig. 10 (b) shows the daily hospitalized cases for different percentages of vaccine coverage. 
Fig. 10 (c) shows the daily deaths for different percentages of vaccine coverage.

Fig. 11. Contour plot of the control reproduction number of the model (5) as a function of vaccine coverage (𝑓𝑣) and vaccine efficacy (𝜖𝑗 ). Fig. 11 (a) presents the 
contour plot of 1 of the model (5) for the original strain. Fig. 11 (b) presents the contour plot of 2 of the model (5) for the original strain with Delta variant. Fig. 11

(c) presents the contour plot of 3 of the model (5) for the original strain with the Delta and Omicron variants.

strain, herd immunity can be achieved if 65% population is vaccinated with vaccines having 70% efficacy. Fig. 11 (b) shows that 
when there exists the Delta variant with the original strain, herd immunity can be achieved if 75% population is vaccinated with 
vaccines having 85% efficacy. Fig. 11 (c) shows that when there exists both the Delta variant and Omicron variant with the original 
strain, herd immunity can be achieved if 80% population is vaccinated with vaccines having 90% efficacy.

4.5. Effect of mask coverage

The impact of mask coverage (𝑚) and mask efficacy (𝑒) is also evaluated by simulating the model (5) with different values of 
mask coverage and mask efficacy. Here we have considered three types of masks of different efficacy: cloth mask (30% efficacy), 
surgical mask (70% efficacy), and N95 mask (95% efficacy). The results are presented in Fig. 12. These results show that the peak 
of the daily infected cases, daily hospitalized cases, and daily death cases decrease remarkably with the increase in mask coverage 
15

particularly if the moderately effective surgical masks and highly effective N95 masks are used even when vaccine coverage is kept 
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Fig. 12. Simulation of the model (5) showing the effect of mask quality (𝑒) and mask coverage (𝑚). Fig. 12 (a), (d), and (g) show the daily infected cases, daily 
hospitalized cases, and daily deaths when cloth mask is used with different mask coverage rate. Fig. 12 (b), (e), and (h) show the daily infected cases, daily 
hospitalized cases, and daily deaths when surgical mask is used with different mask coverage rate. Fig. 12 (c), (f), and (i) show the daily infected cases, daily 
hospitalized cases, and daily deaths when N95 mask is used with different mask coverage rate.

at the baseline value. For instance, Fig. 12 (b) and (c) show a 20% and 35% decrease in the peak of daily infected cases when 50% 
of the total population wear surgical masks and N95 masks respectively. The figure also shows that if 70% of the total population 
uses face masks of the above-mentioned two types, the peak of the daily infected cases again decreases by 30% and 60% respectively. 
This figure does not show any significant decrease in the peak of daily infected cases in the case of less effective cloth masks. Thus 
these figures show that in reducing the peak of daily cases, N95 mask quality is proved to be highly effective which is followed by 
surgical masks. Our results also show that a 45% increase in the baseline value of surgical mask coverage proves to be more effective 
than a 25% increase in the baseline value of N95 mask coverage. Similarly, we can say that ensuring maximum number of people in 
the community wearing a moderate mask is more important than fewer people wearing highly effective face masks. These analyses 
also suggest that fewer people reluctant to use a highly effective N95 mask are less harmful than more people reluctant to use a 
moderately effective surgical mask.

Simulations are also carried out to assess the combined effect of mask coverage and mask efficacy using contour plot of the control 
reproduction number of the model (5) as a function of mask coverage and mask efficacy and is presented in Fig. 13. Fig. 13 (a) shows 
that when there exists only the original strain, COVID-19 can be eliminated if 50% population uses face masks having 3% efficacy. 
Fig. 13 (b) shows that when there exists the Delta variant with the original strain, COVID-19 can be eliminated if 65% population 
uses face masks having 85% efficacy. Fig. 13 (c) shows that when there exists both the Delta and Omicron variants with the original 
strain, COVID-19 can be eliminated if 0% population uses face masks having 95% efficacy.

4.6. Combined effect of vaccination and mask coverage

Numerical simulation of the model (5) is also carried out to assess the combined effect of mask coverage and vaccine coverage 
on the peak of daily infected cases, daily hospitalized cases, and daily deaths. The simulation results are presented in Fig. 14. Fig. 14

(a) shows that when no vaccine is implemented and 25% individuals use face masks, the peak of the daily infected case is 1478910. 
But when 25% of the individual is vaccinated and 50% individual use face masks the peak of the daily infected cases decreases by 
61%. Further, a 40% decrease is observed when 50% of the individual is vaccinated and 70% individual use face masks. Again, a 52% 
decrease is observed when 90% of the individual is vaccinated and 90% individual use face masks. Similar trends are observed for 
the daily hospitalized case (Fig. 14 (b)) and for the daily death cases (Fig. 14 (c)). This simulation suggests that more reduction in the 
peak of daily infected cases can be achieved if both the vaccine coverage rate and mask coverage rate are increased simultaneously.

5. Conclusion

To understand the transmission dynamics of COVID-19 in the presence of new variants, a mathematical model considering Delta 
and Omicron variants with the original strain was proposed and formulated. In this work, our focus was mainly on assessing the 
16

impact of introducing new SARS-CoV-2 variants: Delta and Omicron whose contagiousness were assumed to be greater than the 
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Fig. 13. Contour plot of the control reproduction number of the model (5) as a function of mask coverage (𝑚) and mask efficacy (𝑒). Fig. 13 (a) presents the contour 
plot of 1 of the model (5) for the original strain. Fig. 11 (b) presents the contour plot of 2 of the model (5) for the original strain with Delta variant. Fig. 11 (c) 
presents the contour plot of 3 of the model (5) for the original strain with Delta and Omicron variant.

Fig. 14. Simulation of the model (5) showing the combined effect of mask coverage and vaccine coverage. Fig. 14 (a), (b), and (c) show the daily infected cases, daily 
hospitalized cases, and daily deaths respectively.

original strain. Mathematical analysis was performed to calculate the control reproduction number and to prove the global stability 
of the DFE when 𝑐 < 1. Vaccine derived herd immunity threshold was then calculated to determine the minimum number of 
individuals who should be vaccinated to acquire immunity against COVID-19. Then we proved a theorem for the existence of the 
endemic equilibria. After that, it was shown that there exists a unique endemic equilibrium which is locally asymptotic stable when 
𝑗 > 1, 𝑗 = 1, 2, 3. The model also exhibits backward bifurcation phenomena for all the three strains considered separately when 
𝑗 < 1, 𝑗 = 1, 2, 3. Numerical simulations were carried out to support the theoretical results and to show the effect of Delta and 
Omicron variants on the dynamics of COVID-19. Numerical results show that whenever a new more contagious variant emerges and 
becomes dominant, the preexisting variant becomes weak and disappears. It was also observed that due to the emergence of more 
contagious and potential variants, new waves of COVID-19 arrive which might become more dangerous resulting in more infections 
and more deaths. This implies that vaccination alone will not be sufficient to eliminate COVID-19. In numerical simulations, the 
effect of mask coverage with different mask efficacy has also been assessed. But the use of face masks and other non-pharmaceutical 
interventions can not guarantee the elimination of COVID-19. Again numerical simulations were carried out to assess the impact of 
vaccines of different efficacy. The results showed that new waves appear after a few days despite the highly effective vaccines being 
17

administered. This is happening due to the emergence of Delta and Omicron variants. Since most of the vaccines were designed to 
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fight against the wild strain, they work efficiently against the original strain but the emergence of new and more dangerous variants 
weakens their effectiveness. Further numerical simulations were carried out to present the effect of the combination of face masks 
and vaccines. From the simulation, it was observed that a combination of face masks and vaccines can eliminate the maximum 
number of daily cases compared to the use of face masks and vaccines alone. Accordingly, the study suggests that a combination of 
non-pharmaceutical interventions and vaccination programs should be continued to control the disease outbreak.

On the whole, the study found that the presence of both the Delta and Omicron variants along with the original strain almost 
doubled the number of infections and increased the number of deaths by about 19%. Therefore our study suggests that more dosages 
of vaccines and new more effective vaccines should be provided in the community to control the new variants.
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Appendix A. Backward bifurcation for the model with the original strain only

We will discuss the backward bifurcation phenomenon using the Center Manifold theory [37,32]. For this let us consider the 
changes of variable as 𝑆 = 𝑥1, 𝑉 = 𝑥2, 𝐸1 = 𝑥3, 𝑃1 = 𝑥4, 𝐼1 = 𝑥5, 𝐴1 = 𝑥6, 𝐸2 = 0, 𝑃2 = 0, 𝐼2 = 0, 𝐴2 = 0, 𝐸3 = 0, 𝑃3 = 0, 𝐼3 = 0, 𝐴3 = 0, 
𝑄 = 𝑥7, 𝐻 = 𝑥8 and 𝑅 = 𝑥9, so that in vector form the model (5) can be written as 𝑑𝑋

𝑑𝑡
= (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7, 𝑓8, 𝑓9)𝑇 , where 

𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9)𝑇 and then we have

𝑑𝑥1
𝑑𝑡

= 𝑓1 = Λ+ 𝜁 𝑥2 + 𝛼 𝑥9 − 𝜆1 𝑥1 − 𝑘1 𝑥1,

𝑑𝑥2
𝑑𝑡

= 𝑓2 = 𝜌𝑥1 − (1 − 𝜖1)𝜆1 𝑥2 − 𝑘2 𝑥2,

𝑑𝑥3
𝑑𝑡

= 𝑓3 = 𝜆1 𝑥1 + (1 − 𝜖1)𝜆1 𝑥2 − 𝑘3 𝑥3,

𝑑𝑥4
𝑑𝑡

= 𝑓4 = 𝜎1 𝑥3 − 𝑘4 𝑥4,

𝑑𝑥5
𝑑𝑡

= 𝑓5 = 𝑏𝜎2 𝑥4 − 𝑘5 𝑥5,

𝑑𝑥6
𝑑𝑡

= 𝑓6 = (1 − 𝑏)𝜎2 𝑥4 − 𝑘6 𝑥6,

𝑑𝑥7
𝑑𝑡

= 𝑓7 = 𝜎𝑞 𝑥6 − 𝑘11 𝑥7,

𝑑𝑥8
𝑑𝑡

= 𝑓8 = 𝜙𝑖1
𝑥5 +𝜙𝑞 𝑥7 − 𝑘12 𝑥8,

𝑑𝑥9
𝑑𝑡

= 𝑓9 = 𝜓𝑖1
𝑥5 +𝜓𝑎1 𝑥6 +𝜓𝑞 𝑥7 +𝜓ℎ 𝑥8 − 𝑘13 𝑥9. (A.1)
18

The Jacobian of the system (A.1) is given by:
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𝐽 (0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝑘1 𝜁 0 −𝜂1 𝐽1 −𝐽1 −𝜃1 𝐽1 0 0 𝛼

𝜌 −𝑘2 0 −𝜂1 𝐽2 −𝐽2 −𝜃1 𝐽2 0 0 0
0 0 −𝑘3 𝜂1 𝐽3 𝐽3 𝜃1 𝐽3 0 0 0
0 0 𝜎1 −𝑘4 0 0 0 0 0
0 0 0 𝑏𝜎2 −𝑘5 0 0 0 0
0 0 0 (1 − 𝑏)𝜎2 0 −𝑘6 0 0 0
0 0 0 0 𝜎𝑞 0 −𝑘11 0 0
0 0 0 0 𝜙𝑖1

0 𝜙𝑞 −𝑘12 0
0 0 0 0 𝜓𝑖1

𝜓𝑎1
𝜓𝑞 𝜓ℎ −𝑘13

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where,

𝐽1 =
(1 − 𝑒𝑚)𝛽 𝑘2

𝜌+ 𝑘2
, 𝐽2 =

(1 − 𝑒𝑚)𝛽 𝜌 (1 − 𝜖1)
𝜌+ 𝑘2

, and 𝐽3 =
(1 − 𝑒𝑚)𝛽

{
𝑘2 + 𝜌 (1 − 𝜖1)

}
𝜌+ 𝑘2

.

Now consider 1 = 1 and 𝛽1 = 𝛽∗1 is a bifurcation parameter. Thus we get

𝛽1 = 𝛽∗1 =
𝑘3 𝑘4 𝑘5 𝑘6𝑁

∗

(1 − 𝑒𝑚)
{
𝑆∗ + (1 − 𝜖1)𝑉 ∗

}
𝜎1

{
𝜂1 𝑘5 𝑘6 + 𝑏𝜎2 𝑘6 + (1 − 𝑏)𝜎2 𝜃1 𝑘5

} . (A.2)

The Jacobian 𝐽 (0) of (A.1) with 𝛽1 = 𝛽∗1 (equation (A.2)), denoted by 𝐽𝛽∗1 , has a simple zero eigenvalue (with all other eigenvalues 
having negative real part). Hence, the Center Manifold theory [37,32], can be used to analyze the dynamics of the model (5).

Eigenvectors of 𝐽𝛽∗1 = 𝐽 (0)
||||𝛽1 =𝛽∗1 : When 1 = 1, the jacobian (𝐽𝛽∗1 ) of (A.1) has a right eigenvector given by 𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5,

𝑤6, 𝑤7, 𝑤8, 𝑤9]𝑇 , where,

𝑤1 = 𝑤1, 𝑤2 = −
𝜌𝑤1 − 𝜂1 𝑗2𝑤4 − 𝑗2𝑤5 − 𝜃1 𝑗2𝑤6

𝑘2
, 𝑤3 = 𝑤3, 𝑤4 =

𝜎1
𝑘4

𝑤3, 𝑤5 =
𝑏𝜎2
𝑘5

𝑤4,

𝑤6 =
(1 − 𝑏)𝜎2

𝑘6
𝑤4, 𝑤7 =

𝜎𝑞

𝑘11
𝑤5, 𝑤8 =

𝜙𝑖1
𝑤5 + 𝜙𝑞 𝑤7

𝑘12
, 𝑤9 =

𝜓𝑖1
𝑤5 +𝜓𝑎1 𝑤6 +𝜓𝑞 𝑤7 +𝜓ℎ 𝑤8

𝑘13
.

Further, 𝐽𝛽∗ has a left eigenvector 𝑣 = [𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8, 𝑣9], where,

𝑣1 = 𝑣1, 𝑣2 = 𝜁

𝑘2
𝑣1, 𝑣3 = 𝑣3, 𝑣4 =

𝑘3
𝜎1
𝑣3, 𝑣5 =

−𝐽1 𝑣1 − 𝐽2 𝑣2 − 𝐽3 𝑣3 + 𝜎𝑞 𝑣7 + 𝜙𝑖1 𝑣8 +𝜓𝑖1 𝑣9
𝑘5

,

𝑣6 =
−𝐽1 𝜃1 𝑣1 − 𝐽2 𝜃1 𝑣2 − 𝐽3 𝜃1 𝑣3 +𝜓𝑎1 𝑣9

𝑘6
, 𝑣7 =

𝜙𝑞 𝑣8 +𝜓𝑞 𝑣9
𝑘11

, 𝑣8 =
𝜓ℎ

𝑘12
𝑣9, 𝑣9 = 𝛼

𝑘13
, 𝑣1.

Computations of 𝑎1

(
𝑎1 =

𝑛∑
𝑘,𝑖,𝑗=1

𝑣𝑘𝑤𝑖𝑤𝑗
𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(0, 𝛽∗1 )
)

and 𝑏1

(
𝑏1 =

𝑛∑
𝑘,𝑖=1

𝑣𝑘𝑤𝑖
𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝛽1

(0, 𝛽∗1 )
)

[37,38]:

After some tedious manipulations, it can be shown that

𝑎1 = −
2𝛽1 (1 − 𝑒𝑚) (𝜌𝜁 − 𝑘1 𝑘2) (𝜂1𝑤4 + 𝜃1𝑤6 + 𝑤5)

Λ (𝜌+ 𝑘2)2

[{
𝑤6 𝑘2 𝑣1 − 𝑤8 𝑘2 𝑣3 − 𝑘2 𝑣3𝑤3 + 𝑤7 𝑘2 𝑣1 + 𝑤9 𝑘2 𝑣1

+ 𝑤4 𝑘2 𝑣1 − 𝑤6 𝑘2 𝑣3 − 𝑘2 𝑣3𝑤2 − 𝑤4 𝑘2 𝑣3 + 𝑘2 𝑣1𝑤3 + 𝑤8 𝑘2 𝑣1 + 𝑘2 𝑣1𝑤1 − 𝑤9 𝑘2 𝑣3 − 𝑤7 𝑘2 𝑣3 − 𝜌𝑣1𝑤1

+ 𝜌𝑣3𝑤1 − 𝑣3𝑤3 𝑘2 + 𝑣1𝑤5 𝑘2 + (1 − 𝜖1)
(
𝑣2𝑤5 𝜌− 𝑣3𝑤5 𝜌 + 𝜌𝑤4 𝑣2 − 𝜌𝑤6 𝑣2 − 𝜌𝑤6 𝑣3 + 𝜌𝑤7 𝑣2

− 𝜌𝑤7 𝑣3 + 𝜌𝑤8 𝑣2 − 𝜌𝑤8 𝑣3 + 𝜌𝑤9 𝑣2 − 𝜌𝑤9 𝑣3 + 𝜌𝑣2𝑤1 + 𝜌𝑣2𝑤3 − 𝜌𝑣3𝑤1 − 𝜌𝑣3𝑤3 − 𝑘2 𝑣2𝑤2 + 𝑘2 𝑣3𝑤2

)}]
,

and 𝑏1 = −
(1 − 𝑒𝑚) (𝜂1𝑤4 + 𝜃1𝑤6 + 𝑤5)

(
(1 − 𝜖1)𝜌 (𝑣2 − 𝑣3) + 𝑘2 𝑣1 − 𝑘2 𝑣3

)
𝜌+ 𝑘2

. (A.3)

Appendix B. Proof of the global stability of the DFE for the model (Theorem 12))

Proof. To prove the global stability of the DFE, we consider the following linear Lyapunov function:

1 = 𝓁1𝐸1 + 𝓁2 𝑃1 + 𝓁3 𝐼1 + 𝓁4𝐴1,

where,

𝓁1 =
𝜂1𝜎1
𝑘3 𝑘4

+
𝑏𝜎1 𝜎2
𝑘3 𝑘4 𝑘5

+
𝜃1 (1 − 𝑏)𝜎1 𝜎2

𝑘3 𝑘4 𝑘6
, 𝓁2 =

𝑘3
𝜎1

𝓁1, 𝓁3 = 1
𝑘5
, 𝓁4 =

𝜃1
𝑘6
.

19

Differentiating the above Lyapunov function we have the following
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̇1 = 𝓁1 𝐸̇1 + 𝓁2 𝑃̇1 + 𝓁3 𝐼̇1 + 𝓁4 𝐴̇1

= 𝓁1
{
𝜆1 (𝑆 + (1 − 𝜖1)𝑉 ) − 𝑘3𝐸1

}
+ 𝓁2 (𝜎1𝐸1 − 𝑘4 𝑃1) + 𝓁3 (𝑏𝜎2 𝑃1 − 𝑘5 𝐼1) + 𝓁4

{
(1 − 𝑏)𝜎2 𝑃1 − 𝑘6𝐴1

}
After some rigorous calculations, it can be shown that

̇1 ≤ (𝜂1 𝑃1 + 𝐼1 + 𝜃1𝐴1) (1 − 1). (B.1)

Again consider

2 = 𝓁5𝐸2 + 𝓁6 𝑃2 + 𝓁7 𝐼2 + 𝓁8𝐴2,

where,

𝓁5 =
𝜂2𝜎1
𝑘3 𝑘4

+
𝑏𝜎1 𝜎2
𝑘3 𝑘4 𝑘7

+
𝜃2 (1 − 𝑏)𝜎1 𝜎2

𝑘3 𝑘4 𝑘8
, 𝓁6 =

𝑘3
𝜎1

𝓁5, 𝓁7 = 1
𝑘7
, 𝓁8 =

𝜃2
𝑘8
.

Differentiating the above Lyapunov function we have the following

̇2 = 𝓁5 𝐸̇2 + 𝓁6 𝑃̇2 + 𝓁7 𝐼̇2 + 𝓁8 𝐴̇2

= 𝓁5
{
𝜆2 (𝑆 + (1 − 𝜖2)𝑉 ) − 𝑘3𝐸2

}
+ 𝓁6 (𝜎1𝐸2 − 𝑘4 𝑃2) + 𝓁7 (𝑏𝜎2 𝑃2 − 𝑘7 𝐼2) + 𝓁8

{
(1 − 𝑏)𝜎2 𝑃2 − 𝑘8𝐴2

}
After some rigorous calculations, it can be shown that

̇2 ≤ (𝜂2 𝑃2 + 𝐼2 + 𝜃2𝐴2) (2 − 1). (B.2)

Again consider

3 = 𝓁9𝐸3 + 𝓁10 𝑃3 + 𝓁11 𝐼3 + 𝓁12𝐴3,

where,

𝓁9 =
𝜂3𝜎1
𝑘3 𝑘4

+
𝑏𝜎1 𝜎2
𝑘3 𝑘4 𝑘9

+
𝜃3 (1 − 𝑏)𝜎1 𝜎2
𝑘3 𝑘4 𝑘10

, 𝓁10 =
𝑘3
𝜎1

𝓁9, 𝓁11 = 1
𝑘9
, 𝓁11 =

𝜃3
𝑘10

.

Differentiating the above Lyapunov function we have the following 

̇3 = 𝓁9 𝐸̇3 + 𝓁10 𝑃̇3 + 𝓁11 𝐼̇3 + 𝓁12 𝐴̇3

= 𝓁9
{
𝜆3 (𝑆 + (1 − 𝜖3)𝑉 ) − 𝑘3𝐸3

}
+ 𝓁10 (𝜎1𝐸3 − 𝑘4 𝑃3) + 𝓁11 (𝑏𝜎2 𝑃3 − 𝑘9 𝐼3) + 𝓁12

{
(1 − 𝑏)𝜎2 𝑃3 − 𝑘10𝐴3

}
After some calculations, it can be shown that

̇3 ≤ (𝜂3 𝑃3 + 𝐼3 + 𝜃3𝐴3) (3 − 1). (B.3)

Hence, adding (B.1), (B.2), and (B.3) we get

̇1 + ̇2 + ̇3 ≤ (𝜂1 𝑃1 + 𝐼1 + 𝜃1𝐴1) (1 − 1) + (𝜂2 𝑃2 + 𝐼2 + 𝜃2𝐴2) (2 − 1) + (𝜂3 𝑃3 + 𝐼3 + 𝜃3𝐴3) (3 − 1).

Let 𝑐 = max{1, 2, 3}

Thus

̇ = ̇1 + ̇2 + ̇3 ≤ 𝑁∗ (𝜆1 + 𝜆2 + 𝜆3) (𝑐 − 1) ≤ 0 for 𝑐 ≤ 1. (B.4)

Also ̇ = 0 if and only if 𝐸𝑗 = 𝑃𝑗 = 𝐼𝑗 = 𝐴𝑗 = 0, 𝑗 = 1, 2, 3. Hence ̇ ≤ 0 (from (B.4)). Therefore,  is a Lyapunov function on 
and thus it follows by the LaSalle’s invariance principle [43] that, the DFE of the model (5) is globally asymptotic stable whenever 
𝑐 ≤ 1.

Appendix C. Endemic equilibria and backward bifurcation of the model with the original strain and the Delta variant

Let 2 = (𝑆∗, 𝑉 ∗, 0, 0, 0, 0, 𝐸∗
2 , 𝑃

∗
2 , 𝐼

∗
2 , 𝐴

∗
2 , 0, 0, 0, 0, 𝑄

∗, 𝐻∗, 𝑅∗) be any arbitrary equilibrium of the model (5) with the original 
strain and the Delta variant and hence equation (3) can be written as

𝜆∗2 =
𝛽2 (1 − 𝑒𝑚) (𝜂2 𝑃 ∗

2 + 𝐼∗2 + 𝜃2𝐴∗
2)

𝑁∗
(C.1)

be the force of infection at steady-state. Therefore, from the system (29) we have,

𝑆∗ =
Λ𝑘3

{
(1 − 𝜖2)𝜆∗2 + 𝑘2

}
𝑀12 𝜆

∗
2
2 +𝑀22 𝜆

∗
2 +𝑀32

, 𝑉 ∗ =
𝜌Λ𝑘3

𝑀12 𝜆
∗
2
2 +𝑀22 𝜆

∗
2 +𝑀32

, 𝐸∗
2 =

𝜆∗2 (𝑀42 𝜆
∗
2 +𝑀52 )

𝑀12 𝜆
∗
2
2 +𝑀22 𝜆

∗
2 +𝑀32

,

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
20

𝑃2 = 𝐵𝑝2
𝐸2 , 𝐼2 = 𝐵𝑖2

𝐸2 , 𝐴2 = 𝐵𝑎2
𝐸2 , 𝑄 = 𝐵𝑞2

𝐸2 , 𝐻 = 𝐵ℎ2
𝐸2 , 𝑅 = 𝐵𝑟2

𝐸2 , (C.2)
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where,

𝐵𝑝2
=

𝜎1
𝑘4
, 𝐵𝑖2

=
𝑏𝜎2
𝑘7

, 𝐵𝑎2
=

(1 − 𝑏)𝜎2
𝑘8

, 𝐵𝑞2
=
𝑏𝜎1 𝜎2 𝜎𝑞

𝑘4 𝑘7 𝑘11
, 𝐵ℎ2

=
𝜙𝑖2

𝐵𝑖2
+ 𝜙𝑞 𝐵𝑞2
𝑘12

,

𝐵𝑟2
=
𝜓𝑖2

𝐵𝑖2
+𝜓𝑎2 𝐵𝑎2 +𝜓𝑞 𝐵𝑞2 +𝜓ℎ 𝐵ℎ2

𝑘13
, 𝑀12 = (1 − 𝜖2) (𝑘3 + 𝛼𝐵𝑟2 ), 𝑀22 = (1 − 𝜖2)𝑘1 𝑘3 + 𝑘2 (1 − 𝛼𝐵𝑟2 ) − 𝛼𝐵𝑟2 (1 − 𝜖2)𝜌,

𝑀32 = −𝜂 𝜌𝑘2, 𝑀42 = Λ(1 − 𝜖2), 𝑀52 = Λ𝑘2 + Λ(1 − 𝜖2)𝜌.

Substituting (C.2) into (C.1) gives

𝜆∗2 =
𝛽2 (1 − 𝑒𝑚) (𝜂2𝐵𝑝2 +𝐵𝑖2 + 𝜃2𝐵𝑎2 )

(
𝑀42 𝜆

∗2
2 +𝑀52 𝜆

∗
2

)
Λ𝑘3

{
(1 − 𝜖2)𝜆∗2 + 𝑘2

}
+ 𝜌Λ𝑘3 +𝐵𝑐2

(
𝑀42 𝜆

∗2
2 +𝑀52 𝜆

∗
2

) , (C.3)

where,

𝐵𝑐2
= 1 +𝐵𝑝2 +𝐵𝑖2 +𝐵𝑎2 +𝐵𝑞2 +𝐵ℎ2 +𝐵𝑟2 .

After some algebraic calculation, the following polynomial equation in terms of 𝜆∗2 can be obtained from equation (C.3) as

𝜆∗2

{
𝑃22 𝜆

∗
2
2
+ 𝑃12 𝜆

∗
2 + 𝑃02

}
= 0, (C.4)

where,

𝑃22 = 𝐵𝑐2
𝑀42 ,

𝑃12 = 𝐵𝑐2
𝑀52 + Λ𝑘3 (1 − 𝜖2) −𝑀42 𝛽2 (1 − 𝑒𝑚) (𝜂2𝐵𝑝2 +𝐵𝑖2 + 𝜃2𝐵𝑎2 ),

𝑃02 = Λ𝑘3 (𝜌+ 𝑘2) (1 −2).

(C.5)

Out of the three roots, the root 𝜆∗2 = 0, of (C.4), corresponds to the DFE 0. Equation (C.4) says that the non-zero equilibria of the 
model satisfy

𝑓 (𝜆∗2) = 𝑃22 𝜆
∗
2
2
+ 𝑃12 𝜆

∗
2 + 𝑃02 = 0. (C.6)

Using Theorem 5 and following the same procedure as in Appendix A, it can be shown that the expressions of 𝑎2 and 𝑏2 for the 
original model with Delta variant are

𝑎2 = −
2𝛽2 (1 − 𝑒𝑚) (𝜌𝜁 − 𝑘1 𝑘2) (𝜂1𝑤4 + 𝜃1𝑤6 + 𝑤5)

Λ (𝜌+ 𝑘2)2

[{
𝑤6 𝑘2 𝑣1 − 𝑤8 𝑘2 𝑣3 − 𝑘2 𝑣3𝑤3 + 𝑤7 𝑘2 𝑣1 + 𝑤9 𝑘2 𝑣1

+ 𝑤4 𝑘2 𝑣1 − 𝑤6 𝑘2 𝑣3 − 𝑘2 𝑣3𝑤2 − 𝑤4 𝑘2 𝑣3 + 𝑘2 𝑣1𝑤3 + 𝑤8 𝑘2 𝑣1 + 𝑘2 𝑣1𝑤1 − 𝑤9 𝑘2 𝑣3 − 𝑤7 𝑘2 𝑣3

− 𝜌𝑣1𝑤1 + 𝜌𝑣3𝑤1 − 𝑣3𝑤3 𝑘2 + 𝑣1𝑤5 𝑘2 + (1 − 𝜖2)
(
𝑣2𝑤5 𝜌− 𝑣3𝑤5 𝜌 + 𝜌𝑤4 𝑣2 − 𝜌𝑤6 𝑣2 − 𝜌𝑤6 𝑣3

+ 𝜌𝑤7 𝑣2 − 𝜌𝑤7 𝑣3 + 𝜌𝑤8 𝑣2 − 𝜌𝑤8 𝑣3 + 𝜌𝑤9 𝑣2 − 𝜌𝑤9 𝑣3 + 𝜌𝑣2𝑤1 + 𝜌𝑣2𝑤3 − 𝜌𝑣3𝑤1 − 𝜌𝑣3𝑤3

− 𝑘2 𝑣2𝑤2 + 𝑘2 𝑣3𝑤2

)}]
,

and 𝑏2 = −
(1 − 𝑒𝑚) (𝜂1𝑤4 + 𝜃1𝑤6 + 𝑤5)

(
(1 − 𝜖2)𝜌 (𝑣2 − 𝑣3) + 𝑘2 𝑣1 − 𝑘2 𝑣3

)
𝜌+ 𝑘2

. (C.7)

Appendix D. Endemic equilibria and backward bifurcation of the model with the original strain and the Delta and 
Omicron variants

Let 3 = (𝑆∗, 𝑉 ∗, 0, 0, 0, 0, 0, 0, 0, 0, 𝐸∗
3 , 𝑃

∗
3 , 𝐼

∗
3 , 𝐴

∗
3 , 𝑄

∗, 𝐻∗, 𝑅∗) be any arbitrary equilibrium of the model (5) with the original 
strain and the Delta and Omicron variants and hence equation (4) can be written as

𝜆∗3 =
𝛽3 (1 − 𝑒𝑚) (𝜂3 𝑃 ∗

3 + 𝐼∗3 + 𝜃3𝐴∗
3)

𝑁∗
(D.1)

be the force of infection at steady-state. Therefore, from the system (29) we have,

𝑆∗ =
Λ𝑘3

{
(1 − 𝜖3)𝜆∗2 + 𝑘2

}
𝑀12 𝜆

∗
2
2 +𝑀22 𝜆

∗
2 +𝑀32

, 𝑉 ∗ =
𝜌Λ𝑘3

𝑀13 𝜆
∗
3
2 +𝑀23 𝜆

∗
2 +𝑀33

, 𝐸∗
3 =

𝜆∗2 (𝑀43 𝜆
∗
3 +𝑀53 )

𝑀13 𝜆
∗
3
2 +𝑀23 𝜆

∗
3 +𝑀33

,

𝑃 ∗
3 = 𝐵𝑝3

𝐸∗
3 , 𝐼∗3 = 𝐵𝑖3

𝐸∗
3 , 𝐴∗

3 = 𝐵𝑎3
𝐸∗
3 , 𝑄∗ = 𝐵𝑞3

𝐸∗
3 , 𝐻∗ = 𝐵ℎ3

𝐸∗
3 , 𝑅∗ = 𝐵𝑟3

𝐸∗
3 , (D.2)
21

where,
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𝐵𝑝3
=

𝜎1
𝑘4
, 𝐵𝑖3

=
𝑏𝜎2
𝑘9

, 𝐵𝑎3
=

(1 − 𝑏)𝜎2
𝑘10

, 𝐵𝑞3
=
𝑏𝜎1 𝜎2 𝜎𝑞

𝑘4 𝑘9 𝑘11
, 𝐵ℎ3

=
𝜙𝑖3

𝐵𝑖3
+ 𝜙𝑞 𝐵𝑞3
𝑘12

,

𝐵𝑟3
=
𝜓𝑖3

𝐵𝑖3
+𝜓𝑎3 𝐵𝑎3 +𝜓𝑞 𝐵𝑞3 +𝜓ℎ 𝐵ℎ3

𝑘13
, 𝑀13 = (1 − 𝜖3) (𝑘3 + 𝛼𝐵𝑟3 ), 𝑀23 = (1 − 𝜖3)𝑘1 𝑘3 + 𝑘2 (1 − 𝛼𝐵𝑟3 ) − 𝛼𝐵𝑟3 (1 − 𝜖3)𝜌,

𝑀33 = −𝜂 𝜌𝑘2, 𝑀43 = Λ(1 − 𝜖3), 𝑀53 = Λ𝑘2 + Λ(1 − 𝜖3)𝜌.

Substituting (D.2) into (D.1) gives

𝜆∗3 =
𝛽3 (1 − 𝑒𝑚) (𝜂3𝐵𝑝3 +𝐵𝑖3 + 𝜃3𝐵𝑎3 )

(
𝑀43 𝜆

∗2
3 +𝑀53 𝜆

∗
3

)
Λ𝑘3

{
(1 − 𝜖3)𝜆∗3 + 𝑘2

}
+ 𝜌Λ𝑘3 +𝐵𝑐3

(
𝑀43 𝜆

∗2
3 +𝑀53 𝜆

∗
3

) , (D.3)

where,

𝐵𝑐3
= 1 +𝐵𝑝3 +𝐵𝑖3 +𝐵𝑎3 +𝐵𝑞3 +𝐵ℎ3 +𝐵𝑟3 .

After some algebraic calculation, the following polynomial equation in terms of 𝜆∗3 can be obtained from equation (D.3) as

𝜆∗3

{
𝑃23 𝜆

∗
3
2
+ 𝑃13 𝜆

∗
3 + 𝑃03

}
= 0, (D.4)

where,

𝑃23 = 𝐵𝑐3
𝑀43 ,

𝑃13 = 𝐵𝑐3
𝑀53 + Λ𝑘3 (1 − 𝜖3) −𝑀43 𝛽3 (1 − 𝑒𝑚) (𝜂3𝐵𝑝3 +𝐵𝑖3 + 𝜃3𝐵𝑎3 ),

𝑃03 = Λ𝑘3 (𝜌+ 𝑘3) (1 −3).

(D.5)

Out of the three roots, the root 𝜆∗3 = 0, of (D.4), corresponds to the DFE 0. Equation (D.4) says that the non-zero equilibria of the 
model satisfy

𝑓 (𝜆∗3) = 𝑃23 𝜆
∗
3
2
+ 𝑃13 𝜆

∗
3 + 𝑃03 = 0. (D.6)

Using Theorem 9 and following the same procedure as in Appendix A, it can be shown that the expressions of 𝑎3 and 𝑏3 for the 
original model with Delta and Omicron variants are

𝑎3 = −
2𝛽3 (1 − 𝑒𝑚) (𝜌𝜂 − 𝑘1 𝑘2) (𝜂3𝑤4 + 𝜃3𝑤6 + 𝑤5)

Λ (𝜌+ 𝑘2)2

[{
𝑤6 𝑘2 𝑣1 − 𝑤8 𝑘2 𝑣3 − 𝑘2 𝑣3𝑤3 + 𝑤7 𝑘2 𝑣1 + 𝑤9 𝑘2 𝑣1

+ 𝑤4 𝑘2 𝑣1 − 𝑤6 𝑘2 𝑣3 − 𝑘2 𝑣3𝑤2 − 𝑤4 𝑘2 𝑣3 + 𝑘2 𝑣1𝑤3 + 𝑤8 𝑘2 𝑣1 + 𝑘2 𝑣1𝑤1 − 𝑤9 𝑘2 𝑣3 − 𝑤7 𝑘2 𝑣3

− 𝜌𝑣1𝑤1 + 𝜌𝑣3𝑤1 − 𝑣3𝑤3 𝑘2 + 𝑣1𝑤5 𝑘2 + (1 − 𝜖3)
(
𝑣2𝑤5 𝜌− 𝑣3𝑤5 𝜌 + 𝜌𝑤4 𝑣2 − 𝜌𝑤6 𝑣2 − 𝜌𝑤6 𝑣3 + 𝜌𝑤7 𝑣2

− 𝜌𝑤7 𝑣3 + 𝜌𝑤8 𝑣2 − 𝜌𝑤8 𝑣3 + 𝜌𝑤9 𝑣2 − 𝜌𝑤9 𝑣3 + 𝜌𝑣2𝑤1 + 𝜌𝑣2𝑤3 − 𝜌𝑣3𝑤1 − 𝜌𝑣3𝑤3 − 𝑘2 𝑣2𝑤2 + 𝑘2 𝑣3𝑤2

)}]
,

and 𝑏3 = −
(1 − 𝑒𝑚) (𝜂3𝑤4 + 𝜃3𝑤6 + 𝑤5)

(
(1 − 𝜖3)𝜌 (𝑣2 − 𝑣3) + 𝑘2 𝑣1 − 𝑘2 𝑣3

)
𝜌+ 𝑘2

. (D.7)
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