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Background Oxidative stress is considered to be involved in the pathogenesis of coronary
heart disease (CHD). Glutathione-S-transferase (GST) enzymes play important roles in an-
tioxidant defenses and may influence CHD risk. The present meta-analysis was performed to
investigate the link between glutathione S-transferase M1 (GSTM1) null genotype and CHD
and to get a precise evaluation of interaction between GSTM1 null genotype and smoking
by the case-only design.
Methods PubMed and EMBASE databases were searched through 15 December 2020 to
retrieve articles. Odds ratios (ORs) were pooled using either fixed-effects or random-effects
models.
Results Thirty-seven studies showed that GSTM1 null genotype was associated with risk of
CHD in total population, Caucasians and Asians (for total population, OR = 1.38, 95% con-
fidence interval (CI): 1.15, 1.65; for Caucasians, OR = 1.34, 95% CI: 1.04, 1.72; for Asians,
OR = 1.40, 95% CI: 1.11, 1.77). After adjustment for heterogeneity, these relationships were
still significant. After adjustment for heterogeneity, case-only analysis of 11 studies showed
a positive multiplicative interaction between GSTM1 null genotype and smoking (ever smok-
ing vs. never smoking) (OR = 1.27, 95% CI: 1.08, 1.50; I2 = 0%, P=0.553).
Conclusions The overall results indicated that GSTM1 null genotype was associated with a
higher risk of CHD, and the association may be affected by smoking status. This is the first
meta-analysis to prove a positive effect of the interaction between GSTM1 null genotype
and smoking status on the risk of CHD. Well-designed studies are needed to investigate the
possible gene–gene or gene–environment interactions.

Introduction
Coronary heart disease (CHD) is the leading cause of mortality and a major cause of morbidity and dis-
ability all over the world [1,2]. CHD is an extremely multifactorial disease, which is influenced by both
complex genetic and multiple environmental factors, as well as their interactions.

There is compelling evidence that cigarette smoking is one of the strong risk factors for CHD. Multiple
chemicals in cigarette smoke can cause endothelial dysfunction, smooth muscle cell proliferation, gener-
ation of reactive oxygen species (ROS) and DNA damage, which can lead to atherosclerosis and, hence,
CHD [3–6]. However, only a small number of smokers ultimately develop CHD. The differential suscep-
tibility to CHD among smokers may be influenced by polymorphisms in genes encoding the metabolic
enzymes, which play important roles in the detoxification of toxic chemicals generated by smoking.
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Figure 1. Flow chart depicting exclusion/inclusion of individual articles for meta-analysis

The glutathione S-transferases (GSTs) are an important family of phase II isoenzymes which can detoxify elec-
trophilic compounds generated by smoking, including toxins, DNA adducts, and carcinogens, mainly by changing
them to harmless products through conjugation to glutathione [7,8]. In addition, GSTs can modulate the induction
of other proteins and enzymes which are important for cellular functions, such as DNA repair [9].

Human cytosolic GST enzymes which comprise multiple isoenzymes are divided into eight separate classes: GSTM
(mu), GSTP (pi), GSTT (theta), GSTA (alpha), GSTK (kappa), GSTO (omega), GSTS (sigma), and GSTZ (zeta) [10].
The Mu class of GSTs is encoded by the glutathione S-transferase M1 (GSTM1) gene, which is mapped to chromosome
1p13.3. Three alleles of the GSTM1 locus have been identified: GSTM1 null and two others (GSTM1a and GSTM1b)
that differ by C→G substitution at base position 534. The C→G substitution leads to the substitution Lys→Asn at
amino acid 172 [11]. Persons with homozygous deletions of the GSTM1 locus have been associated with no enzymatic
functional activity and increased vulnerability to cytogenetic damage [12,13], and thus it was hypothesized to be
linked with risk of CHD [14].

Our previous meta-analysis have proved that the null genotype of GSTT1 was associated with an increased risk
of CHD [15]. Indeed, a great number of studies have investigated the association between GSTM1 genetic polymor-
phism and risk of CHD. However, results have been inconsistent [16–50], and the interaction between GSTM1 null
genotype and smoking is unclear. To our knowledge, two previous meta-analyses [51,52] investigating the association
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between GSTM1 null genotype and CHD risk have yielded contradictory findings. One previous meta-analysis [51]
reported that GSTM1 null genotype may be an independent risk factor for CHD and the other meta-analysis [52]
indicated that a negative association exists between GSTM1 null genotype and CHD risk. To help clarify the incon-
sistent findings, we conducted a meta-analysis to investigate the association between polymorphism of GSTM1 and
CHD risk. Furthermore, we performed a case-only design to get a more precise evaluation of interaction between
GSTM1 null genotype and smoking on CHD risk.

Materials and methods
Search strategy and selection criteria
We searched electronic databases, including PubMed and Embase, for all articles published through 15 December
2020, which had investigated the association between GSTM1 genotype (null genotype vs. wildtype) and the risk
of CHD. The terms used for searching included glutathione S-transferase, GST, GSTM1; gene, polymorphism; and
coronary heart disease, CHD, myocardial infarction, MI, coronary artery disease, CAD, ischemic heart disease. Ref-
erences cited in retrieved articles and published review articles were also screened to identify additional publications.
If there were several publications from the same study, we selected the most complete or most recent publication for
meta-analyses. To minimize potential publication bias, studies without any special restriction were included.

The inclusion criteria were: (i) studies with case–control design examining the association between CHD risk and
polymorphism of GSTM1; (ii) presenting original data for the calculation of odds ratios (ORs) with corresponding
95% confidence intervals (95% CIs); (iii) clear definition of CHD. The exclusion criteria were: (i) case-only studies,
animal studies, simply commentaries, case reports and review articles; (ii) studies with other genotypes of GST or
other disease.

Data extraction and quality assessment
Characteristics abstracted from the articles included the name of the first author, year of publication, coun-
try, ethnicity, genotyping method, control source, number of cases, number of controls, cases null, controls null,
Hardy–Weinberg equilibrium (i.e., the genotype distribution in the control population were in accordance with
Hardy–Weinberg equilibrium: yes, no, not available), and adjustment covariates. When specific results were not re-
ported, we used available tabular data to calculate them. When data were unavailable, we contacted the corresponding
author by email for additional information. Different ethnicities were categorized as Caucasian, Asian, and Mixed.
The bibliographic search, data extraction, and quality assessment were conducted independently by two authors, and
any disagreements were resolved by consensus with a third investigator.

We assessed quality of included studies based on Newcastle–Ottawa Scale (NOS) [53]. The NOS is an 8-item instru-
ment, and the detail of NOS grading standard is listed as follows: (i) selection, included adequate definition of patient
cases, representativeness of patients cases, selection of controls, definition of controls, total score: 4; (ii) compara-
bility, included Control for important factor or additional factor, total score: 2; (iii) exposure (case–control studies),
included ascertainment of exposure (blinding), same method of ascertainment for participants, non-response rate,
total score: 3. A star system of the NOS (range, 0–9 stars) has been developed for quality assessment (Supplementary
Table S1). The mean value for all included studies was 7 stars.

Statistical analyses
Based on the genotype frequencies, crude ORs corresponding to 95% CI were calculated to measure the associ-
ation between GSTM1 null genotype and risk of CHD. Cochran’s χ2 based Q-statistic test and I2 test were per-
formed to precisely assess possible heterogeneity, which quantified between-study heterogeneity irrespective of the
number of studies [54]. If heterogeneity was considered significant at P<0.1 (Cochran’s χ2 based Q-statistic test),
a random-effects model (DerSimonian–Laird method) [55] was used to calculate the pooled ORs. Otherwise, the
fixed-effect model [56] was conducted [57,58]. An I2 value less than 50% was considered to indicate low heterogeneity
[59]. The meta-regression was performed to study the source of between-study heterogeneity [60]. The introduction
of covariates for assessment of heterogeneity sources were publication year, ethnicity, sample size, and control source.
If there was heterogeneity between studies, sources of heterogeneity were also investigated by stratified meta-analyses
based on ethnicity (Asian, Caucasian); source of controls (population-based, hospital-based); sample size (number
of cases <600 or >600). Sensitivity analysis, removing one study at a time, was also performed to evaluate the sta-
bility of the results. Besides, Galbraith plot was also conducted to spot the outlier as the possibly major source of
between-study heterogeneity [61]. The outliers were considered as the possible major source of heterogeneity, and
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further meta-analysis after adjustment for heterogeneity was performed by excluding these studies. The potential
publication bias was investigated by means of Begg’s funnel plot and Egger’s test [62].

To investigate the multiplicative interaction between GSTM1 null genotype and smoking (ever smoking vs. never
smoking) on CHD risk, we also performed a case-only design in present meta-analyses [63,64]. All analyses were
performed using Stata, version 11.0 (StataCorp, College Station, Texas). All tests were two-sided with a significance
level of 0.05.

Results
Characteristics of the included studies
In total, 37 studies from 35 articles matching the search terms, comprising 16684 cases and 36510 controls, were
retrieved from databases. A flow chart describing the exclusion/inclusion of individual articles has been presented as
Figure 1. A total of 852 articles were found with our search criteria. One article contained three individual case–control
studies [38] and one article was published in Chinese [36]. Table 1 showed characteristics of these 37 studies, 23
[16–23,26–29,33–35,37,38,41,44,45,48] were from Caucasian population, 13 [24,25,30,31,36,39,40,42,43,46,47,49,50]
were from Asians, and 1 [32] was Mixed ethnicity. The number of cases varied from 29 to 2360, with a mean of 451,
and the number of controls varied from 30 to 9099, with a mean of 988 (Table 1).

GSTM1
A total of 37 studies with 16684 cases and 36510 controls were retrieved based on the search criteria for CHD sus-
ceptibility related to the GSTM1 null polymorphism. Heterogeneity between studies was suggested (I2 = 93.8%;
P<0.001), thus the random-effects model was used to pool data. The results indicated that the GSTM1 null geno-
type was significantly associated with CHD (OR = 1.38, 95% CI: 1.15, 1.65) (Figure 2). There was no evidence of
publication bias (Begg’s test, P=0.097; Egger’s test, P=0.499 (Table 2). The meta-regression was conducted with the
introduction of covariates including publication year, ethnicity, sample size, and control source. However, no co-
variate was identified as a potential source of between-study heterogeneity for any comparison. Sensitivity analyses
indicated that the study by Abu-Amero et al. [27] was the main origin of heterogeneity in overall OR. After exclusion
of the study [27], the heterogeneity was decreased (I2 = 88.6%). Besides, sensitivity analyses which yielded a range
of ORs from 1.28 (95% CI: 1.12, 1.48) to 1.40 (1.17, 1.69) suggested that the results of this meta-analysis are stable.
For meta-analysis of total studies, fifteen studies were spotted by Galbraith plot as possible major sources of hetero-
geneity [20,24,27,29,32–34,36,38,39,41,43,50]. There was no obvious between-study heterogeneity among remaining
studies (I2 = 40.2%; P=0.027), and meta-analysis showed GSTM1 null genotype was also associated with increased
risk of CHD (OR = 1.17, 95% CI: 1.05, 1.31) (Table 2). By stratifying the analysis by ethnicity, an OR of 1.34 (95% CI:
1.04, 1.72; I2 = 95.9%, P<0.001) (Figure 3) and 1.40 (95% CI: 1.11, 1.77; I2 = 78.6%, P<0.001) (Table 2) resulted in
null genotype, among Caucasians and Asians, respectively. For meta-analysis of Caucasian studies, ten studies were
spotted by Galbraith plot as possible major sources of heterogeneity [20,27–29,33,34,38,41]. After adjustment for het-
erogeneity by excluding these studies, the association was still significant in Caucasians (OR = 1.18, 95% CI: 1.07,
1.31; I2 = 18.1%, P=0.261). For meta-analysis of Asian studies, four studies were spotted by Galbraith plot as possi-
ble major sources of heterogeneity [24,30,46,50]. After adjustment for heterogeneity by excluding these studies, the
association was still significant in Asians (OR = 1.60, 95% CI: 1.32, 1.95; I2 = 44.2%, P=0.073). Subgroup analysis
by source of controls yield an OR of 1.47 (95% CI: 0.86, 2.51; I2 = 96.1%, P<0.001) and 1.33 (95% CI: 1.11, 1.58;
I2 = 91.2%, P<0.001) resulted for null genotype, among hospital-based controls and healthy controls, respectively
(Table 2). Stratified by sample size showed that the combined ORs were 1.32 (95% CI: 1.09, 1.61) for studies with
the sample size < 600 and 1.40 (1.07, 1.84) for studies with the sample size > 600 (Table 2). Among smokers in 14
studies, people with the GSTM1 null genotype had an increased CHD risk with an OR of 1.64 (95% CI: 1.12, 2.40;
I2 = 82.2%, P<0.001) (Table 2). Among non-smokers in 11 studies, people with the GSTM1 null genotype was not
associated with CHD risk (OR = 1.26, 95% CI: 0.70, 2.27; I2 = 94.2%, P<0.001) (Table 2).

Smoking
There are 22 studies [17,18,21,22,24–28,30–35,37,40,41,44–46,49] comprising 6816 CHD cases and 9822 controls.
There was obvious between-study heterogeneity was detected among total 22 studies (I2 = 83.3%; P<0.001), and
thus the random-effects model yielded an OR of 2.16 (1.77, 2.62) (Figure 4). The Begg’s test (P=0.735) and Egger’s
test (P=0.808) showed no publication bias. After the exclusion of 4 studies [22,24,27,32] spotted by Galbraith plot as
possible major sources of heterogeneity, there was no obvious between-study heterogeneity among those remained
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Table 1 Characteristics of studies included in a meta-analysis of GSTM1 null genotype and CHD risk

First author Year Country Ethnicity
Genotyping
method

Control
source

Number
of cases

Number
of
con-
trols

Cases
null

Controls
null

Hardy–
Wein-
berg
Equilib-
rium Adjustment covariates

Evans [16] 1996 Saudi Arabia Caucasian PCR PB 90 884 57 504 NA NA

Wilson [17] 2000 U.K. Caucasian PCR PB 356 187 191 107 NA NA

Li [18] 2000 U.S.A. Caucasian PCR PB 400 890 178 354 NA Age, sex, race, LDL, HDL,
hypertension and diabetes

Wang [20] 2001 U.S.A. Caucasian PCR HB 612 256 343 153 NA NA

Salama [19] 2002 U.S.A. Caucasian PCR PB 120 90 45 33 NA NA

Wilson [24] 2003 U.K. Asian PCR PB 170 203 70 107 NA NA

Palmer [23] 2003 U.K. Caucasian PCR HB 51 57 40 35 NA Age, smoking, duration of
disease, sex, HDL, glucose,
triglycerides, and blood
pressure

Olshan [22] 2003 U.S.A. Caucasian PCR PB 526 868 252 352 NA Age, sex and race

Masetti [21] 2003 Italy Caucasian PCR HB 308 122 163 66 NA NA

Girisha [25] 2004 India Asian PCR PB 197 198 46 41 Yes NA

Tamer [26] 2004 Turkey Caucasian RT-PCR PB 148 247 67 103 NA NA

Hayek [28] 2006 U.K. Caucasian PCR PB 193 2399 88 1142 NA NA

Abu-Amero [27] 2006 Saudi Arabia Caucasian PCR HB 1054 762 655 117 NA Hypertension, cholesterol,
obesity, smoking

Cornelis [29] 2007 Canada Caucasian PCR PB 2042 2042 980 531 NA Age, sex, area, smoking,
waist-to-hip ratio, income,
physical activity, history of
diabetes and hypertension,
intake of alcohol, and energy
adjusted saturated fat and
folate

Kim [30] 2008 Korea Asian PCR HB 356 336 198 191 NA Age, sex, hypertension, DM,
BMI and lipid profile

Wang [31] 2008 China Asian PCR HB 277 277 89 59 Yes Diabetes, hypertension,
smoking status

Martin [34] 2009 U.S.A. Caucasian PCR PB 67 63 41 19 NA NA

Manfredi [33] 2009 Italy Caucasian PCR HB 184 47 108 18 NA NA

Maciel [32] 2009 Brazil Mixed PCR PB 869 1573 557 789 NA NA

Ramprasath [39] 2011 India Asian PCR HB 290 492 128 150 NA NA

Bazo [35] 2011 Brazil Caucasian PCR HB 297 100 160 44 NA NA

Singh [40] 2011 India Asian PCR PB 230 300 56 65 NA Age, sex, BMI, smoking,
alcohol, food habit, lipid
profile and fasting glucose

Nomani [37] 2011 Iran Caucasian PCR HB 209 108 100 57 NA NA

Norskov CCHS
[38]

2011 Denmark Caucasian RT-PCR PB 1769 8425 921 4414 Yes NA

Norskov CGPS
[38]

2011 Denmark Caucasian RT-PCR PB 801 9099 411 4738 Yes NA

Norskov CIDHS
[38]

2011 Denmark Caucasian RT-PCR PB 2360 4160 1203 2210 NA NA

Zhang [36] 2011 China Asian PCR PB 255 145 120 46 NA NA

Taspinar [44] 2012 Turkey Caucasian PCR PB 122 142 51 66 NA Age, gender, family history,
smoking status, and diabetes

Kariz [41] 2012 Slovenia Caucasian PCR HB 206 257 64 91 NA Age, gender, diabetes, BMI,
smoking, lipid parameters

Lakshmi [42] 2012 India Asian PCR PB 350 282 68 54 Yes Age, BMI, gender, diabetes,
family history of CAD

Phulukdaree [43] 2012 South Africa Asian PCR PB 102 100 37 18 Yes NA

Cora [45] 2013 Turkey Caucasian PCR PB 324 296 182 143 NA Age, sex, smoking, diabetes,
hypertension, family history,
lipid profile

Continued over
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Table 1 Characteristics of studies included in a meta-analysis of GSTM1 null genotype and CHD risk (Continued)

First author Year Country Ethnicity
Genotyping
method

Control
source

Number
of cases

Number
of
con-
trols

Cases
null

Controls
null

Hardy–
Wein-
berg
Equilib-
rium Adjustment covariates

Yeh [46] 2013 Taiwan Asian PCR HB 458 209 253 121 Yes Age, sex, cigarette smoking,
alcohol use, diabetes mellitus,
and levels of serum total
cholesterol and high-density
lipoprotein cholesterol

Kadoğlu [48] 2016 Turkey Caucasian PCR-RFLP PB 29 30 17 14 Yes Age, gender, hypertension
and smoking habit

Bhat [47] 2016 India Asian PCR PB 200 200 62 36 NA Age, gender, body mass
index, alcohol, total
cholesterol, hypertension and
family history of CAD

Mir [49] 2017 India Asian PCR PB 100 100 42 26 Yes NA

Bhatti [50] 2018 India Asian PCR PB 562 564 217 127 NA NA

Abbreviations: AMI, acute myocardial infarction; AR, atherosclerosis; BMI, body mass index; CAD, coronary artery disease; HB, hospital-based; IHD, is-
chemic heart disease; MI, myocardial infarction; NA, not available; PB, population-based; PCR, polymerase chain reaction; RT-PCR, reverse transcription
PCR.

Table 2 Subgroup analyses of studies included in a meta-analysis of GSTM1 null genotype and CHD risk

Null versus
present Studies Cases/controls OR (95% CI) Heterogeneity Model

P for Begg’s
test

P for Egger’s
test

I2 PH

Total studies 37 16684/36510 1.38 (1.15, 1.69) 93.8% <0.001 Random 0.097 0.499

Total studies
(adjustment for
heterogeneity1)

22 5341/8322 1.17 (1.05, 1.31) 40.2% 0.027 Random 0.236 0.424

Smoker 14 2249/1300 1.64 (1.12, 2.40) 82.2% <0.001 Random 0.189 0.387

Non-smoker 11 1962/2195 1.26 (0.70, 2.27) 94.2% <0.001 Random 0.755 0.043

Ethnicity

Caucasians 23 12268/31531 1.34 (1.04, 1.72) 95.7% <0.001 Random 0.045 0.605

Caucasians
(adjustment for
heterogeneity2)

13 2980/4021 1.18 (1.07, 1.31) 18.1% 0.261 Fixed 1.00 0.763

Asians 13 3547/3406 1.40 (1.11, 1.77) 78.6% <0.001 Random 0.583 0.903

Asians
(adjustment for
heterogeneity3)

9 2001/2094 1.60 (1.32, 1.95) 44.2% 0.073 Random 0.348 0.557

Source of
controls

HB 12 4302/3023 1.47 (0.86, 2.51) 96.10% <0.001 Random 0.244 0.238

PB 25 12382/33487 1.33 (1.11, 1.58) 91.20% <0.001 Random 0.199 0.418

Sample size

<600 20 3628/2973 1.32 (1.09, 1.61) 68.5% <0.001 Random 0.041 0.016

>600 17 13056/33537 1.40 (1.07, 1.84) 96.9% <0.001 Random 0.650 0.472

Abbreviations: HB, hospital based; PB, population based.
PH: P-value based on Q test for between-study heterogeneity.
1Adjustment for heterogeneity was performed by excluding 15 studies as the outliers and the possible major source of heterogeneity.
2Adjustment for heterogeneity was performed by excluding 10 studies as the outliers and the possible major source of heterogeneity.
3Adjustment for heterogeneity was performed by excluding 4 studies as the outliers and the possible major source of heterogeneity.

studies (I2 = 10.9%; P=0.324). Thus, the fixed-effects model was used to pool the ORs, and the result was not sub-
stantially changed (OR = 2.00, 95% CI: 1.82, 2.20). We performed a sensitivity analysis by omitting one study at a
time, which yielded a range of ORs from 1.95 (95% CI: 1.77, 2.15) to 2.04 (1.84, 2.27).
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Figure 2. Meta-analysis of GSTM1 null genotype associated with CHD

Each box represents the OR point estimate, and its area is proportional to the weight of the study. The diamond represents the

overall summary estimate, with CI represented by its width.

GSTM1-smoking interplay
Twelve studies [17,21,24,26,27,30,31,33,37,40,45,49] included in the case-only analysis revealed a positive effect of the
interaction between the GSTM1 null genotype and smoking status (ever smoking vs. never smoking) (OR = 1.49,
95% CI: 1.06, 2.08; I2= 80.9%; P<0.001). After omitting one study [27] which was spotted by Galbraith plot as the
major sources of heterogeneity, the interaction between the GSTM1 null genotype and smoking on CHD risk was
also statistically significant (OR = 1.27, 95% CI: 1.08, 1.50; I2 = 0%, P=0.553) (Figure 5).
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Figure 3. Meta-analysis of Caucasian studies

Each box represents the OR point estimate, and its area is proportional to the weight of the study. The diamond represents the

overall summary estimate, with CI represented by its width.

Discussion
The current meta-analysis provided a comprehensive evaluation of the association between GSTM1 genetic polymor-
phism with risk of CHD. Moreover, to our knowledge, this is the first case-only designed analysis to prove a positive
effect of the interaction between GSTM1 null genotype and smoking on CHD risk.

Two previous meta-analyses were performed to evaluated the association between GSTM1 genetic polymorphism
with risk of CHD.The first one, performed in 2010 by Wang et al. [51], included 8020 cases and 11501 controls
from 19 studies. They found a significant association between null polymorphism of GSTM1 and CHD risk. After-
wards, an updated meta-analysis conducted by Zhou et al. [52] showed that GSTM1 null genotype was not associ-
ated with increased risk of CHD in total population. In the present study, we identified 37 eligible studies, includ-
ing 16684 CHD cases and 36510 controls, which could provide sufficient statistic power. Compared with previous
meta-analyses, more than 11 relevant studies [36,37,39–42,45,47–50] were included in our analysis but not in theirs.
Our meta-analysis showed that the GSTM1 null genotype was associated with a statistically elevated risk of CHD (OR
= 1.38, 95% CI: 1.15, 1.65), which was consistent with the study by Wang et al. [51], but not the study by Zhou et
al. [52]. After adjustment for heterogeneity by excluding these studies spotted by Galbraith plot, the results were still
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Figure 4. Summary estimate (ORs and 95% CI) of CHD risk associated with smoking

Each box represents the OR point estimate, and its area is proportional to the weight of the study. The diamond represents the

overall summary estimate, with CI represented by its width.

stable. By stratifying the analysis according to ethnicity, two previous meta-analyses [51,52] both found that GSTM1
null genotype was not associated with the risk of CHD for either Caucasians or Asians. However, our meta-analysis
showed that the null genotype of GSTM1 may be associated with a higher risk of CHD in both Caucasians and Asians,
which was inconsistent with two previous meta-analysis [51,52]. The results were still stable after adjustment for het-
erogeneity (Table 2). Two previous meta-analyses were relatively small and insufficient data were available for more
exhaustive subgroup analysis. Among smokers in 14 studies, individuals with the null genotype of GSTM1 had a
significantly increased CHD risk, which was consistent with two previous meta-analyses [51,52].

When interpreting the results of meta-analyses, heterogeneity assessment is necessary [65,66]. The I2 values sur-
passed the threshold of 50% in the present meta-analyses, indicating the presence of heterogeneity and insufficient
power [59]. Meta-analyses might miss true effects when even modest between-study heterogeneity is present. Be-
sides, low quality designed studies may result in incorrect conclusions [66]. In the present study, Galbraith plot was
conducted to detect the outliers as the possible studies with low quality design and sensitivity analysis was further
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Figure 5. Summary estimate (ORs and 95% CI) of the effect of interaction between the GSTM1 null genotype and smoking

(ever vs. never) on CHD risk after adjustment for heterogeneity

Each box represents the OR point estimate, and its area is proportional to the weight of the study. The diamond represents the

overall summary estimate, with CI represented by its width.

performed by omitting studies potted by Galbraith plot’s method as the outliers. Fifteen studies were detected by Gal-
braith plot as possible major sources of heterogeneity in total studies, and ten studies were spotted by Galbraith plot
as the possibly major sources of heterogeneity in Caucasian studies. When omitting those studies, the between-study
heterogeneity decreased and there was no obvious heterogeneity among the remained studies (Table 2), which proved
that those studies result in the heterogeneity. After adjustment for heterogeneity, meta-analyses showed that GSTM1
null genotype still increased risk of CHD in total population, Caucasians and Asians, respectively (Table 2). Errors
and biases which led to heterogeneity were not known. Furthermore, there was limited knowledge on how much het-
erogeneity represented a true difference in genetic effects among different populations. Further studies need to focus
on exploring the sources of heterogeneity.

Considering that CHD is a multifactorial trait and the impact of the GSTs on the progress of CHD may be mod-
ulated by age, gender and some other environmental and genetic influences, several subgroup meta-analyses were
conducted in the present meta-analysis. In racial subgroups, meta-analysis showed GSTM1 null genotype increased
risk of CHD both in Caucasians and in Asians. When stratifying by control source, significant association between
null genotype of GSTM1 and CHD risk was observed population-based studies but not in hospital-based studies.
By considering control source subgroups, Wang et al. [51] reported that GSTM1 null genotype was not associated
with the risk of CHD in both population-based controls and hospital controls. The results may be biased by studies
conducted by Abu-Amero et al. [27], Cornelis et al. [29], Nomani et al. [37], and Ramprasath et al. [39], because
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these studies included high-risk people with diabetes mellitus, hypertension, or obesity. Besides, what also needs to
be pointed out is that the result should be interpreted with caution because of the relatively small sample size.

In present meta-analyses, the results suggest a positive multiplicative interaction (i.e., OR > 1) between smoking
status and the GSTM1 null genotype on CHD risk. People with the GSTM1 null genotype were associated with CHD
risk among smokers, but not among non-smokers in the present study. Cigarette smoking is a pro-inflammatory stim-
ulus, and it is an important risk factor for CHD. Multiple chemicals in cigarette smoke can induce oxidative stress
that results in smooth muscle cell proliferation, inflammation, vascular dysfunction DNA damage, and lipid peroxi-
dation, which lead to atherosclerosis, and hence, CHD [3,4,6]. Animal experiments have proved that aromatic amines
and polycyclic aromatic hydrocarbons (PAHs) in tobacco smoke can cause atherosclerotic lesions [67,68]. Moreover,
DNA damage is present in cardiovascular disease patients [69]. Components in cigarette smoke can induce DNA
adducts mitochondrial DNA damage in vascular cells [70] and DNA adducts in target tissues [5]. Oxidative stress
and DNA damage play important roles in pathogenesis of atherosclerosis which is responsible for CHD. GSTs con-
stitute the major defensive antioxidant system against oxidative stress by reducing ROS, which detoxify metabolites
produced by oxidative stress and DNA damage within the cell and protect the cells against injury [71,72]. A homozy-
gous deletion (0/0) or null genotype at the GSTM1 locus is related to enzyme function loss, which may be associated
with susceptibility to CHD. Thus, there is biological evidence for the association between CHD risk and GSTM1
null genotype. The interaction between the GSTM1 null polymorphism and smoking status suggests that smoking is
more detrimental to people who carry the GSTM1 null genotype. Although we pooled all published studies currently
available on this topic, we thought our study was still far from conclusive, because many studies did not stratify the
results according to smoking status. Besides, the sample sizes of these studies were small to modest, limiting their
statistical power of the individual studies to detect interaction.

This meta-analysis had several limitations. First, the eligibility criteria for inclusion of controls were different. Some
studies selected healthy individuals as controls, while the controls in other studies were selected from non-CHD
individuals. Thus, selection bias might exist. Second, this meta-analyses were based on unadjusted estimates because
many studies did not provide adjusted data. Third, some of these studies had relatively small sample sizes, which
decreased their statistical power. Fourth, a possible publication bias may exist because only published studies were
included, though there was no evidence of publication bias by visual examination of Begg’s funnel plot or test results
from Egger’s test.

In conclusion, the present study showed that GSTM1 null genotype seems to be a risk factor for CHD. And
the association may be affected by smoking status. The interaction between the GSTM1 null genotype and smok-
ing status on CHD risk suggests that smoking is more detrimental to persons who carry the GSTM1 null geno-
type. Well-designed, population-based studies of adequate size are needed to investigate the possible gene–gene or
gene–environmentinteractions in the association between gene polymorphisms and CHD risk.
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