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A B S T R A C T

The severe form of coronavirus disease 19 (COVID-19) is characterized by cytokine storm syndrome (CSS)
and disseminated intravascular coagulation (DIC). Diabetes, obesity, and hypertension have, as minor com-
mon denominators, chronic low-grade inflammation and high plasma myeloperoxidase levels, which could
be linked to pulmonary phagocytic hyperactivation and CSS. The hyperactivation of M1 macrophages with a
proinflammatory phenotype, which is linked to aerobic glycolysis, leads to the recruitment of monocytes,
neutrophils, and platelets from circulating blood and plays a crucial role in thrombo-inflammation (as
recently demonstrated in COVID-19) through the formation of neutrophil extracellular traps and monocyte-
platelet aggregates, which could be responsible for DIC. The modulation of glucose availability for activated
M1 macrophages by means of a eucaloric ketogenic diet (EKD) could represent a possible metabolic tool for
reducing adenosine triphosphate production from aerobic glycolysis in the M1 macrophage phenotype dur-
ing the exudative phase. This approach could reduce the overproduction of cytokines and, consequently, the
accumulation of neutrophils, monocytes, and platelets from the blood. Second, an EKD could be advanta-
geous for the metabolism of anti-inflammatory M2 macrophages because these cells predominantly express
oxidative phosphorylation enzymes and are best fed by the oxidation of fatty acids in the mitochondria. An
EKD could guarantee the availability of free fatty acids, which are an optimal fuel supply for these cells. Third,
an EKD, which could reduce high lactate formation by macrophages due to glycolysis, could favor the produc-
tion of interferon type I, which are inhibited by excessive lactate production. From a practical point of view,
the hypothesis, in addition to being proven in clinical studies, must obviously take into account the contrain-
dications of an EKD, particularly type 1 or 2 diabetes treated with drugs that can cause hypoglycemia, to
avoid the risk for side effects of the diet.

© 2020 Elsevier Inc. All rights reserved.
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Introduction

Coronavirus disease 19 (COVID-19) is a predominantly respira-
tory viral infection caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). Recent evidence suggests that the
subgroup of patients who have the most severe clinical manifesta-
tion of COVID-19 and require hospitalization in intensive care units
may have a cytokine storm syndrome (CSS) [1].

CSS is characterized by acute respiratory distress syndrome
(ARDS) and septic shock, followed by multiorgan failure and dis-
seminated intravascular coagulation (DIC), which represent the
main causes of mortality [1−3].
CSS seems to be due to the hyperactivation of the innate
immune system by SARS-CoV-2 and the hyperproduction of proin-
flammatory cytokines and chemokines in patients with more
severe disease [1−4].

In particular, CSS is more frequently observed in patients with
diabetes, hypertension, cardiovascular disease, or obesity [4,5].
This last clinical condition is characterized by systemic chronic
inflammation, increased complement system activation and inter-
leukin (IL)-6 secretion [5].

In this regard, it has been suggested that mild immunosuppres-
sion should be achieved to avoid progression toward CSS [1].

In COVID-19, interstitial pneumonia causes significant hypox-
emia, which significantly reduces the energy input from cellular
metabolism in alveolar epithelial cell type II (ATII) and macrophage
cells and increases the uptake and utilization of glucose via glycol-
ysis to obtain energy [6−8]. Oxidative phosphorylation (OXPHOS)
in the mitochondria and gluconeogenesis are reduced; however,
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reactive oxygen species (ROS) and cytokine release are increased,
as previously observed in severe acute respiratory syndrome
(SARS) [6−8].

In autopsy findings of patients with SARS, coronavirus RNA was
detected in ATII and macrophage cells [8]. Indeed, coronavirus, as
observed in SARS, binds to the SARS receptor angiotensin-convert-
ing enzyme 2 to infect ATII cells, which represent the first line of
innate alveolar immunity [8,9].

ATII cells release cytokines and chemokines that activate alveo-
lar macrophages and lead to the migration of neutrophils [7−10].
Due to genetic and epigenetic factors [10], the intensity of cytokine
production by macrophages is variable and, if excessive, could be
deleterious, leading to ARDS [9,10].

In the course of ARDS, the presence of neutrophils in the lungs
is described, and it has been proposed that ROS derived from leu-
kocyte myeloperoxidase (MPO; present in neutrophils) are respon-
sible for the development of lung tissue injury [3,10].

MPO can modulate immune responses by activating macro-
phages [7,11]. The exposure of macrophages to MPO in vitro results
in the release of tumor necrosis factor (TNF)-a, low levels of inter-
feron (IFN)-g, and increased macrophage-dependent cytotoxicity
[11].

Hyperglycemia, which may be caused by stress and infection
and has been reported in 51% of patients with COVID-19 [12], is
poorly compensated in patients with diabetes and might be a con-
tributing factor to COVID-19 mortality.

It is well known that diabetes and obesity often are associated
with an altered inflammatory response, which leads to a greater
vulnerability of the host to new inflammatory situations, such as
infections and fever. In hyperglycemia, macrophage numbers
increase in tissues due to increased monocyte infiltration and in
situ macrophage proliferation [13].

Diabetes, obesity, and hypertension have, as minor common
denominators, chronic low-grade inflammation and high plasma
MPO levels, which could be linked to pulmonary phagocytic hyper-
activation and CSS. MPO could amplify oxidative stress in hyper-
tension in the presence of hyperglycemia [11,13,14].

Currently, there is increasing evidence to suggest that macro-
phages, including resident alveolar macrophages and macrophages
recruited from the blood, are crucial in the pathogenesis of acute
lung injury/acute respiratory distress syndrome (ALI/ARDS) [10].

In the alveoli, AM are located in the interface between the air
and cellular tissue as a uniform and dormant population. During
the exudative phase of ALI/ARDS, resident AMs are activated and
differentiate into the M1 phenotype. Proinflammatory cytokines
(IFN-g, TNF-a, and IL-1 b) are secreted by M1 macrophages into
the site of inflammation, recruiting monocytes from the blood by
means of monocyte chemoattractant protein and driving them
toward the M1 phenotype [10]. At the end of the process, the M1
phenotype shifts to the M2 phenotype, which eliminates apoptotic
cells, debris, and pathogens. These resident macrophages represent
the frontline against viruses and release powerful inflammatory
mediators, such as IL-1, IL-6, and IL-18 [10].

M1 chemokines (i.e., macrophage inflammatory protein-2 and
IL-8) attract neutrophils from the circulating blood to the alveolar
space. As previously reported, the infiltration of neutrophils and
the excessive accumulation of inflammatory cytokines are impor-
tant factors that cause tissue damage due to proinflammatory cyto-
toxic mediators in ARDS [10,15].

Additionally, in acute pulmonary lesions of ARDS, platelets and
neutrophils are observed and play crucial roles in thrombo-inflam-
mation (as recently suggested in COVID-19), forming neutrophil
extracellular traps and monocyte−platelet aggregates that could
be responsible for DIC [2,15].
Therefore, in the exudative phase, a possible depletion of acti-
vated M1 macrophages could reduce neutrophil-induced alveolitis
by reducing inflammatory stimulation; however, this is difficult to
achieve outside of experimental models [10,15].

A possible clinical solution that reduces the activity of M1 mac-
rophages in the early stages of inflammation could be to target
their metabolic specificity [9,10,15].

From a metabolic point of view, activation of the M1 phenotype
induces a metabolic shift in adenosine triphosphate (ATP) produc-
tion from OXPHOS to aerobic glycolysis (Warburg-like effect;
Fig. 1) [9,10]. The activity of the tricarboxylic acid (TCA) cycle is
reduced; whereas lactate production is increased in the presence
of hypoxia, glucose overload, or both [6,16].

After the activation of hypoxia-inducible factors, ATII cells
exclusively employ glycolysis throughout changes in epigenomic
and metabolomic signaling pathways [6,16].

Zhang et al. demonstrated that under conditions of glucose
overload and high lactate production, the binding of mitochondrial
antiviral signaling (MAVS) to lactate in ATII cells interrupts MAVS/
mitochondria localization and consequently reduces innate
immune type I interferon (IFN I) production; these phenomena
play vital roles in host defense against viruses [17]. This fact could
explain why a weaker IFN response was generated by SARS than
by traditional IFN-inducing viruses [18].

Hypothesis

We hypothesize that a eucaloric ketogenic diet (EKD), reducing
the dietetic oral supply of glucose, could favor the anti-inflamma-
tory process through the modulation of immune metabolism.

The metabolic modulation induced by a ketogenic diet (KD) can
affect the following four targets: inhibition of M1 macrophages,
activation of M2 macrophages, disinhibition of the IFN-I produc-
tion induced by the overproduction of lactate, and decreased virus
synthesis in cells.

The reduction of glucose uptake by M1 macrophages represents
the main target of the metabolic treatment of CSS because aerobic
glycolysis is the main way by which ATP is produced in activated M1
macrophages and enables M1macrophages to carry out effector func-
tions, such as inflammatory cytokine production [19] (Fig. 2).

Second, an EKD could be advantageous for the metabolism of
anti-inflammatory M2macrophage metabolism because these cells
are best fed by the oxidation of fatty acids in the mitochondria
[9,10]. These anti-inflammatory cells, which are derived from M1
cells, appear in the rehabilitation phase of ALI/ARDS and limit
proinflammatory cytokines in the alveolar space through the pro-
duction of anti-inflammatory cytokines (IL-10 and IL-1) [9,15].

M2 macrophages predominantly expresses OXPHOS enzymes,
and for this reason, an EKD could guarantee the availability of free
fatty acids, which are an optimal fuel supply for these cells.

Third, because the modulation of the glucose load could reduce
the production of lactate, there would be a better production of IFN-I,
which is inhibited by the excessive production of lactate [17].

A final metabolic hypothesis in the treatment of COVID-19
emerges from a recent in vitro study of the proteomics of host cells
infected with SARS-CoV-2, which aimed to detect potential thera-
peutic targets. Recently, Bojkova et al. observed that by targeting
glycolysis with the deoxy-D-glucose glycolysis inhibitor, an exoki-
nase inhibitor that is effective against other cultivated viruses, the
replication of COVID-19 in Caco-2 cells was inhibited [20]. Because
agents that reduce activity of glycolysis could be potential thera-
peutic agents for the treatment of COVID-19 [20], a similar antigly-
colytic effect could be obtained by means of KDs. A summary of the
hypothesis is provided in Table 1.



Fig. 1. Possible metabolic pathways during the activation of M1 from AM during COVID-19 infection. AM, alveolar quiescent macrophage; ATP, adenosine triphosphate; IFN,
interferon; IL, interleukin; M1, activated macrophage; MCP, monocyte chemoattractant protein; OXPHOS, oxidative phosphorylation; TAC cycle, tricacrboxylic acid cycle;
TNF, tumor necrosis factor. This figure was drawn adapting the vector image form the Servier Medical Art bank (http://smart.servier.com/). Servier Medical Art by Servier is
licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).
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Fig. 2. Hypothetical attenuation of phagocyte hyperactivation by means of an EKD. An EKD could reduce glucose availability for aerobic glycolysis (Warburg-like effect) in M1
macrophages. The main target of this approach is to inhibit M1 phagocyte hyperactivation, which provokes the overproduction of proinflammatory cytokines (IFN-g, TNF-a,
and IL-1 b), leading to excessive accrual of monocytes, neutrophils, and platelets from the blood. AM, alveolar quiescent macrophage; ATP, adenosine triphosphate; EKD,
eucaloric ketogenic diet; IFN, interferon; IL, interleukin; M1, activated macrophage; OXPHOS, oxidative phosphorylation; TAC cycle,tricarboxylic acid cycle ; TNF, tumor
necrosis factor. This figure was drawn adapting the vector image form the Servier Medical Art bank (http://smart.servier.com/). Servier Medical Art by Servier is licensed
under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).
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Table 1
Hypothetical effects of eucaloric ketogenic diets in COVID-19

Inhibition of Warburg-like effect
�Modulation of CSS by reducing metabolism of M1 macrophage phenotype
by reducing glucose availability

�Metabolic promotion of the anti-inflammatory M2 macrophage phenotype
fueled by fatty acids

� Reduced production of lactate associated with disinhibition of IFN-I
production

Antiglycolytic effects in infected cells leading to inhibition of virus replication

CSS, cytokine storm syndrome; IFN, interferon

Table 2
Main contraindications for ketogenic diets

Type 1 diabetes mellitus
Type 2 diabetes treated with:
Insulin

� Derivatives of sulfonylurea
� Secretagogues non sulfonylurea (i.e., repaglinide)
� Analogs of GLP-1 (i.e., exenatide, liraglutide, and lixisenatide)
� SGLT2 inhibitors (risk for euglycemic diabetic ketoacidosis;
i.e., dapagliflozin, canagliflozin, and empagliflozin)

Acute cardiovascular event within 1 mo
Food allergies to diet components
Any metabolic disorder that may affect gluconeogenesis or the ability
to adapt to periods of hypoglycemic diet (i.e., pyruvate kinase deficiency)
Pregnancy and breastfeeding
Pancreatitis
Liver failure
Disorders of fat metabolism (primary carnitine deficiency, carnitine
palmitoyltransferase, carnitine deficiency, translocase deficiency, etc.)
Porphyrias
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In obese patients affected by COVID-19, a low-calorie KD could
also be used, considering the various dietary therapeutic models
described in the literature [21].

The term ketogenic diet describes a variety of diets of varying
composition that are rich in fat, very low in carbohydrates, and are
classically composed of a 4:1 macronutrient ratio of fat to protein
(which varies according to the desired caloric intake) and carbohy-
drates <30 g/d [21].

Although low-calorie KDs and very low-calorie KDs (VLCKDs) are
used mainly in the treatment of obesity, EKDs are clinically used in the
treatment of refractory epilepsy but may also have therapeutic effects
in the treatment of gliomas and other diseases [21−23]. Many of these
diseases present underlying metabolic diseases and chronic inflamma-
tion that have been linked to a state of hyperglycemia [24−30].

Evidence that supports hypothesis

There is a consensus that ketosis protects healthy tissues
against oxidative stress by simultaneously decreasing ROS produc-
tion and increasing endogenous antioxidant capacity, even if hyp-
oxia has metabolic effects similar to those of hyperglycemia such
that reducing hyperglycemia might not cause substantial meta-
bolic shifts [27−29].

A KDminimizes spikes in blood glucose, reduces oxidative stress in
mice [29], and reduces circulating inflammatory markers in humans
[30]. A KD, increasing the levels of hydroxybutyrate, is capable of acti-
vating hydroxycarboxylic acid receptor 2, which is a G protein-coupled
receptor that inhibits nuclear factor-kB in macrophages, dendritic
cellsn andmicroglia and reduces neuroinflammation [31−33].

In preclinical studies in mice, a KD provoked an expansion of gd
T cells in the lung, improving barrier functions and antiviral resis-
tance against influenza A virus [34].

KDs are associated with improvement in respiratory function in
obese patients [35,36] After 10 d of a VLCKD, statistically significant
improvements in the functional residual capacity and expiratory
reserve volume were observed [35]. Additionally, a 20-d VLCKD
shows a significant decrease in end-tidal carbon dioxide tension [36].

Carbohydrate restriction represents the most important tool in
diabetes management [37], and KDs offer further benefits [23]. In
intensive care units (ICUs), there is a close relationship between
glycemia upon admission and mortality, not only in patients with
type 2 diabetes but also in those without a history of diabetes mel-
litus (in which the form is U-shaped) [38].

According to the literature, hyperlipidic diets, even if not keto-
genic, could be beneficial in ICU patients undergoing artificial ventila-
tion [39,40], and they could even improve respiratory failure [41].

Limitations of the hypothesis

Before ketosis occurs, glucose may be released during the first 12
h from glycogen reserves and from 24 to 72 h by gluconeogenesis
(from gluconeogenetic amino acids); thus, the effect of the diet can
only be observed starting after 72 h, when glycerol becomes the
main substrate for gluconeogenesis. According to this consideration,
it might be more beneficial to start the treatment at the onset of
symptoms, which could represent a limitation to the efficacy of the
treatment, even if a low intake of glucose could also be beneficial.

A second limitation is that hypoxia has effects on redox poten-
tial that could be increased by ketogenic diet. The lack of glucose
could lead to an insufficient NADPH/NADP+ ratio necessary to
counteract the acute oxidative challenge (rapid enzymatic reduc-
tion of glutathione and other oxidized thiols), biosynthesis, and/or
superoxide generation during immune responses or as physiologic
redox signaling [42].

Oxidative pentose phosphate pathway (PPP), however, remains
active under conditions of limited glucose intake because it is a
thermodynamically more favorable process than glycolysis [42].

The reactions of the TCA cycle can be effectively maintained in
the limited glucose supply by the oxidation of fats and amino acids
and the minimum glucose content is redirected to the PPP to main-
tain the redox balance in the cells [42].

Additionally, the KDs restore the physiologic redox signaling by
means of the b-hydroxybutyrate ketone contributing to the pro-
tection against oxidative stress by decreasing the production of
reactive mitochondrial oxygen species [43].

Another limitation could be the possible difficulty in the use of
EKD due to contraindications, in particular in some patients with
diabetes in whom a KD is not indicated (Table 2). EKD can be
implemented in patients with diabetes with great care, and many
hypothetical contraindications have been discredited. In this
regard, Bruci et al. recently demonstrated that KDs have no detri-
mental effects on the kidney in mild renal failure [44], and good
evidence is available regarding liver safety as well [20].

A recent report by Li et al. suggests that COVID�19 infection may
cause ketosis and ketoacidosis, which are correlated with a longer
median hospital length of stay and a higher mortality rate [45].

Ketosis is a physiologic process that is observed after prolonged
fasting, and ketonuria and ketonemia are detectable after ≥1 d of
fasting [46,47]. Ketone bodies increase under conditions of fasting,
starvation, and low-carbohydrate diets (i.e., KD); intense exercise;
and uncompensated diabetes mellitus [48].

The study does not report any information regarding nutritional
status, spontaneous oral food and water intake, or artificial nutri-
tional support (parenteral or enteral nutrition), which are funda-
mental for verifying any relationship among ketosis, COVID-19
infection, and clinical outcomes.
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Patients with ketosis were probably in worse clinical condition
and were probably fasting because 21.4% of patients with ketosis
versus 6.7% of patients without ketosis (P < 0.002) were receiving
invasive mechanical ventilation; 31% of patients with ketosis ver-
sus 12% of patients without ketosis (P < 0.001) had digestive disor-
ders; and 28.6% of patients with ketosis versus 13.5% of those
without ketosis (P < 0.007) had ARDS.

Finally, the development of ketoacidosis in three patients with
diabetes could be caused by poor control of their glycemic status,
which is common during starvation or hypercatabolic conditions
[49], or by insulin deficiency and dehydration, particularly if the
patients were treated with hypoglycemic drugs [50]. However, in a
paper by Li et al. there is no information about the treatment of diabe-
tes in these patients [45]. In the absence of nutritional and diabeto-
logic data, it is quite difficult to hypothesize a cause−effect
relationship between ketosis and COVID-19 infection. The only plau-
sible reason why patients were in ketosis at admission was the pro-
longation of physiologic fasting conditions due to starvation, which is
frequently observed in patients with ARDS with COVID-19, especially
if subintensive or intensive care is required [51].

To our knowledge, apart from this report, no other study actu-
ally suggests a possible exacerbation of the clinical conditions of
ARDS and COVID-19 patients due to a KD, and a trial concerning
the use of KDs in critical care patients is ongoing [52].

How this hypothesis may be tested

For this purpose, a randomized controlled trial has been devel-
oped at IRCCS San Martino, Genoa, Italy, and submitted to the
Regional Ethical Committee (KETOCOV-1 protocol 10517). The trial
involves the treatment of patients with moderate severity COVID-19
in inpatient centers by using an EKD with natural Mediterranean
food. The main endpoint is to try to prevent the progression toward
CSS, ARDS, and mortality/transfer to subintensive/ICUs or to prevent
the need for continuous positive airway pressure or intubation.
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