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Abstract: Buckypapers are thin sheets of randomly entangled carbon nanotubes, which are 

highly porous networks. They are strong candidates for a number of applications, such as 

reinforcing materials for composites. In this work, buckypapers were produced from 

multiwall carbon nanotubes, pre-treated by two different chemical processes, either an 

oxidation or an epoxidation reaction. Properties, such as porosity, the mechanical and 

electrical response are investigated. It was found that the chemical pretreatment of carbon 

nanotubes strongly affects the structural properties of the buckypapers and, consecutively, 

their mechanical and electrical performance. 
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1. Introduction 

Carbon nanotubes (CNTs) have become one of the main scientific subjects during the years after 

their discovery [1], due to their exceptional properties [2]. They have been studied either as isolated 

nanostructures or in the form of macroscopic assemblies, such as CNT papers and films [3,4],  

yarns [5], fibers [6], forests [7], etc. More specifically, CNT films, the so-called ―buckypapers‖, have 

been used as functional components in various applications, including catalyst supports [8], permeable 

membranes [9], actuators [10], capacitors [11], electrodes for fuel cells [12], electrical conductive 

components [13] and reinforcement in composite materials [14]. 

Buckypapers are thin membranes of randomly entangled CNTs, which form highly porous 

networks, mainly due to van der Waals interactions. The most common way to produce them is to 

disperse pristine or chemically modified nanotubes in a solvent medium [3,4] and, subsequently, 

filtrate the suspension through a microporous membrane. Recent studies have found that the structural, 

as well as the electrical properties of the formed CNT networks may be affected by various parameters, 

such as the chemical modification of the tubes, CNT length, diameter and number of walls, the degree 

of alignment of the carbon nanostructures and the solvent medium used for the dispersion of the 

nanotubes [3,15–17]. A number of different protocols for buckypaper fabrication have been reported, 

giving CNT papers with a variety of interesting properties [10,16–26]. This wide variation of the 

buckypaper properties necessitates the thoughtful selection of the parameters affecting the structure of 

the buckypaper, depending on the targeted application. For example, using a buckypaper as a 

permeable membrane demands a proper porosity distribution. On the other hand, its utilization as an 

electrically conductive component requires a high degree of interconnections between adjacent tubes. 

 In the area of structural materials, CNT networks are recognized as potential high performance 

filler for composites of enhanced mechanical properties [27–31]. In addition, buckypapers are strong 

candidates as reinforcing agents in laminated polymer composites structures [32,33]. The mechanical 

integrity of neat CNT buckypapers can be greatly enhanced by optimizing the packing quality of the 

carbon nanostructures during the filtration step, which leads to an increased number of interconnects 

between the adjacent tubes in the formed membrane. This may be achieved by preparing a stable CNT 

suspension containing individually dispersed tubes. On the other hand, precursor CNT suspensions 

containing both individual and bundled tubes may lead to the preparation of buckypapers with larger 

pore sizes, decreased number of interconnections and, eventually, lower mechanical integrity. 

In this work, different types of buckypapers were produced by varying three processing parameters. 

These include the chemical pretreatment of the CNT material, the chemical environment in which the 

tubes were dispersed and the drying protocol during the final stage of the buckypaper formation. The 

aim is an in-depth understanding of the structure-properties correlation, to end up with a suitable 

buckypaper for a number of applications.  

2. Results and Discussion 

During the first stage of buckypaper formation, the starting CNT material was subjected to two 

different chemical modification approaches (epoxidation and oxidation) in order to succeed in the 

exfoliation of carbon nanostructures in solution. Moreover, the aforementioned modification schemes 
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give rise to the covalent decoration of a graphitic surface with oxygen-containing functionalities. The 

presence of the latter seems to enhance the interactions between adjacent tubes in the formed 

buckypaper through hydrogen bonding forces, which collaborate with the existing van der Waals 

forces, due to the graphitic nature of the CNT surface. The strength of these interactions crucially 

affects the mechanical behavior of the buckypaper. Very strong interactions push the nanotubes to 

adhere strongly between each other, forming a structurally integrated buckypaper. On the contrary, 

weak CNT interactions lead to a more ―loose‖ network.  

Another crucial parameter that affects the structure of the buckypaper is the chemical affinity 

between the carbon nanostructures and the solvent medium used for its exfoliation in solution. The 

solvent molecule-nanotube interaction is the key factor, which finally governs the dispersion quality 

and, eventually, defines the packing density of entangled tubes in the buckypaper structure. If the 

nanotubes have good solubility in a specific solvent, then they are individually dispersed in solution, 

creating a very dense structure after the filtration of the CNT suspension. On the other hand, if the 

nanotubes are inadequately exfoliated, they form agglomerates, and the resulting buckypaper develops 

large pores. Besides the influence of solvent polarity, the final structure of the film can be strongly 

affected by the boiling point of the solvent, hence, the drying rate after the filtration process. If the 

solvent is evaporated comparatively rapidly, the nanotubes have no time for re-arrangement, and they 

remain in a more ―foamy‖ state. To this goal, we used two media that possess variable polarity, as well 

as different boiling points (dichloromethane and water). In addition, we varied the processing 

conditions concerning the filtration step. Except for the regular filtration protocol, we tried to produce 

buckypapers in which the vacuum-assisted process is terminated slightly before all the solvent was 

filtrated and then performed drying of the wet buckypaper by applying a hot air supply. In this concept, 

the nanotubes are entangled in a more ―loose‖ integrity (―Foamy‖ processing). Details of the 

fabrication protocols are given in the Experimental Section. 

Another parameter is the oxidative nature of the chemical treatment. Oxidation reaction is 

considered a harsh condition process, leading to cutting of nanotubes into smaller tubes. The latter can 

pack better, forming a more dense structure.  

Thermogravimetric analysis (TGA) was used to examine the grafting density of the oxygen 

containing groups onto the graphitic surface. These involve hydroxyl and carboxyl functionalities 

during oxidation reactions or epoxy ones during epoxidation. Figure 1 shows the weight loss of 

pristine, oxidized and epoxidized multi-wall carbon nanotubes (MWCNTs) as a function of temperature. 

As can be seen, there is a clear difference in the thermogravimetric curves of the chemically modified 

samples compared to untreated ones, which is due to the pyrolysis of the functional groups attached on 

the MWCNTs surface. It was calculated that the mass percentage of the functionalities in the oxidized 

and epoxidized material was about 11% and 8%, respectively.  

A typical optical image of the produced buckypapers is shown in Figure 2. To examine the structure 

of the buckypapers, porosimetry measurements, as well as scanning electron microscopy (SEM) 

imaging were recorded. Figure 3 shows the pore size frequency distribution of the produced 

buckypapers, while Table 1 gives the extracted data from the porosimetry experiments. As it can be 

seen, both oxidized buckypapers in water exhibit very small pore sizes with a profile maximum at 

about 20 nm. By using the alternative drying protocol to create a more foamy structure, pore sizes of 

about 27 nm were achieved. It is noted that such pore sizes are unsuitable for the infusion of 



Materials 2013, 6 2363 

 

 

macromolecular chains within the free interstitial galleries of the CNT network. This fact makes the 

oxidized buckypapers unsuitable for use as a reinforcement material for nanocomposite  

production [14], as the unfilled pores can crucially affect the properties of the nanocomposites [34,35] 

On the contrary, epoxidized buckypapers both in water and dichloromethane exhibit larger pore sizes 

of a few hundreds of nanometers. The shift of the pore size distribution maxima towards higher values 

for epoxidized tubes could be attributed to their decreased dispersibility in both media. 

Figure 1.Thermogravimetric analysis of pristine, oxidized and epoxidized nanotubes. 

 

Figure 2. Optical image of a multi-wall carbon nanotube (MWCNT) buckypaper. 

 

Table 1. Data from porosimetry experiments. Vp is the intruded Hg volume per gram of 

material and  is the % porosity. 

Buckypaper Vp (cm
3
/g) φ 

Oxidized-dense 0.6718 0.55 

Oxidized-foamy 0.6467 0.63 

Epoxidized-H2O 2.6698 0.85 

Epoxidized-CH2Cl2 3.1470 0.88 

Analogous conclusions can be obtained optically from the SEM photos (Figure 4). A first note here 

is that the oxidized buckypapers present a very dense structure. The nanotubes are arranged very close 
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to each other, leaving almost no empty spaces between them. The opposite picture is found in 

epoxidized buckypapers, namely, the average distance between the CNTs is somewhat higher, which is 

strongly supported by the porosimetry results (Figure 3). In both cases, a uniform morphology of the  

CNT network can be observed, while at the nanotube level, there appears to be a random orientation of 

the carbon nanostructures.  

Figure 3. Pore size distribution from Hg intrusion curves of oxidized and  

epoxidized buckypapers. 

 

Figure 4. (a) SEM photo of an oxidized buckypaper; (b) SEM photo of an  

epoxidized buckypaper. 

  

(a) (b) 

The tensile properties of the studied buckypapers are shown in Figure 5 and Table 2. In Figure 5 are 

presented the stress-strain curves and, in Table 2, the tensile strength at fracture, the fracture strain and 

the elastic modulus. The oxidized buckypapers exhibit an enhanced fracture stress compared to the 

epoxidized ones. This is attributed to an increased number of CNT interconnects, giving rise to better 

structural integrity of the porous network and, hence, higher friction interactions between the tubes. 

More specifically, the oxidized-dense buckypaper has reached 14 MPa stress and 0.68% strain, while 
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the Young modulus is 2.8 GPa. The oxidized-foamy film has a lower stress, due to its more ―loose‖ 

structure. On the contrary, the epoxidized papers, due to their decreased bulk density, have fewer 

interconnections between the nanotubes, which means that lower friction forces are present. This is the 

reason why their mechanical properties are poor. 

Figure 5. Tensile curves of the buckypapers. 
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Table 2. Tensile data of the buckypapers: σ is the tensile strength at fracture, ε is the 

fracture strain and E is the Young modulus. 

Buckypaper σ (MPa) ε (%) E (GPa) 

Oxidized-dense 14.03 ± 1.80 0.68 ± 0.10 2.83 ± 0.20 

Oxidized-foamy 9.14 ± 2.00 0.44 ± 0.12 2.28 ± 0.25 

Epoxidized-H2O 2.10 ± 0.12 2.35 ± 0.32 0.20 ± 0.02 

Epoxidized-CH2Cl2 2.42 ± 0.16 3.42 ± 0.50 0.21 ± 0.04 

An overview in the literature data, concerning the mechanical properties of CNT buckypapers, 

clearly shows a wide range of values for both tensile strength (2–80 MPa) and modulus  

(0.5–15 GPa) [3,4,16,36–38]. The variation at the measured values strongly demonstrates that the 

mechanical properties of CNT thin films are affected by a number of parameters, such as number of 

walls, length of carbon nanostructures, nature of chemical treatment, etc. 

The DC electrical conductivity of the buckypapers is shown in Table 3. As it can be seen, the 

oxidized buckypapers exhibit higher electrical conductivity than the epoxidized ones. To interpret this 

behavior, it is necessary to understand the mechanism of the electrical conductivity in a carbon 

nanotube film. In general, the electrical conductivity of such films depends on two factors, namely, the 

conductivity of the nanotubes themselves and the ability of the electric carriers to tunnel between 

neighboring nanotubes. Concerning the first factor, we can reasonably consider that the electrical 

conductivity of oxidized and epoxidized nanotubes is very similar, as the nanotubes used in both 

oxidation and epoxidation treatments were the same, and the chemical treatment affected only the 

outer shell of these multi-wall nanotubes. 
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Table 3. DC electrical conductivity of the buckypapers. 

Buckypaper σ (S/cm) 

Oxidized-dense 10.3 

Oxidized-foamy 10.1 

Epoxidized-H2O 7.1 

Epoxidized-CH2Cl2 6.0 

On the other hand, the second factor implies that the electric conductivity depends on the number of 

contact points or conductive channels between the nanotubes. As the network density increases, more 

conductive pathways for the charge carriers are available, yielding an increase in conduction with the 

film density. This explains the higher conductivity of the oxidized buckypapers compared to the 

epoxidized ones, since these films have a more dense structure. The same conclusion for the relation of 

film structure vs. electrical conductivity has also been extracted by Lyons et al. [39], who also reported 

electrical conductivity values in the range between 2.08 S/cm and 167 S/cm for single-wall CNT films. 

The nanotube network architecture opens up significant opportunities for the use of buckypapers in 

a number of applications. For example, if an application employs the impregnation of the paper for a 

composite material production, the film must have large pores to allow the matrix to completely 

impregnate the nanotubes. Also, If an application demands high electrical conductivity or high elastic 

modulus and strength, the buckypaper should be as dense as possible, to increase the number of 

junctions and the friction between the tubes, respectively. Therefore, the application in which the 

buckypaper is going to be used defines the structural morphology the buckypaper should have. 

3. Experimental Section  

MWCNTs were grown by the chemical vapor deposition (CVD) method and were supplied by 

Nanocyl (Belgium). Potassium permanganate (KMnO4), sulfuric acid (H2SO4) and dichloromethane 

(CH2Cl2) were purchased by Sigma-Aldrich, whereas 3-chloroperoxybenzoic acid (70%–75%) was 

supplied by Acros Organics. The production of the buckypapers is composed of two steps; the 

modification of the nanotubes and the fabrication of the buckypaper. 

Concerning the oxidation protocol [40], 2.6 g of multi-walled CNTs were dispersed in 260 mL of 

0.5 M sulfuric acid by ultrasonic vibration for 5 min in a flask. The suspension was refluxed in an oil 

bath at 120 °C with magnetic stirring. Meanwhile, 25 g of KMnO4 was dissolved in 260 g of 0.5 M 

sulfuric acid, and this solution was added to the flask dropwise. The mixture was kept at 120 °C for  

3 h. After that period, the resulting suspension was filtered, washed with hydrochloric acid and 

deionized water and then dried. 

For the epoxidation reaction [41] of the CNT material, 7 g of 3-chloroperoxybenzoic acid were 

dissolved in 150 mL CH2Cl2. Then, 1.5 g of multi-walled CNTs were added, and the solution was 

stirred for about 20 h at room temperature. The reaction mixture was filtered through a 0.2 μm PTFE 

membrane filter and washed with excess CH2Cl2. The epoxidized CNT material was dispersed again in 

150 mL CH2Cl2 by sonication, filtered and dried under vacuum at 80 °C. 

Concerning the fabrication of multi-walled CNT buckypapers, consisting of the oxidized nanotubes, 

stable CNT suspensions in H2O or CH2Cl2 at a concentration of 1 mg mL
−1

 were prepared by tip 

sonication. The mass of the CNT material was 250 mg. These dispersions were then vacuum-filtered 
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through polycarbonate or PTFE filters, respectively, of 0.4 μm pore size. After drying with hot air, 

CNT films were peeled off from the filtration membrane (―dense‖ processing). Alternatively, to 

succeed in a more foamy structure of the paper, vacuum filtering was stopped, while some solvent was 

remaining, and then the drying was performed (―foamy‖ processing). By this, the nanotubes were able 

to arrange with each other in longer distances, because of the absence of vacuum pressure. The average 

thickness of the oxidized buckypapers was approximately 100 μm and their diameter about 7 cm. For 

the epoxidized buckypapers, the average thickness of the epoxidized buckypapers was approximately  

170 μm for the water treated and 230 for the dichloromethane treated. Dichloromethane was also 

tested with oxidized nanotubes, but they were not able to produce a bulk structure. Also, the alternative 

method for a more foamy structure didn’t work for the epoxidized nanotubes. Table 4 shows the 

different types of buckypapers tested. 

Table 4. Types of buckypapers tested. 

Chemical treatment Solvent Drying Structural integrity Sample name 

Oxidation 

Water 
―Dense‖ processing Yes Oxidized-dense 

―Foamy‖ processing Yes Oxidized-foamy 

Dichloromethane 
―Dense‖ processing No – 

―Foamy‖ processing No – 

Epoxidation 

Water 
―Dense‖ processing Yes Epoxidized-H2O 

―Foamy‖ processing No – 

Dichloromethane 
―Dense‖ processing Yes Epoxidized-CH2Cl2 

―Foamy‖ processing No – 

To examine how successful the functionalization of the nanotubes was, thermogravimetric analysis 

(TGA) was performed. A quantity of CNTs was heated at 700 °C in nitrogen atmosphere, by  

10 °C/min. The analysis was carried out with a TA Q50 instrument. 

The textural characteristics (porosity) of the neat buckypapers were examined by mercury 

porosimetry analysis. Mercury intrusion curves of the studied CNT sheets were obtained using a 

QuantachromePoreMaster 60 Hg Porosimeter. The capillary pressure, Pc, has been replaced by the 

diameter of an equivalent cylindrical tube, D, according to the relation: 

4 cos / CP D  (1) 

where γ is the surface tension of Hg (0.48 N m
−1

) and θ is the contact angle (40°). 

SEM photos from the cross section of the buckypapers were taken in order to examine the structure 

of the nanotubes. We used a LEO SUPRA 35 VP scanning electron microscope.  

Mechanical testing of the neat buckypapers was performed in a TA Instruments Dynamic 

Mechanical Analyzer Q800 with a displacement rate of 500 μm min
−1

 on strips of the dimensions  

30 mm × 4 mm. For each film type, stress-strain curves were measured for 5 strips.  

Finally, conductivity characteristics of the buckypapers were obtained with a conventional four 

probe method [42]. 
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4. Conclusions 

In this work, different types of buckypapers were fabricated. It was found that the oxidized 

nanotubes produce a very dense paper, with very small pores. In addition, epoxidized nanotubes create 

a foamier buckypaper, with larger pore sizes. The mechanical and electrical properties of the 

buckypapers strongly correlate with their structure: the denser the paper is, the higher the modulus and 

electrical conductivity is. These findings give a quite useful understanding of the structure-properties 

relation of the buckypapers, for potential utilization in many applications, such as reinforcing agents in 

polymer composites. 
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