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Abstract

Background: Prostate cancer is initially dependent on androgens for survival and growth, making hormonal therapy the
cornerstone treatment for late-stage tumors. However, despite initial remission, the cancer will inevitably recur. The present
study was designed to investigate how androgen-dependent prostate cancer cells eventually survive and resume growth
under androgen-deprived and antiandrogen supplemented conditions. As model system, we used the androgen-responsive
PC346C cell line and its therapy-resistant sublines: PC346DCC, PC346Flu1 and PC346Flu2.

Methodology/Principal Findings: Microarray technology was used to analyze differences in gene expression between the
androgen-responsive and therapy-resistant PC346 cell lines. Microarray analysis revealed 487 transcripts differentially-
expressed between the androgen-responsive and the therapy-resistant cell lines. Most of these genes were common to all
three therapy-resistant sublines and only a minority (,5%) was androgen-regulated. Pathway analysis revealed enrichment
in functions involving cellular movement, cell growth and cell death, as well as association with cancer and reproductive
system disease. PC346DCC expressed residual levels of androgen receptor (AR) and showed significant down-regulation of
androgen-regulated genes (p-value = 1027). Up-regulation of VAV3 and TWIST1 oncogenes and repression of the DKK3
tumor-suppressor was observed in PC346DCC, suggesting a potential AR bypass mechanism. Subsequent validation of
these three genes in patient samples confirmed that expression was deregulated during prostate cancer progression.

Conclusions/Significance: Therapy-resistant growth may result from adaptations in the AR pathway, but androgen-
independence may also be achieved by alternative survival mechanisms. Here we identified TWIST1, VAV3 and DKK3 as
potential players in the bypassing of the AR pathway, making them good candidates as biomarkers and novel therapeutical
targets.
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Introduction

Prostate cancer (PCa) is the second leading cause of male cancer

deaths in the Western countries and an increasing problem in

those adopting Western lifestyle and diet. Advances in screening

and diagnosis have allowed the detection of tumors at earlier

stages, when curative therapy is still feasible. For late stage

disseminated disease however, current therapies are merely

palliative and no curative treatment exists. Since the growth of

prostate tumors is originally androgen-dependent, metastatic

cancers are generally treated with androgen ablation therapy,

with or without antiandrogen supplementation [1,2]. The vast

majority of these patients show a significant clinical regression, but

the cancer eventually recurs within 12–18 months. These

recurrent tumors have escaped androgen suppression and became

resistant to hormonal therapy, referred to as hormone-refractory

or castration-resistant PCa. To survive and resume growth in an

androgen-deprived environment PCa cells must either adapt the

androgen receptor (AR) pathway to the androgen-depleted

conditions or invoke alternative survival and growth pathways

[3]. Much experimental evidence exists to support both mecha-

nisms, which are not necessarily mutually exclusive. AR expression

was shown to be maintained in the majority of patients that

underwent hormonal therapy and showed recurrence of disease,

suggesting a role of the AR also in late stage disease [4,5].

Moreover, the AR gene is amplified and/or overexpressed in

about 30% of the hormone-therapy refractory tumors, and it has

been proposed this could sensitize the receptor for the residual

androgen concentrations and antiandrogens present under

hormonal therapies [6,7,8]. Furthermore, several AR mutations,

resulting in increased activity or broadened ligand-specificity to

alternative steroids and antiandrogens, have been associated with

disease progression [9,10]. Other modifications of the AR pathway

that may induce hormone-refractory growth include intratumoral

steroidogenesis, ligand-independent activation by cross-talk with

other signaling pathways, alterations in the balance of AR co-

regulators or expression of constitutively active truncated AR

isoforms [3,11,12]. Interestingly, recent work from others and us

has revealed that the AR pathway may be selectively attenuated in

advanced/metastatic disease [13,14,15]. Since the AR pathway is
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also involved in processes of cellular differentiation and prostate

maturation, it is tempting to suggest that PCa cells may eventually

gain growth advantage by inhibiting the AR induced differenti-

ation. Prompted by these results, we focused the present study on

alternative survival and growth pathways, which are independent

of AR activation. To effectively bypass the AR pathway, cancer

epithelial cells must be able to survive the apoptotic signals

triggered by hormonal therapies and invoke alternative growth

pathways. Autocrine production of growth factors or its receptors,

activation of oncogenes and inhibition of tumor-suppressor genes

are all possible mechanisms for bypassing the AR pathway.

Consistent with this hypothesis, paracrine growth factors that are

normally secreted by prostate stroma cells, such as epidermal

growth factor (EGF), insulin-like growth factor 1 (IGF1),

hepatocyte growth factor (HGF), keratinocyte growth factor

(KGF) or interleukin 6 (IL6), are found to be overexpression in

hormone-refractory cancer in association with a switch to

autocrine production by cancer epithelial cells [16]. In addition

to being potential mitogens, mounting evidence indicates that

these growth hormones are also able to cross-talk with the AR

signaling pathway, leading to expression of AR target genes in the

absence of androgens [17]. Therefore, it still has to be established

whether the autocrine production of these growth factors

represents an adaptation or a true bypass of the AR signaling

pathway. Alterations in the anti-apoptotic BCL2 oncogene and in

the pro-apoptotic P53 and PTEN tumor-suppressor genes have

also been found in prostate cancer [18,19]. However, these events

mostly occur before late stage progression, making them less likely

candidates for the switch to hormone-refractory growth in late

stage disease. Nevertheless, by inhibiting PCa cell death and

shifting the balance towards cellular proliferation, genes involved

in the regulation of apoptosis may also play a role in hormone-

refractory growth.

To explore the mechanism(s) by which androgen-dependent

PCa cells become resistant to hormonal therapy, we used

microarray technology to interrogate the differences in gene

expression between androgen-responsive and therapy-resistant cell

lines. As model system we used the androgen-responsive PC346C

cell line and its therapy-resistant sublines PC346DCC, PC346Flu1

and PC346Flu2. These sublines were derived from the parental

PC346C by long-term androgen ablation (PC346DCC), supple-

mented with the antiandrogen hydroxyflutamide (PC346Flu1 and

PC346Flu2) [20,21]. Previous studies revealed distinct AR

modifications in all three therapy-resistant sublines, which

corresponded to diverse mechanism of hormone-refractory

growth. Whereas PC346DCC, expressing very low levels of AR

and PSA, showed evidence of bypassing of the AR pathway,

PC346Flu1 exhibited 4-fold AR up-regulation and PC346Flu2

was shown to carry the T877A AR mutation. Both PC346Flu1

and PC346Flu2 sublines replicate the progression to hormone-

therapy refractory disease through adaptations of the AR pathway.

Therefore, we focused on the PC346DCC subline to select for

genes particularly involved in the bypass of the AR pathway. In

addition to providing novel insights into the mechanisms of PCa

progression, the genes identified here may prove useful as

prognostic markers and potential targets for novel therapeutical

approaches.

Methods

Reagents and cell lines
The PC346C cell line was derived from the prostate tumor of a

patient with non-progressive prostate adenocarcinoma (T4N0M0)

[20,21]. The PC346DCC, PC346Flu1 and PC346Flu2 sublines

were derived from PC346C upon long-term culture in charcoal-

stripped medium, without or with antiandrogen hydroxyflutamide

supplementation, respectively. The development and character-

ization of these cell lines has been published previously [20,21].

The basic culture medium used in the maintenance of PC346 cell

lines consisted of DMEM-F12 medium (Cambrex BioWhitaker,

Belgium) supplemented with 2% fetal calf serum (FCS; PAN

Biotech GmbH, Aidenbach, Germany), 1% insulin-transferrin-

selenium (Gibco BRL), 0.01% bovine serum albumin (Boehringer

Mannheim, Germany), 10 ng/ml epidermal growth factor (Sigma-

Aldrich), penicillin/streptomycin antibiotics (100 U/ml penicillin,

100 mg/ml streptomycin; BioWhitaker, Belgium); plus the

following additions: 100 ng/ml fibronectin (Harbor Bio-Products,

Tebu-bio, The Netherlands), 20 mg/ml fetuine (ICN Biomedicals,

The Netherlands), 50 ng/ml choleratoxin, 0.1 mM phosphoetha-

nolamine, 0.6 ng/ml triiodothyronine and 500ng/ml dexameta-

son (all from Sigma). PC346C cells were maintained in culture in

the complete medium described above, supplemented with

0.1 nM 17-methyltrienolone (R1881; NEN, Boston MA, USA).

PC346DCC selection medium was supplemented as described

above, but depleted from androgens by using dextran-coated

charcoal (DCC) treated FCS. PC346Flu1 and PC346Flu2 culture

medium was also androgen depleted by using 2% DCC-FCS, and

supplemented with 1 mM of hydroxyflutamide (OH-flutamide,

Schering-Plough Research Institute, New Jersey, USA).

Cells were grown in T25 PrimariaTM tissue culture flasks (BD

Biosciences Benelux N.V, The Netherlands) at 37uC under 5%

CO2 humidified atmosphere.

Expression microarray analysis
Cells were seeded in their respective selection medium to reach

,50% confluency and allowed to grow for 2 days. Then, cells

were rinsed twice with PBS and stored at 220uC until RNA

isolation. Total RNA was isolated with RNAzol B reagent

(Campro Scientific, Veenendaal, The Netherlands) and further

purified through RNeasy columns (Qiagen) with on-column DNA

digestion, according to the manufacturer’s protocol. RNA quality

was checked on 1% agarose gel.

Cy3- or Cy5-labelled RNA probes were produced by incorpo-

rating amino-allyl UTP during RNA amplification, followed by

coupling to N-hydroxysuccinimide modified dye. Briefly, 3 mg

RNA was used for a T7-based linear mRNA amplification

protocol, described previously [22]. Amino-allyl UTP, plus equal

amount of unmodified rUTP, was incorporated into aRNA with

T7 Megascript Kit (all from Ambion), according to manufacturer’s

protocol. Amplified RNA was purified and concentrated using

Microcon-YM 30 columns (AmiconH) to rinse three times with

300 ml RNAse-free water. Finally, 2 mg aminoallyl-modified RNA,

in a maximum of 3.33 ml of RNAse-free water, was incubated with

1.66 ml sodium bicarbonate buffer (0.3 M, pH 9) and 5 ml Cy3- or

Cy5- dye (CyScribe Post-Labeling Kit, Amersham, NJ, USA), for

1 h in the dark at room temperature. Reaction was stopped with

5 ml 4 M hydroxylamine HCl (Sigma), contra-labelled probes were

combined and purified/concentrated using Microcon-YM 30.

Probe was collected in 5–15 ml final volume and resuspended in

80 ml Ambion hybridization buffer number 1.

For the microarray we used double-dye oligoarrays representing

about 15,000 human genes, on which labelled RNA from the each

therapy-resistant subline was cohybridized with contra-labelled

PC346C. Four microarrays were performed per condition, using

two distinct cell passages in dye-swap. This was done to account

for the biological variability and to exclude dye-preferential

binding to oligonucleotides on the microarray. The oligoarrays

used in this study were produced at the Erasmus Center for

AR Pathway Bypass Mechanisms
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Biomics. Briefly, a human 18,584 oligonucleotides library

(Compugen, Sigma-Genosys) was spotted on aminosilane slides

using a Virtek Chipwriter Professional arrayer (Virtek Vision

International, Waterloo, Canada). Control spots included land-

marks, spotting buffer, alien oligonucleotides (SpotReport Alien

Oligo Array, La Jolla, Stratagene), poly d[A]40–60, salmon sperm

DNA, and human COT-1 DNA. Before the hybridization,

microarray slides were prehybridized in 5x SSC, 0.05% SDS,

4% BSA solution for 30 min at 45uC, washed twice with RNAse-

free water for 2 min, rinsed with isopropanol and spin-dried for

3 min at 1500 g. Microarray hybridizations were performed

overnight at 45uC, with continuous agitation, in a HS4800

Hybridization Station (Tecan Benelux BV). Finally, the arrays

were washed automatically in the Hybridization Station using: 2x

SSC/0.05% SDS (at 45uC), 1x SSC and 0.2x SSC (at room

temperature), and dried under a stream of N2, before scanning.

Data extraction and analysis
Arrays were scanned in a ScanArray Express HT scanner

(Perkin Elmer, Nederland BV) and spot intensities were quantified

using Imagene software (Bio Discovery Inc, El Sequndo, CA,

USA). To balance Cy3 and Cy5 spot intensities, Loewess

normalization per subarray was performed using limma-package

(http://bioinf.wehi.edu.au/limma/) from Bioconductor (http://

www.bioconductor.org) [23,24]. To scale between arrays, the

global median intensity per array was set at 1000. Dye intensities

below 200 were then thresholded at 200, to minimize noise and

make fold-change on the low-intensity range more robust against

outliers. Spots with intensities below the threshold (200) for both

Cy3 and Cy5 channels in more than 2 of the 4 arrays performed

per subline were excluded from the analysis. Sample to reference

ratios were then calculated and 2log transformed. Spots that

showed opposite effects for the dye-swap/biological replicates were

excluded from further analysis; effects were called opposite if the

mean 2log ratio for the per subline were $0.5 for one dye and

below #20.5 for the dye-swap. Following normalization and all

the above-mentioned quality controls, the 2log intensity ratios

were averaged for the replicates of each subline. This data was

stored in SRS7 (Sequence Retrieval System version 7, Lion

Bioscience AG, Heidenberg, Germany), which was also used for

the comparisons with other previously published/publicly avail-

able databases [25]. The microarray data was deposited in the

Gene Expression Omnibus repository (http://www.ncbi.nlm.nih.

gov/geo/ under the GEO accession number GSE21596).

Hierarchical clustering and data visualization was performed

using Cluster and TreeView programs (Eisen Labs: http://rama.

lbl.gov). Significance Analysis of Microarrays (SAM; http://www-

stat.stanford.edu/,tibs/SAM) was used to determine which genes

were statistically different between stimulated samples and non-

stimulated references. Gene ontology clustering was performed

using Database for Annotation, Visualization and Integrated

Discovery (DAVID: http://david.abcc.ncifcrf.gov) [26,27]. The

pathway and functional analyses were generated through the use

of Ingenuity Pathways Analysis (IngenuityH Systems, www.

ingenuity.com).

cDNA synthesis and RT- PCR analysis
Normal and tumor specimens from patients used for quantitative

real-time RT-PCR analysis were obtained from the frozen tissue

bank of the Erasmus Medical Center (Rotterdam, the Netherlands).

The specimens were collected between 1984 and 2001. The

experimental protocols were approved by the Erasmus MC Medical

Ethics Committee according to the Medical Research Involving

Human Subjects Act. Additional information about these specimens

was provided previously.[28] Total RNA was isolated as described

above and cDNA was synthesized using MMLV-reverse transcrip-

tase kit and Oligo(dT)12–18 primer (Invitrogen), according to

manufacturer’s protocol. cDNA samples were stored at 220uC.

TaqMan real-time PCR analysis was performed in an ABI Prism

7700 Sequence Detection System (Applied Biosystems, Foster City,

CA), using AmpliTaq Gold DNA polymerase (Applied Biosystems),

according to manufacturer’s specifications. Validated primers and

probes from TaqMan Gene Expression Assays (Applied Biosystems)

were used for quantification of VAV3 (Hs00916821_m1), TWIST1

(Hs00361186_m1), DKK3 (Hs00951307_m1) and GAPDH

(Hs99999905_m1), according to the PCR settings provided by

Applied Biosystems. PBGD was quantified using 0.33 mM of

primers forward: CATGTCTGGTAACGGCAATG and reverse:

GTACGAGGCTTTCAATGTTG primers, in Power SybrGreen

PCR Master Mix (Applied Biosystems), according to thermocycling

protocol recommended by the manufacturer. Transcript quantities

for each sample were normalized against the average of two

endogenous references and relative to a calibrator. The two

housekeeping genes used as endogenous references were PBGD

and GAPDH; a mixture of cDNAs from prostate carcinoma

xenografts was used as the calibrator. Graphs and statistics were

performed with GraphPad Prism (version 3.0). P-values ,0.05 were

considered significant.

Results

Differential gene expression profile between the
androgen-responsive PC346C and its therapy-resistant
sublines

Expression array analysis was performed to explore whether the

AR pathway is still active in the hormone-therapy refractory cells

under androgen-deprived conditions and identify putative alter-

native growth/survival pathways. Each of the therapy-resistant

sublines were cultured in their respective selection medium

(steroid-stripped medium for PC346DCC, supplemented with

1 mM OH-flutamide for PC346Flu1 and Flu2) and hybridized on

the microarrays, together with the parental androgen-responsive

PC346C (cultured in complete medium supplemented with

0.1 nM R1881). To account for the biological variability and

dye-preferential binding to oligonucleotides on the microarray,

four arrays were performed per condition, using two independent

cell passages in dye-swap. Variation in expression pattern was

analysed per therapy-resistant subline, and spots were considered

to be differentially expressed if the absolute 2log ratio $ 0.5 (ratio

$ 1.42 or #0.71) for at least three of the 4 arrays and for the

average of all 4 arrays. According to these criteria, there were a

total of 487 differentially regulated transcripts in the therapy-

resistant sublines compared to androgen-sensitive PC346C, most

of which were overlapping all three refractory sublines (Fig. 1).

With 276 differentially regulated transcripts, PC346DCC showed

the strongest divergence from the parental line, whereas

PC346Flu2 revealed the least alterations (127 transcripts).

Significance Analysis of Microarrays (SAM) was used to determine

statistical significance of the selected genes and, at a 5% false

discovery rate, 392 of the 487 (80%) selected reached statistical

significance. The top 100 differentially expressed genes between

the therapy-resistant and the androgen-responsive cell lines,

respective expression ratios and statistical analysis are presented

in Tables 1 and 2. A comprehensive list of all the regulated genes

per subline is provided in Tables S1 to S3. Interestingly, a

considerable proportion (64/487) of the differentially regulated

genes clustered at distinct genomic locations on chromosomes 4, 5,

6, 8, 11 and 18 (p-value,0.05; Table 3).

AR Pathway Bypass Mechanisms
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AR pathway is down-regulated in PC346DCC
To investigate the activation state of the AR pathway in the

PC346DCC, PC346Flu1 and PC346Flu2, the SRS database was

used to link and compare our present data with a previously

established androgen-response gene signature (Fig. 2A). This

androgen-response signature was determined by expression

microarray analysis, after stimulation of the different PC346 cell

lines with the synthetic androgen R1881 or the antiandrogen

hydroxyflutamide (Table S4). Of the 487 differentially-regulated

transcripts in the therapy-resistant sublines, only 27 were AR

target genes (,6%), indicating that other genes and pathways are

also involved in hormone-therapy refractory proliferation of these

sublines. Furthermore, AR target genes were down-regulated in

PC346DCC (p-value = 1027), whereas their expression in

PC346Flu1 and PC346Flu2 was not significantly affected

(Fig. 2B). However, although not statistically significant for the

Figure 1. Differentially-expressed genes in PC346DCC, PC346Flu1 and PC346Flu2 sublines compared to the androgen-responsive
PC346C. PC346C was cultured in complete medium with 0.1 nM R1881, whereas the hormone-refractory sublines were culture in dextran-coated
charcoal stripped medium (PC346DCC), supplemented with 1 mM of the antiandrogen hydroxyflutamide (PC346Flu1 and PC346Flu2). A) Heat-map
representation: red and green colors represent up-regulation and down-regulation, respectively, whereas black indicates no difference between
sublines and parental PC234C cells. Grey squares indicate missing data, either due to low expression levels, poor data quality or absence of probes for
the respective transcript in the array platform used for the study. B) Venn-diagram of the number of regulated genes in the different sublines.
doi:10.1371/journal.pone.0013500.g001
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Table 1. Top 50 genes overexpressed in the therapy-resistant cell lines, expression ratios and SAM q-values.

GenBank Cytoband
HUGO
symbol HUGO Gene Name PC346DCC PC346Flu1 PC346Flu2

2log
ratio qvalue

2log
ratio qvalue

2log
ratio qvalue

NM_004982 12p11.23 KCNJ8 potassium inwardly-rectifying channel subfamily J member 8 2.7 0.000 1.2 0.000 1.9 0.000

NM_000790 7p11 DDC dopa decarboxylase aromatic L-amino acid decarboxylase 1.9 0.005 0.1 0.253 2.4 0.218

NM_013452 Xp22 VCX variable charge X-linked 2.3 0.000 1.6 0.015 1.7 0.049

NM_014269 4q34 ADAM29 ADAM metallopeptidase domain 29 1.5 0.000 1.4 0.011 2.2 0.000

NM_004750 19p12 CRLF1 cytokine receptor-like factor 1 2.1 0.000

NM_006113 1p13.3 VAV3 vav 3 guanine nucleotide exchange factor 2.0 0.000 0.2 0.031 0.4 0.218

NM_003226 21q22.3 TFF3 trefoil factor 3 intestinal 1.9 0.000 20.5 0.211 1.5 0.049

NM_001072 2q37 UGT1A1 UDP glucuronosyltransferase 1 family polypeptide A1 0.2 0.380 1.7 0.015 20.1 0.714

NM_006332 19p13.1 IFI30 interferon gamma-inducible protein 30 1.7 0.000 1.1 0.025 0.7 0.218

NM_012463 12q24.31 ATP6V0A2 ATPase H transporting lysosomal V0 subunit a2 0.8 0.028 1.2 0.051 1.7 0.000

AB037810 1q42.2 SIPA1L2 signal-induced proliferation-associated 1 like 2 0.9 0.046 1.5 0.000 1.7 0.049

NM_001823 14q32 CKB creatine kinase brain 1.7 0.000 1.5 0.015 1.6 0.000

NM_016084 17p11.2 RASD1 RAS dexamethasone-induced 1 1.6 0.000 1.2 0.000 0.5 0.218

NM_005794 14q11.2 DHRS2 dehydrogenase/reductase SDR family member 2 1.4 0.003 1.5 0.071 1.2 0.051

NM_013253 11p15.2 DKK3 dickkopf homolog 3 Xenopus laevis 20.6 0.005 1.4 0.000 0.7 0.218

AK026892 22q13.31 CERK ceramide kinase 1.4 0.000 0.0 0.321 0.5 0.218

NM_006721 10q22 ADK adenosine kinase 1.4 0.000 0.1 0.422 0.7 0.194

NM_005804 19p13.12 DDX39 DEAD Asp-Glu-Ala-Asp box polypeptide 39 1.4 0.000 0.3 0.253 0.8 0.194

U58096 Yp11.2 TSPY1 testis specific protein Y-linked 1 1.0 0.037 1.4 0.000

S67154 3q28 EIF4A2 eukaryotic translation initiation factor 4A isoform 2 0.1 0.589 1.3 0.021 20.5 0.101

AL049949 10q22.3 C10orf56 chromosome 10 open reading frame 56 1.3 0.000 0.5 0.048 0.4 0.218

NM_016639 16p13.3 TNFRSF12A tumor necrosis factor receptor superfamily member 12A 0.6 0.028 1.3 0.000 0.5 0.218

NM_001902 1p31.1 CTH cystathionase cystathionine gamma-lyase 1.3 0.020 0.5 0.044 0.7 0.194

NM_003516 1q21.2 HIST2H2AA3 histone cluster 2 H2aa3 20.1 0.645 1.2 0.000 0.8 0.194

L07383 3p21.3 RPSA ribosomal protein SA 0.1 0.513 1.2 0.071

Y09836 ORF* 3 UTR of hypothetical protein ORF1* 0.7 0.046 1.0 0.011 1.2 0.101

NM_003712 19p13 PPAP2C phosphatidic acid phosphatase type 2C 1.2 0.000 0.9 0.044 1.2 0.000

NM_014214 18p11.2 IMPA2 inositol myo -1 or 4 -monophosphatase 2 0.3 0.242 0.0 0.515 1.1 0.000

Y11158 16p13.3 SNORA10 small nucleolar RNA H/ACA box 10 20.1 0.513 1.1 0.000 0.5 0.218

NM_005311 7p12–p11.2 GRB10 growth factor receptor-bound protein 10 1.1 0.028 0.7 0.008 0.5 0.218

AF086251 11q21 SESN3 sestrin 3 0.1 0.534 1.1 0.048 1.1 0.049

NM_003234 3q29 TFRC transferrin receptor p90 CD71 1.1 0.000 0.8 0.025 0.4 0.218

NM_014061 Xp11.22 MAGEH1 melanoma antigen family H 1 1.0 0.020 20.5 0.090 0.0 0.725

NM_016192 2q32.3 TMEFF2 transmembrane protein with EGF-like and 2
follistatin-like domains 2

0.0 0.645 0.3 0.115 1.0 0.049

NM_003243 1p33–p32 TGFBR3 transforming growth factor beta receptor III 1.0 0.000 0.1 0.287 0.5 0.236

U90878 10q22-q26.3 PDLIM1 PDZ and LIM domain 1 elfin 1.0 0.000 0.4 0.135 0.4 0.287

AF190900 1q32.1 KLHL12 kelch-like 12 Drosophila 0.2 0.466 0.7 0.000 1.0 0.194

NM_002795 17q12 PSMB3 proteasome prosome macropain subunit beta type 3 0.5 0.113 0.6 0.063 1.0 0.000

NM_001814 11q14.2 CTSC cathepsin C 1.0 0.000

NM_000213 17q25 ITGB4 integrin beta 4 0.9 0.086 21.3 0.000 0.1 0.777

AK021498 7q22.3 FLJ36031* Hypothetical protein FLJ36031* 0.9 0.028 20.1 0.321 0.1 0.755

NM_003524 6p21.3 HIST1H2BH histone cluster 1 H2bh 0.2 0.380 0.9 0.000 0.2 0.384

NM_018303 6p25.3 EXOC2 exocyst complex component 2 0.9 0.000 0.2 0.253 0.2 0.636

NM_001262 1p32 CDKN2C cyclin-dependent kinase inhibitor 2C p18 inhibits CDK4 0.5 0.211 0.1 0.459 0.9 0.194

NM_001831 8p21–p12 CLU clusterin 0.1 0.534 0.9 0.000 0.7 0.049

NM_003311 11p15.5 PHLDA2 pleckstrin homology-like domain family A member 2 0.0 0.624 0.9 0.011 0.8 0.194

NM_004282 6p12.3-p11.2 BAG2 BCL2-associated athanogene 2 0.9 0.020 0.4 0.044 0.7 0.194
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AR pathway as a whole, PC346Flu1 and PC346Flu2 did show

lower induction of some androgen-responsive genes such as

KLK2, STEAP1, STEAP2 and EHF.

Gene ontology and pathway analysis identifies cancer
signature

The selected 487-gene signature was classified according to

Gene Ontology (GO) Biological Processes using the Database for

Annotation, Visualization and Integrated Discovery (DAVID)

[26,27]. Annotation clustering analysis showed enrichment in

categories involved in organ development, reproductive system

differentiation, cellular growth, differentiation and apoptosis

(Table 4). Ingenuity Pathway Analysis was used to identify

enrichment in ‘‘diseases and disorders’’, ‘‘molecular and cellular

functions’’, and to search for intrinsic pathways/networks within

the selected gene sets (www.ingenuity.com). Cancer and repro-

ductive system disease were ranked in the top 3 of ‘‘diseases and

disorders’’, which logically confirmed the enrichment of genes

associated with PCa, such as hepsin, clusterin, vitamin D

receptor, trefoil factor 3, tumor protein D52, the AR itself and

several of its target genes (Fig. 3A and 3B, respectively).

Furthermore, we used Network analysis to screen the 276-gene

signature of PC346DCC for potential alternative growth

pathways that could be involved in bypassing the AR signaling.

Interestingly, signaling via growth-hormone receptor (GHR),

insulin receptor (INSR) and epidermal growth factor receptor was

among the top 10 Networks (score = 20) showing deregulation in

PC346DCC (Fig. 3C).

Integrative analysis reveals genes deregulated in prostate
cancer progression

To identify genes modulated in PCa that could explain

hormone-therapy refractory growth through bypass of the AR

pathway, we linked the 276-gene signature from PC346DCC

with data from seven PCa microarray studies published

previously (Table 5) [14,29,30,31,32,33,34]. Only genes present

in at least 5/7 databases (209 genes) and deregulated in at least

3/7 (111 genes) were included for further analysis. Hierarchical

clustering performed on the signature genes (first column), next

to primary cancer vs. normal prostate (second column),

metastatic cancer vs. primary cancer (third column), and finally

hormone-refractory vs. hormone-naı̈ve disease (fourth column),

is shown in Fig. 4. Approximately 30% of the genes differentially

expressed in PC346DCC were found to be consistently

deregulated in metastatic PCa compared to organ-confined

disease.

TWIST1, DKK3 and VAV3 as markers for disease diagnosis
and prognosis

Based on their recognized pathological functions and consistent

deregulation in multiple PCa databases, twist homolog 1

(TWIST1), vav 3 guanine nucleotide exchange factor (VAV3)

and dickkopf homolog 3 (DKK3) were selected for their potential

role in the bypass of the AR pathway. In this manner, TWIST1

and VAV3 are putative oncogenes involved in growth hormone

signaling, as revealed by Ingenuity Pathway Analysis (Fig. 3C). On

the other hand, DKK3 is a tumor suppressor, showing strong

down-regulation in the datasets from Chandran et al., Lapointe

et al. and Varambally et al. (Fig. 4C). Whereas TWIST1 showed

consistent up-regulation in primary and metastatic PCa datasets

from Varambally et al., Yu et al., Lapointe et al. and Chandran

et al., VAV3 was down-regulated in primary tumors followed by

up-regulation in metastasis (Fig. 4C).

Quantitative RT-PCR was performed on an independent set of

prostate samples, obtained by radical prostatectomy or transure-

thral resection of the prostate of patients being operated at

Erasmus MC clinic. This panel contained 21 benign prostate tissue

samples and 74 adenocarcinomas at different disease stages.

Quantitative PCR analysis showed up-regulation of TWIST1 in

primary PCa samples and lymph node metastasis (P-value =

0.0001 and 0.002, respectively). No difference was observed

between hormone-refractory (HRPC) and hormone-naı̈ve tumors

(HNPC) (Fig. 5A). DKK3 expression was significantly decreased in

PCa and lymph node metastasis (P-value #0.0001), although no

difference was observed during progression from organ-confined

to metastatic or hormone-refractory disease (Fig. 5B). VAV3

expression decreased gradually during PCa progression, with the

lowest levels observed in metastatic prostate tumors (P-value =

0.0001 for Post linear-trend test) and hormone-refractory samples

(P-value = 0.005 for HNPC vs. HRPC; Fig. 5C). Lymph node

samples were removed from the VAV3 analysis in Fig. 5C,

because VAV3 was highly expressed in normal lymph node

compared to normal prostate tissues (data not shown). In these

settings, the presence of remnants of normal lymph node tissue can

lead to over-estimation of the real VAV3 quantity in lymph node

metastasis. Kaplan-Meier analysis showed a direct correlation

between VAV3 expression and metastasis-free survival (P-value

= 0.004 for Logrank trend test; Fig. 5D).

Discussion

In the present study we used microarray analysis to identify

differences in the gene expression pattern of the androgen-

responsive PC346C cell line and its therapy-resistant sublines:

GenBank Cytoband
HUGO
symbol HUGO Gene Name PC346DCC PC346Flu1 PC346Flu2

2log
ratio qvalue

2log
ratio qvalue

2log
ratio qvalue

NM_001327 Xq28 CTAG1A cancer/testis antigen 1A 0.6 0.046 0.9 0.000 0.6 0.194

AL157449 17q21.33 PPP1R9B protein phosphatase 1 regulatory inhibitor subunit 9B 0.9 0.007 0.9 0.000 0.6 0.218

AF200348 2p25 PXDN peroxidasin homolog Drosophila 21.2 0.003 21.3 0.000 0.9 0.064

*no approved HUGO symbol/name exists for this entry. If present, gene symbol/name from the UNIGENE database is given in alternative.
2log ratio.0 indicates overexpression in the therapy-refractory subline, compared to parental PC346C.
2log ratio,0 indicates down-regulation in the therapy-refractory subline.
doi:10.1371/journal.pone.0013500.t001
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Table 2. Top 50 genes down-regulated in the therapy-resistant cell lines, expression ratios and SAM q-values.

GenBank Cytoband
HUGO
symbol HUGO GeneName PC346DCC PC346Flu1 PC346Flu2

2log
ratio qvalue

2log
ratio qvalue

2log
ratio qvalue

NM_017935 4q24 BANK1 B-cell scaffold protein with ankyrin repeats 1 22.9 0.000 21.8 0.000 20.8 0.053

AF216077 9q32 COL27A1 collagen type XXVII alpha 1 22.1 0.000 22.8 0.000 21.7 0.053

NM_014380 Xq22.2 NGFRAP1 nerve growth factor receptor TNFRSF16 associated protein 1 20.2 0.513 22.5 0.000 22.7 0.000

AB042410 1p21.3 GPR88 G protein-coupled receptor 88 22.4 0.000 20.3 0.394 0.8 0.194

AK026813 7q21 STEAP2 six transmembrane epithelial antigen of the prostate 2 22.3 0.000 20.8 0.135 20.8 0.176

AF188747 19q13.41 KLK2 kallikrein-related peptidase 2 22.3 0.000 20.7 0.063 20.8 0.053

NM_012449 7q21 STEAP1 six transmembrane epithelial antigen of the prostate 1 22.3 0.000 20.9 0.036 20.5 0.236

NM_003307 21q22.3 TRPM2 transient receptor potential cation channel subfamily M
member 2

22.1 0.000 0.0 0.536 20.1 0.725

AB020968 6q22.2 MARCKS myristoylated alanine-rich protein kinase C substrate 21.6 0.000 22.0 0.000 21.3 0.053

M26663 19q13.41 KLK3 kallikrein-related peptidase 3 22.0 0.009 0.0 0.207 20.4 0.392

NM_004117 6p21.3-21.2 FKBP5 FK506 binding protein 5 22.0 0.000 0.1 0.459 0.4 0.218

NM_001359 8q21.3 DECR1 2 4-dienoyl CoA reductase 1 mitochondrial 21.9 0.000 21.1 0.000 21.6 0.053

NM_014333 11q23.2 CADM1 cell adhesion molecule 1 21.0 0.000 21.9 0.000 20.1 0.725

AK026331 2q35 CHPF* Chondroitin polymerizing factor* 21.7 0.000 20.8 0.048 20.2 0.678

AB020637 11q21 ENDOD1 endonuclease domain containing 1 21.7 0.000 20.4 0.160 0.2 0.678

NM_012116 19q13.2 CBLC Cas-Br-M murine ecotropic retroviral transforming sequence c 21.6 0.000 21.2 0.000 20.4 0.218

X15667 GPRP* Glutathione peroxidase-related protein GPRP* 21.6 0.022 0.2 0.185 20.8 0.053

NM_006167 8p21 NKX3-1 NK3 homeobox 1 21.6 0.003 20.1 0.459 20.3 0.413

NM_006006 11q23.1 ZBTB16 zinc finger and BTB domain containing 16 21.6 0.003 0.1 0.444 0.3 0.328

NM_003278 3p22-p21.3 CLEC3B C-type lectin domain family 3 member B 21.5 0.005 21.3 0.000 21.3 0.084

AL049963 4q22-q24 SLC39A8 solute carrier family 39 zinc transporter member 8 21.5 0.000 21.4 0.000 20.9 0.053

AK000216 3p21.31 FLJ20209* Hypothetical protein FLJ20209* 21.5 0.000 20.7 0.115 20.7 0.084

AK000028 4q24 LOC90024* Hypothetical LOC90024* 21.5 0.000 20.7 0.000 20.5 0.120

NM_007011 15q26.1 ABHD2 abhydrolase domain containing 2 21.5 0.000 21.1 0.032 0.1 0.573

AK024917 1p22 DDAH1 dimethylarginine dimethylaminohydrolase 1 20.3 0.380 21.5 0.000 0.1 0.760

AF252283 13q21 KLHL1 kelch-like 1 Drosophila 21.5 0.000 0.5 0.115 0.1 0.738

X75684 3q21-q25 TM4SF1 transmembrane 4 L six family member 1 0.6 0.211 21.5 0.000 0.5 0.194

AL122055 6q21 CDC2L6 cell division cycle 2-like 6 CDK8-like 21.4 0.000 21.3 0.000 21.2 0.000

NM_000944 4q21-q24 PPP3CA protein phosphatase 3 formerly 2B catalytic subunit
alpha isoform

21.4 0.028 21.2 0.000 21.0 0.084

NM_016598 3p21.31 ZDHHC3 zinc finger DHHC-type containing 3 21.4 0.003 21.1 0.000 20.9 0.053

NM_002151 19q11-q13.2 HPN hepsin transmembrane protease serine 1 21.0 0.000 20.9 0.000 21.4 0.053

NM_001311 14q32.33 CRIP1 cysteine-rich protein 1 intestinal 21.4 0.018 0.4 0.101 20.9 0.115

AL050367 10p13 C10orf38 chromosome 10 open reading frame 38 0.1 0.380 21.4 0.000 20.6 0.084

NM_005864 14q11.2-q12 EFS embryonal Fyn-associated substrate 21.4 0.009 0.4 0.135 20.6 0.064

NM_005510 6p21.3 DOM3Z dom-3 homolog Z C. elegans 0.5 0.211 0.1 0.422 21.4 0.053

NM_019005 7p22-p21 FLJ20323* Hypothetical protein FLJ20323* 20.9 0.000 21.3 0.000 20.6 0.134

AK026517 11p12 EHF ets homologous factor 20.7 0.028 21.3 0.000 20.6 0.309

AF271070 12q13.11 SLC38A1 solute carrier family 38 member 1 21.3 0.000 20.7 0.044 20.2 0.678

AF200348 2p25 PXDN peroxidasin homolog Drosophila 21.2 0.003 21.3 0.000 0.9 0.064

NM_003255 17q25 TIMP2 TIMP metallopeptidase inhibitor 2 0.6 0.028 21.3 0.031 20.2 0.678

L29496 Xq11.2-q12 AR androgen receptor 21.3 0.018 0.9 0.000 20.3 0.194

NM_000213 17q25 ITGB4 integrin beta 4 0.9 0.086 21.3 0.000 0.1 0.777

D80010 2p25.1 LPIN1 lipin 1 21.2 0.000 21.1 0.015 20.9 0.053

NM_007173 11q14.1 PRSS23 protease serine 23 21.2 0.018 20.9 0.021 20.9 0.101

NM_002165 20q11 ID1 inhibitor of DNA binding 1 dominant negative
helix-loop-helix protein

21.2 0.018 20.6 0.500
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PC346DCC, PC346Flu1 and PC346Flu2. This analysis detected

487 transcripts differentially regulated in the hormone-therapy

refractory cells versus the parental PC346C. Many of these were

common to all therapy-resistant sublines, despite the different AR

pathway modifications, suggesting similar growth enhancing

adaptations (Fig. 1). These shared genes could be divided in four

main categories: regulation of cell cycle progression and

proliferation (ex. HPN, NDN, ATR, ABL2, DHRS2), develop-

ment and cellular differentiation (CLEC3B, KCNJ8, ADAM29,

DNMT3A), fatty acid and steroid metabolism (LPIN1, DECR1,

ACSL3) and intracellular signaling transduction (PPAP2C,

PPP3CA, PRSS23, GRB10, SIPA1L2). Interestingly, 40 of the

genes down-regulated in PC346DCC clustered in just four

genomic locations: 4q21-24 (7 genes), 5q11-23 (9 genes), 6q14-

23 (6 genes) and chr8 (18 genes). This is more than would be

expected by chance. Also 6 genes down-regulated in PC346Flu1

and 14 up-regulated genes in PC346Flu2 clustered at 11q11-15

and chr18, respectively (Table 3). Duplication of chromosome 18

and loss of 8p has been previously reported in PC346Flu2 and

PC346DCC, respectively, and may explain the clustering observed

at these loci [20]. However, no evidence of chromosomal

amplifications or deletions was detected at the other loci

mentioned. A possible explanation is that epigenetic mechanisms,

such as promotor methylation or histone modifications, may be

involved in the transcriptional regulation of these large chromo-

somal regions. Indeed, expression of DNA methyltransferase

DNMT3A and histone deacetylase HDAC6 was altered in

PC346DCC, supporting this hypothesis. Nevertheless, losses at

4q, 5q, 6q, 8p and 11p have been frequently reported in PCa

specimens and these loci are suspected of harbouring potential

tumor suppressor genes [35,36].

Previously, we have shown that PC346DCC, PC346Flu1 and

PC346Flu2 display different AR modifications that resulted in

distinct mechanisms of hormone-therapy refractory growth [20].

PC346DCC revealed very low levels of the AR and its target gene

prostate specific antigen (PSA), and was insensitive to androgen

stimulation in growth assays, promotor transactivation assays and

expression microarray profiling (unpublished data) [20]. These

results suggest that the AR pathway has been bypassed and is not

essential for the growth of PC346DCC cells. The present study

further substantiates this hypothesis by showing a strong down-

regulation of AR target genes compared to the parental PC346C

(Fig. 2). PC346Flu1, on the other hand, expresses high levels of the

AR and previously showed a ‘‘super-activation’’ of this receptor in

response to androgens, both in transactivation assays as in

expression microarray analysis (unpublished data) [20]. Interest-

ingly, the proliferation of this subline is inhibited by physiological

concentration of androgens, and is optimal in the absence of this

ligand. A possible explanation for this growth suppressive effect is

that the ‘‘super-activation’’ of the AR by androgens in PC346Flu1

may be tilting the balance towards cellular differentiation [37,38].

It is worth noting how few AR target genes are deregulated in

PC346Flu1 versus the parental PC346C (Fig. 2). This suggests that

the AR pathway remained active in the PC346Flu1 cells cultured

in androgen-depleted medium supplemented with AR antagonist

hydroxyflutamide. The few AR target genes that were differen-

Table 3. Chromosomal clustering of the differentially expressed transcripts.

Cell line #genes regulated up/down regulated Cytoband #genes cytoband* Bonferroni p-value

PC346DCC 7 down 4q21-24 56 0.003

PC346DCC 9 down 5q11-23 130 0.028

PC346DCC 6 down 6q14-23 65 0.026

PC346DCC 8 down 8p11-22 74 0.003

PC346DCC 10 down 8q11-24 131 0.006

PC346Flu1 6 down 11p11-15 92 0.068

PC346Flu2 14 up 18 109 ,0.0001

p-values determined by Fisher’s exact test with Bonferroni correction for multiple testing.
*number of genes located in the cytoband that are expressed by the indicated cell line.
doi:10.1371/journal.pone.0013500.t003

GenBank Cytoband
HUGO
symbol HUGO GeneName PC346DCC PC346Flu1 PC346Flu2

2log
ratio qvalue

2log
ratio qvalue

2log
ratio qvalue

NM_017860 1q21.2 C1orf56 chromosome 1 open reading frame 56 20.5 0.037 21.2 0.000 20.6 0.053

NM_004457 2q34-q35 ACSL3 acyl-CoA synthetase long-chain family member 3 21.2 0.009 20.7 0.025 20.3 0.101

NM_005045 7q22 RELN reelin 21.2 0.003 20.6 0.101 20.2 0.714

NM_005544 2q36 IRS1 insulin receptor substrate 1 21.2 0.020 20.1 0.394 0.0 0.714

AK024495 11p15.5 LRRC56 leucine rich repeat containing 56 21.2 0.000 0.2 0.321 0.5 0.218

*no approved HUGO symbol/name exists for this entry. If present, gene symbol/name from the UNIGENE database is given in alternative.
2log ratio.0 indicates overexpression in the therapy-refractory subline, compared to parental PC346C.
2log ratio,0 indicates down-regulation in the therapy-refractory subline.
doi:10.1371/journal.pone.0013500.t002
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tially expressed in PC346Flu1 include EHF, NFIB and HLX,

which are involved in development and differentiation processes.

The third therapy-resistant subline studied here, PC346Flu2,

carries the T877A AR mutation, well known for causing

broadened receptor activation by non-androgenic ligands, includ-

ing flutamide [39]. Consistent with the presence of this

‘‘promiscuous’’ AR, the growth of PC346Flu2, as well as

expression of AR target genes, are stimulated by both the

synthetic androgen R1881 and the antiandrogen hydroxyfluta-

mide (unpublished data) [20]. In PC346Flu2, the presence of the

T877A AR mutation allows for the maintenance of AR activity in

the selection medium supplemented with 1 mM hydroxyflutamide.

This is further substantiated in the present study by the

observation that PC346Flu2 is the least divergent of the therapy-

resistant sublines, with no more than 127 differentially regulated

transcripts compared to the parental PC346C (Fig. 1).

Of the 487 transcripts differentially expressed between andro-

gen-responsive PC346C cells and the therapy-resistant sublines

only a few (,5%) were AR-regulated genes. These results indicate

that the gene expression differences observed are not largely

explained by R1881 activating the AR transcriptional program in

PC346C cells. Expression of AR-regulated cell cycle genes, such as

A-, B- and D-type cyclins, cyclin-dependent kinases (CDK1,

CDK2, CDK4, CDK6) and cyclin-dependent kinase inhibitors

(CDKN1B, CDKN2A, CDKN2B), was generally unaffected

[40,41,42,43,44,45]. Cyclin D1 (CCND1) was the only cyclin

found to be deregulated, with a 2-fold lower expression level in all

three therapy-resistant sublines. However, apart from its role in

cell cycle transitions, CCND1 is also a potent inhibitor of AR

activity [46]. Since CCND1 expression is induced by androgens,

higher expression in PC346C may reflect the R1881 supplemen-

tation in this cell line [47]. On the other hand, lower expression of

CCND1 in the therapy-resistant sublines, in particular PC346Flu1

and PC346Flu2, may contribute to the maintenance of AR activity

under selection conditions. Finally, one must keep in mind that

cyclins and other cell cycle genes are mainly regulated during cell

division through post-transcriptional mechanisms, including pro-

tein degradation, localization and phosphorylation [44,48].

Both PC346Flu1 and PC346Flu2 sublines have an active AR

and acquired hormone-therapy refractory proliferation through

adaptations of the AR pathway. Therefore, to study alternative

survival and growth pathways independent of the AR we further

focused on the expression profile of PC346DCC cells. The

Ingenuity Pathway Analysis program was used to screen the 276-

gene signature of PC346DCC for potential gene Networks that

could be involved in bypassing the AR signaling. Among the top

10 Networks, the signaling pathway via growth-hormone receptor

(GHR), insulin receptor (INSR) and epidermal growth factor

receptor (EGFR) as a potential candidate emerged (Fig. 3C).

These receptors are not themselves deregulated in PC346DCC

but several partners of this signaling pathway were, including

VAV3 and TWIST1. VAV3 and TWIST1 are potential

oncogenes, and while VAV3 can interact with and cross-activate

signaling via hormone and growth receptors, expression of

TWIST1 is in turn stimulated by EGF and IGF1 [49,50,51,52].

The effect of peptide growth factors on androgen independent

Figure 2. Activation state of the AR pathway in the PC346DCC, PC346Flu1 and PC346Flu2. Differentially-expressed genes in PC346
hormone-refractory sublines versus parental PC346C were linked to a previously established androgen-response gene signature (see Materials and
Methods section). (A) Heat-map representation of androgen-responsive genes deregulated in any of the PC346 hormone-refractory sublines. Color
scheme as described in Fig. 1. (B) Venn-diagram and respective statistics.
doi:10.1371/journal.pone.0013500.g002
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proliferation of prostate cancer cells is mainly mediated via the

Ras/MAPK, PI3K/AKT and STAT3 signaling cascades [53,54].

These signaling pathways may directly activate transcription of

genes involved in cell survival, proliferation and migration, but

may also indirectly activate the AR pathway in a ligand-

independent manner. In the absence of androgens, MAPK and

AKT kinases may induce AR phosphorylation and activation,

whereas STAT3 can bind ligand-free AR and facilitate its

translocation to the nucleus. Thus peptide growth factors may

function as alternative survival/growth pathways, for example in

the subgroup of AR negative prostate tumors, and/or as an

adaptation of AR pathway by preserving AR activity under

androgen ablation conditions. Recent reports have implicated Src,

a member of the Src-family kinases, in the proliferation of

hormone-refractory tumors. Src kinase was found to be overex-

pressed in prostate cancer, where Src inhibitors decreased

Table 4. Biological processes significantly enriched in the therapy-resistant gene signature.

Annotation Cluster 1 Enrichment Score: 4.42 count P value

multicellular organismal development 86 1.8E-05

anatomical structure development 78 7.7E-05

system development 68 3.9E-05

Annotation Cluster 2 Enrichment Score: 4.24 count P value

cell differentiation 69 7.7E-05

cell development 53 3.1E-05

Annotation Cluster 3 Enrichment Score: 4.09 count P value

apoptosis 38 4.1E-05

programmed cell death 38 5.0E-05

Annotation Cluster 4 Enrichment Score: 2.68 count P value

regulation of phosphorylation 8 1.7E-03

regulation of phosphate metabolic process 8 2.3E-03

Annotation Cluster 5 Enrichment Score: 2.67 count P value

amino acid and derivative metabolic process 21 5.8E-04

amine metabolic process 21 6.0E-03

nitrogen compound metabolic process 22 6.7E-03

Annotation Cluster 6 Enrichment Score: 2.15 count P value

regulation of biological process 134 3.0E-03

regulation of cellular process 124 1.4E-02

regulation of gene expression 63 6.7E-02

Annotation Cluster 7 Enrichment Score: 2.15 count P value

neurogenesis 16 7.0E-03

neuron differentiation 14 6.2E-03

Annotation Cluster 8 Enrichment Score: 2.03 count P value

cellular lipid metabolic process 29 3.8E-03

lipid metabolic process 28 1.6E-03

Annotation Cluster 9 Enrichment Score: 1.82 count P value

DNA packaging 16 8.9E-03

establishment and/or maintenance of chromatin architecture 15 1.7E-02

chromosome organization and biogenesis 17 2.3E-02

chromatin assembly or disassembly 9 2.1E-02

nucleosome assembly 7 1.8E-02

Annotation Cluster 10 Enrichment Score: 1.70 count P value

development of primary sexual characteristics 7 2.0E-02

sex differentiation 6 1.8E-02

reproductive developmental process 6 2.2E-02

gonad development 5 4.9E-02

Annotation Cluster 11 Enrichment Score: 1.42 count P value

growth 12 8.3E-02

regulation of cell size 11 1.8E-02

cell growth 10 3.7E-02

doi:10.1371/journal.pone.0013500.t004
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proliferation and invasion of cell lines and xenografts [55,56]. Src-

family kinases are nonreceptor protein tyrosine kinases responsible

for signal transduction in many cellular and oncogenic processes.

Src kinases are activated upon binding to cell surface receptors,

such as G-protein coupled receptors, growth factor receptors and

integrins, or other intracellular protein kinases [55,57]. In turn,

activated Src kinases signal via the MAPK, PI3K, STAT3 and

FAK pathways. Src kinases are also activators of VAV3 and

TWIST1, either directly by phosphorylating and releasing

inhibitory tyrosine Y173 of VAV3, or indirectly by activating

STAT3, a transcription activator for TWIST1 [58,59]. These

results link the MAPK, PI3K, STAT3 and Src kinase signaling to

growth factor pathways and to our candidate genes selected for

hormone-refractory progression. Both VAV3 and TWIST1 are

overexpressed in PC346DCC cells, and survey of 7 previous

microarray studies revealed a consistent up-regulation in meta-

static patient material (Fig. 4C). Another interesting candidate

gene for the bypass of the AR pathway was the DKK3 tumor

suppressor, which was down-regulated in PC346DCC and

multiple databases of primary and metastatic tumors (Fig. 4C).

While compelling evidence links these genes to PCa pathogenesis,

it is not known whether TWIST1, VAV3 or the tumor suppressor

DKK3 may have a functional role in developing resistance to

hormonal therapy.

TWIST1 is a helix-loop-helix transcription factor, regulator of

embryonic morphogenesis, and highly expressed in many types of

human cancer [60]. The role of TWIST1 as a potential oncogene

was first suggested through a functional screen for cDNAs that

could counteract the pro-apoptotic effects of the MYC oncogene.

In that study, TWIST1 expression bypassed P53-induced growth

arrest and promoted colony formation, consistent with a potential

role as oncoproteins [61]. Yang et al. showed that suppression of

TWIST1 expression in highly metastatic mammary carcinoma

cells specifically inhibited their ability to metastasise to the lung,

while ectopic expression resulted in activation of mesenchymal

markers and induction of cell motility [62]. Previous studies also

implicated TWIST1 in the development and progression of PCa,

showing that its expression was up-regulated in prostate

adenocarcinomas and correlated with Gleason grading and

increased metastatic potential [63,64]. Furthermore, inactivation

of TWIST1, through small interfering RNA, induced growth

arrest and suppressed migration and invasion abilities in

androgen-independent PCa cell lines DU145 and PC3 [64,65].

We quantified TWIST1 expression in a panel of patient derived

material, comprising 21 normal prostate samples (adjacent to

cancer), 74 primary prostate tumors, of which 9 hormone-

refractory samples, and 13 lymph node metastasis. Among the

primary tumors are 59 samples of early organ-confined disease, 9

samples of invasive tumors that eventually developed metastasis

during follow-up and 6 tumors with lymph node and/or distant

metastasis at the time of operation. Quantitative PCR confirmed

overexpression of TWIST1 in primary PCa samples and lymph

node metastasis (Fig. 5A). In this patient cohort, TWIST1

expression could not predict progression, as it did not differ

between non-progressive organ-confined tumors and primary

cancers that eventually developed metastasis. Furthermore,

TWIST1 expression was not increased in hormone-refractory

tumors when compared to hormone-naı̈ve samples, suggesting that

TWIST1 overexpression alone may not be enough to confer

hormone-refractory growth. However, since TWIST1 is strongly

up-regulated in PCa samples it may still be useful as a cancer

marker or therapeutical target.

VAV3 is a member of the VAV family of oncoproteins, GTPase

guanine nucleotide exchange factors that regulate receptor protein

tyrosine kinases. It can be activated upon engagement of growth

factor receptors, such as EGFR, PDGFR, INSR or IGF1R, and in

turn activate downstream PLC and PI3K signaling pathways

[51,52,66]. Previous studies have implicated VAV3 in the

pathogenesis of the prostate: (i) VAV3 expression has been

detected in the prostate, at increased levels in cancer cells [67]; (ii)

it has been shown to interact with the AR pathway, stimulating

ligand-independent cell growth in LNCAP-hormone-refractory

cells [67,68], and (iii) targeting of constitutively active VAV3

expression to the prostate induced PCa in mice [69]. Surprisingly,

in our patient derived samples, VAV3 expression decreased

gradually during PCa progression, with the lowest levels in

metastatic and hormone-refractory samples (Fig. 5C). Further-

more, Kaplan-Meier analysis showed a direct correlation between

VAV3 expression levels and metastasis-free survival (Fig. 5D).

Figure 3. Biological processes deregulated in the hormone-
refractory sublines. Top 5 biological functions enriched in the
therapy-resistant sublines: (A) diseases and disorders, (B) molecular and
cellular functions. (C) Example of Network analysis for PC346DCC
showing deregulation of hormone and growth-factor receptor signal-
ing: up-regulated genes are represented in red and repressed genes in
green. Analysis was performed using Ingenuity Pathway Analysis
software (www.ingenuity.com).
doi:10.1371/journal.pone.0013500.g003
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These results encourage the use of VAV3 as a potential prognosis

marker in PCa, and provide a possible mechanism for the bypass

of AR pathway in therapy-refractory tumors. However, the

decrease of VAV3 expression in PCa progression was unexpected,

considering the function of VAV3 as a potential oncogene. In fact,

VAV3 has three transcript variants, the full length VAV3, the

VAV3 beta isoform and the truncated VAV3.1 variant, which has

no guanine nucleotide exchange activity (GEF) due to lack of N-

terminal domains [51,66,70]. The truncated transcript is

expressed in many tissues and is the major variant in the prostate

[51,70]. Because the effect of VAV3 on cell division and AR

activation is dependent on GEF activity, this variant is not

oncogenic and has most likely a different function than the full-

length protein. It was proposed that this VAV3.1 variant may

function as a dominant negative of other VAV family members

[51,70]. In this context, a decrease in the VAV3.1 variant could

actually result in increased activity of oncogenic VAV proteins.

The TaqMan primers that we used in the quantitative-PCR target

the last 2 of the 27 VAV3 exons, being possible that this assay

preferentially captures the short C-terminal VAV3.1 transcript.

Clearly, it is essential to characterize the different VAV3 variants

in the prostate and evaluate how the balance of these is affected

during PCa progression, before one can consider its use in the

clinic. These results exemplify the limitation of large-scale

expression profiling assays that rely on a single probe per gene.

Ultimately, to investigate gene expression in the context of human

disease, it may not be enough to quantify the major known

transcript but one may need to consider the different isoforms and

how these variants interact with each other. In the near future we

expect to be able to answer how different splice variants from the

same gene (including VAV3) can relate to PCa, using exon

microarray analysis of the patient tumor material.

DKK3 is part of an evolutionary conserved gene family

encoding secreted proteins, which play an important role in

vertebrate embryonic development as antagonists of Wnt/beta-

catenin signaling. DKKs are further implicated in bone formation

and bone disease, Alzheimer’s and cancer [71]. DKK3 was

proposed to function as a tumor suppressor since it was found to

be down-regulated in a number of malignancies including kidney,

bladder, lung, pancreas and prostate cancer [72]. Reduced DKK3

expression may, at least in part, be explained by promotor

methylation, which has been detected in various cancers, including

over 65% of prostate tumors [73]. Additional reports showed

consistent reduction of DKK3 expression in prostate adenocarci-

nomas, particularly those with a high Gleason grade [74,75].

Moreover, small interfering RNA-mediated down-regulation of

DKK3 enhanced cell cycle progression and disrupted three-

dimensional acinar morphogenesis in RWPE-1 prostate epithelial

cells [74]. Conversely, ectopic expression of DKK3 resulted in

decreased proliferation, inhibited colony formation and induced

apoptosis of LNCaP, PC3 and DU145 cell lines [73,74]. In our

patient samples, DKK3 expression decreased in prostate cancer

and lymph node metastasis, but no difference was observed in

hormone-refractory samples (Fig. 5B). As for TWIST1, DKK3

might be useful as a cancer marker, but could not predict tumor

progression, nor explain recurrence after hormonal therapy.

Interestingly, injection of an adenovirus vector carrying DKK3

showed a dramatic anti-tumor effect in a xenograft human PCa

model, inhibiting tumor growth and lymph node metastasis and

prolonging mice survival [76]. Such results encourage the

development of therapies targeting DKK3 in advanced metastatic

disease.

An important limitation of the present study and other

transcript profiling studies is that, in most cases, the functional

biological entity is the protein, not the measured mRNA. For all of

our validated genes of interest (VAV3, TWIST1 and DKK3), it

has previously been established that the level of the mRNA

expression is representative for its protein level, in pulmonary

fibrosis, gastric cancer and various cell lines [68,77,78,79,80].

In conclusion, the present study shows that AR overexpression

(in PC346Flu1) and mutation (in PC346Flu2) may allow for the

maintenance of the AR activity under androgen ablation and

antiandrogen treatment. In contrast, PCa cells may acquire

complete independence from AR signaling by activating alterna-

tive survival pathways, as exemplified by PC346DCC. In

PC346DCC, activation of VAV3 and TWIST1 oncogenes and

down-regulation of DKK3 tumor suppressor constitutes a possible

mechanism for bypassing the AR pathway. The fact that TWIST1

and DKK3 expression was deregulated in both hormone-

refractory and hormone-naı̈ve patient samples, suggests that these

alterations occur earlier in PCa progression and do not act alone

in inducing therapy-resistant growth. Indeed, both VAV3 and

TWIST1 are known to interact with growth factor signaling,

which could be the effector mechanism in stimulating cellular

Table 5. Description of prostate cancer databases linked via SRS.

First Author Reference samples Test samples

Best (2005)29 10 hormone-naive prostate cancers 10 hormone-refractory primary prostate tumors

Chandran (2007)30 64 primary prostate tumor samples 24 hormone-refractory metastatic samples (4 patients)

Lapointe (2004)31 41 benign prostate tissue adjacent to cancer 62 primary prostate tumor samples

9 lymph node metastasis

Tamura (2007)32 10 hormone-naive prostate cancers 18 hormone-refractory primary and metastatic tumors

Tomlins (2007)14 15 benign epithelial tissue adjacent to cancer 30 primary prostate tumor samples

3 hormone-naive and 17 hormone-refractory metastasis

Varambally (2005)33 5 benign prostate tissues 5 clinically localized prostate cancers

Yu (2004)34 60 benign prostate tissue adjacent to cancer 5 hormone-refractory metastatic samples

23 disease free donor prostate tissue 62 primary prostate tumors

24 hormone-refractory metastasis

doi:10.1371/journal.pone.0013500.t005
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Figure 4. Expression of the androgen-independent PC346DCC signature genes in prostate cancer samples from patient tumors. The
276-gene signature from PC346DCC was linked to data from 7 prostate cancer microarray databases of primary (Lapointe, Varambally, Tomlins, Yu),
metastatic (Chandran, Lapointe, Varambally, Tomlins, Yu) and hormone-therapy refractory tumors (Tamura, Tomlins and Best). Only genes present in
at least 5/7 databases (209 genes) and deregulated in at least 3/7 (111 genes) were included in the analysis. Heat-map representation of (A) 72
overexpressed and (B) 39 repressed genes in PC346DCC. (C) Deregulated genes selected for further qPCR analysis. Color scheme as described in Fig. 1.
Grey squares indicate missing data, either due to low expression levels, poor data quality or absence of probes for the respective transcript in the
array platform used for the study. PC-NAP: prostate cancer minus normal adjacent prostate; MET-PC: metastasis minus primary prostate tumors; HR-
HN: hormone-therapy refractory minus hormone-naı̈ve tumors.
doi:10.1371/journal.pone.0013500.g004
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proliferation. Additionally, DKK3 down-regulation may promote

survival through inhibition of apoptosis. These results grant

further investigations on the use of VAV3, TWIST1 and DKK3 as

prostate cancer markers and in the development of targeted

therapies for advanced disease.
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