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Abstract: Inflammatory bowel disease is characterized by a radical imbalance of inflammatory
signaling pathways in the gastrointestinal tract, and it is categorized into two diseases, such as
Crohn’s disease and ulcerative colitis. In this study, we investigated anti-inflammatory activities
using fermented Curcuma that contains butyrate (FB). Nitric oxide production in RAW 264.7 cells
and the expression of inducible nitric oxide synthase in the intestinal mucosa appears to be enhanced
in active ulcerative colitis. Here, the cytotoxicity, physiological activity, and anti-inflammatory
efficacy of FB in colitis animals were investigated. To verify the anti-inflammatory effect, this study
was conducted using the dextran sulfate sodium (DSS)-induced colitis mice model. As a result,
non-toxicity was confirmed, and anti-inflammatory effects were revealed by inducing a reduction
of LPS-induced NO production. In the DSS-induced colitis, reduced weight was recovered and a
decrease in inflammatory factors Ig-E and TNF-α in the mesenteric lymph node (MLN) and spleen
was induced, and it was confirmed to help with the morphological remodeling of the intestine. In
conclusion, this paper suggests that FB can help to alleviate intestinal inflammation and to improve
the intestinal environment, with the help of morphological remodeling.

Keywords: inflammations; colitis; butyrate; Curcuma; Clostridium butyricum

1. Introduction

Inflammatory bowel disease (IBD) is a multi-factory chronic disease, typically a gas-
trointestinal inflammatory disease caused by changes in the composition and the function
of intestinal microbes and various genetic and environmental factors [1]. It has been said
that abnormalities in the intestinal microbiome are increasingly considered to be related to
IBD and strongly influenced by the components of Western lifestyles. Bacteria that ferment
fiber and produce short-chain fatty acids (SCFAs) typically decrease mucous membranes
and feces in IBD patients compared to healthy people [2]. IBD can be categorized as Crohn’s
disease (CD) that may occur in any part of the gastrointestinal tract and ulcerative colitis
(UC) onset in the colon.

UC models have been developed to study pathogenic studies and genes, such as gene
knockout (KO), interleukin (IL)-2 receptor-alpha, IL-10, T cell receptor, and tumor necrosis
factor (TNF)-α untranslated domain [3–5]. UC induced by heparin-like polysaccharides,
such as dextran sulfate sodium (DSS), is simple, and it has the quality and the uniform form
of the lesion in the colon. DSS is commonly used to induce the formation of mouse colitis,
mimicking clinical and histologic features with UC characteristics by first interfering with
the intestinal barrier function between 3 and 7 days and then stimulating local inflammation.
In particular, the expression of pro-inflammatory cytokine and chemokine (IL-1, IL-6,
TNF-α, Interferon-γ) upregulates [6–8], whereas the synthesis of an anti-inflammatory
cytokine such as IL-10 downregulates [9]. Other parameters, such as weight loss and colon
length reduction, rising bone marrow oxidase levels (suggesting neutrophil infiltration into
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epithelium), and high histologic and endoscopic scores, characterize colitis in mice [10].
DSS caused colitis, but mechanisms of action are still unknown. However, prior studies
have shown that DSS competes with poly to induce biological mechanism collapse (such
as inhibitory effects on reverse transcriptase activities affecting key cell functions), and
dextran sulfate inhibits ribonuclease action [11].

SCFAs, such as acetate, propionate, and butyrate, are important metabolites for main-
taining intestinal homeostasis. In particular, the gut of colitis patients is reported to induce
a reduction in the production of SCFAs by an important immune-regulating molecule,
primarily butyrate, the gut microbiota [12]. Among them, butyrate plays an important role
in protecting intestinal homeostasis, which acts on both adaptive and congenital immunity.
Curcuma is native to southeast Asia, Bangladesh, India, Pakistan, and Australia, and it has
been reported for several bio-functional activities [13]. Clostridium butyricum bacterium has
been widely used to produce butyrate through the fermentation of herbs [14,15]. Butyrate
is a fatty acid composed of six carbon atoms, which is a major source of energy for intesti-
nal microbial fermentation, colorectal cells, and a very important ingredient for intestinal
health [2,16]. SCFA absorption is facilitated by substrate transporters, such as monocarboxy-
late transporter 1 (MCT1) and Sodium-coupled monocarboxylate transporter 1 (SMCT1),
to promote cell metabolism. Its absorption is facilitated by substrate transporters, such
as MCT1 and SMCT1, to promote cellular metabolism [17]. In addition, SCFAs can ac-
tivate the signal activity that controls the immune function by sending signals through
cell-surface G protein-coupled receptors (GPRs), such as GPR41, GPR43, and GPR109A.
Genetic mouse models support the main role of these GPRs in regulating bowel inflamma-
tion [18]. Previous clinical studies have reported that SCFA is generated in large quantities
by intestinal microbiota, reaching concentrations of approximately 13 ± 6 mmol/kg at
the end and approximately 80 ± 11 mmol/kg at the descending colon. In the intestine,
butyrate can be synthesized through four pathways: acetyl-CoA, glutamate, lysine, and
succinate [19]. Butyrate can regulate the activation of regulatory T cells, increasing the
acetylation of histones and decreasing the activation of nuclear factor kappa B (NF-κB) [20].
In addition, it can produce mucus from epithelial cells and relocate dense bonded proteins.
We investigated the treatment potential of SCFA for colitis by stimulating SCFA-generated
bacteria through direct application or prior probiotic approaches.

2. Materials and Methods
2.1. Sample Preparation

The FB sample was kindly provided by BINOTECH, Daegu, Korea. In this study,
Curcuma was fermented using Clostridium butyricum, which produces butyrate. Curcuma
was fermented for 3 days in an incubator at 37 ◦C, using Clostridium butyricum strain, and
the medium was cultured using RCM difco. After filtering, the lyophilized powder of FB
was stored at 4 ◦C before use.

2.2. Chemicals and Reagents

3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide) (MTT), DMSO (dimethyl
sulfoxide), sodium nitrite, 1,1-diphenyl-2-picrylhydrazyl (DPPH), sodium butyrate (NaB),
and sulfasalazine were purchased from Sigma Aldrich (Saint Louis, MO, USA). DMEM
(Dulbecco’s Modified Eagle’s Medium), DPBS (Dulbecco’s phosphate-buffered saline), FBS
(fetal bovine serum) penicillin and streptomycin (P.S), Trypsin EDTA were purchased from
WELGENE Inc. (Seoul, Korea). All the other chemicals and reagents were analytical grade
and used without any further purification.

2.3. DPPH Radical Scavenging Activities

DPPH is a synthetic free radical that has been widely used for investigating abiotic
antioxidant activities by neutralizing it [7]. A total of 80 µL of 2 mM DPPH was poured into
a 96-well plate, and several concentrations of FB (80 µL) were added to the 96-well plate and
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then incubated at room temperature (25 ◦C) in the dark for 30 min. Then, absorbance was
taken at 517 nm in a 96-well plate reader (VersaMax, Molecular Device, San Jose, CA, USA).

[DPPH radical scavenging activity (%) = {(C − D) − (A − B)}/(C − D) × 100]

where C is the absorbance of DPPH + solvent, D is the absorbance of solvent + methanol,
A is the absorbance of sample or standard + DPPH, and B is the absorbance of sample or
standard + methanol.

2.4. Cell Viability

Murine macrophage RAW 264.7 cell line were purchased from the Korean Cell Line
Bank (Seoul. Korea) and maintained in DMEM with 10% FBS and 1% P.S in a cell incubator.
Cells were cultured in an incubator at 37 ◦C with 5% CO2 and 95% humidified conditions.
Cell viability was measured by MTT assay. The RAW 264.7 cells were seeded in a 96-well
plate as 5 × 104 cells/well and incubated for 24 h. Then, the cells were treated with different
FB concentrations (10–1000 µg/mL) and incubated for another 24 h. Afterward, an MTT of
0.5 mg/mL at the final concentration was added and kept for 2 h at 37 ◦C, then the formed
formazan blue was dissolved in DMSO and measured in a 96-well plate reader (VersaMax,
Molecular Device, San Jose, CA, USA) at 570 nm. The control group was considered 100%.

2.5. Determination of Nitric Oxide (NO) Production

The RAW 264.7 cells were plated in a 96-well plate at a density of 5 × 104 cells/well
and incubated for 24 h. RAW 264.7 cells were pretreated with different FB concentrations
(10–1000 µg/mL) for 1 h before incubating with LPS (100 µg/mL) for 24 h. Nitric oxide
(NO) production was determined by the reaction of a macrophages culture supernatant
with a Griess reagent (100 µL, 1% sulfanilamide, 0.1% N-1-naphthyl ethylenediamine). The
culture supernatant (100 µL) was mixed with the Griess reagent (100 µL) at 25 ◦C and
shaken gently for approximately 10 min. Finally, a microplate reader was used to measure
the absorbance of the mixture at 540 nm.

2.6. Animals

Five-week-old male BALB/c mice were purchased from DBL (Chungcheongbuk-do,
Korea). The initial body weight of the mice was 30 ± 2 g, and mice were acclimatized for
1 week in an SPF animal room under controlled conditions, where the temperature was
25 ± 2 ◦C, humidity was 55–65%, a lighting regimen of 12-h light/12-h dark and adequate
water and a standard diet were supplied. After 1 week of acclimatization, the mice were
randomly divided into 6 groups; (1) control group was fed a normal diet, (2) DSS (3% DSS
in water), (3) NaB (Sigma, Saint Louis, MO, USA) 22 mg/kg BW, (4) FB (low) 50 mg/kg
BW, (5) FB (high) 100 mg/kg BW, and (6) Sulfasalazine (positive control) 50 mg/kg BW.
All groups had received 3% DSS in drinking water for 10 days except the control group.
Then, the DSS group received a normal diet only, and the NaB (Sigma), FB (low), FB (high),
and Sulfasalazine groups were treated through oral administration for 14 days besides the
normal diet. Sulfasalazine is considered the positive control group. Animal experiments
were performed using a protocol according to the National Institutes of Health guidelines
and approved by the Institutional Animal Care and Use Committee (IACUC) of Konkuk
University (approval number: KU20227).

2.7. Measurement of Body Weight and Gut Length

After DSS-induced for 10 days, then FB, NaB, and Sulfasalazine were treated for
14 days. The body weight of mice was weighed on a measuring scale.

The mice were decapitated after treatment and organ specimens had been collected.
Afterward, the gut length was measured by bar scale. The gut length was expressed in
centimeters (cm).
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2.8. Determination of TNF-α

The content in spleen and mesenteric lymph node (MLN) tissue of pro-inflammatory
cytokine, TNF-α, was determined according to the enzyme-linked immunosorbent assay
(ELISA) kit (mouse ELISA, R&D Systems, Minneapolis, MN, USA), following the man-
ufacturer’s instructions. Briefly, to prepare the plate, the captured antibody was diluted
to a working concentration and used to coat a 96-well plate with 100 µL per well. Plates
were sealed with parafilm and incubated overnight at 25 ◦C. The detected antibody was
aspirated and washed three times with phosphate-buffered saline (PBS)-Tween (T). After
blocking with 2% bovine serum albumin (BSA), the ELISA plate was aspirated and washed
three times. Each 100 µL sample was added to each well and incubated at 25 ◦C for 2 h.
After incubation, the suction step was repeated. Wells were then filled with 100 µL diluted
detection antibody and incubated at 25 ◦C for 2 h. After aspiration, 100 µL streptavidin-
HRP diluted solution (1:20) was added to each well, incubated in the dark at 25 ◦C for
20 min and then aspirated. A substrate solution (100 µL) was added and stored in the dark
as before (6–12 min) until color development. Next, a 50 µL stop solution was added to
each well, and the absorbance at 450 nm was measured.

2.9. Serum IgE Analysis

Blood serum was collected from the mice blood sample by centrifugation at 2000× g
for 10 min at 4 ◦C. The serum levels of cytokines (pg/mL) were quantified using ELISA com-
mercial kits of IgE, following the manufacturer’s instructions (R&D Systems, Minneapolis,
MN, USA).

2.10. Hematoxylin and Eosin (H&E) Staining of Colon Tissue

The colon was collected from mice and fixed with 4% paraformaldehyde. After
fixation, large intestines were embedded in paraffin and cut into slices 5 µm thick. Then, the
morphology of colon tissue was stained with H&E, and images were taken in a microscope.

2.11. Statistical Analysis

The results are presented as the means ± SEM for all experimental data. Data were
analyzed with Microsoft Excel 2016 and GraphPad Prism 5.0 software (GraphPad Software,
Inc., San Diego, CA, USA) using one-way analysis of variance and non-parametric accord-
ing to paired Student’s t-tests were used to test for significance. * p values < 0.05 were
deemed to be statistically significant.

3. Results
3.1. Gas Chromatography and Mass Spectrometry (GC/MS) of FB

FB was provided from BINOTEC in Daegu, Korea. It was analyzed through GC/MS to
determine the butyrate content and the experiment was done by K-BIO (Konkuk University,
Chungju, Korea). FB was analyzed, respectively, and the results contained 0.19 g of butyrate
per 100 g of lyophilized FB (Table 1).

Table 1. GC/MS of Fermented sample.

Name Content
Butyrate 0.19 g per 100 g

3.2. Antioxidant and Anti-Inflammatory Activities of FB and the Effect on Cell Viability

To investigate the bio-functional activities of FB, we measured the cell viability, anti-
inflammatory efficacy in RAW 267.4 cells, and antioxidant efficacy through DPPH radi-
cal scavenging activities. First, cell viability was performed by MTT assay in the RAW
267.4 cells. There was no cytotoxicity up to 1000 µg/mL of FB (Figure 1A). Next, a chem-
ical experiment, DPPH, was conducted to find out the antioxidant ability, and a strong
antioxidant ascorbic acid was used as a comparative group. FB showed antioxidant ability
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from a concentration of 1 µg/mL (about 20%), and it showed an increase in a concentration-
dependent manner (Figure 1B). These results showed that low concentrations of fermented
products have strong antioxidant properties. As for the anti-inflammatory effect, LPS
(1 µg/mL) was treated on macrophages to induce the secretion of NO, and when the FB
was treated for each concentration (from 10 µg/mL to 200 µg/mL), the generation of NO
was investigated through Griess assay (Figure 1C). Through the results of the physio-
logically active experiment, this study showed that FB is a non-toxic, antioxidant, and
anti-inflammatory substance.
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Figure 1. Biological effects of FB in RAW 264.7 cells. (A) Changes of the cell viability of RAW
264.7 cell by MTT. (B) DPPH radical scavenging activity of butylate. (C) Inhibition of NO product by
butylate. Data are represented as mean ± SD (n = 4), analyzed by one-way ANOVA, followed by the
Dunnett’s test. *** p < 0.01 vs. LPS treated group.

3.3. The Effect of FB in DSS-Induced Colitis Mice

We studied the physiological activity results of FB and examined the anti-inflammatory
efficacy in DSS-induced colitis mice to further verify anti-inflammatory efficacy. The colitis
mice were derived using 3% DSS (Figure 2A): DSS was dissolved in drinking water (D.W)
and they were fed for 10 days, gradually decreased body weight (Figure 2B), and the
animals with severe colitis died. Next–except for the control group and the DSS negative
group–animals received an oral administration of NaB (from Sigma-Aldrich, Saint Louis,
MO, USA), a low concentration and a high concentration of FB, and sulfasalazine (positive
control, 50 mg/mL) every day. Weight was measured daily, and after completion of
administration, intestines, serum, spleen, and MNL were sampled to evaluate the efficacy
of the FB. Weight was recovered in groups that received the oral administration (Figure 3B).
The length of the intestine was reduced due to DSS (Figure 2C). Perhaps, NaB and FB do
not affect the length of the colon.
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3.4. TNF-α and IgE Release in DSS-Induced Colitis Mice

The DSS-induced colitis model is known to cause inflammation only in the large
intestine. We isolated MLN and spleen from colitis mice and quantified the secretion of
cytokine TNF-α. The TNF-α level was measured using an ELISA kit and, in the MLN
and in the spleen, TNF-α level increased in the DSS group, decreased only in MNL in
animals that ate NaB, and decreased in both the FB groups (low and high group) and the
positive groups. Finally, the immune factor Ig-E level was measured. Serum was separated
from the blood of each animal and measured (Figure 3C). The Ig-E level was increased
in animals induced colitis with DSS, and the IgE level was decreased in NaB, FB, and
positive control groups. These results suggested that FB shows anti-inflammatory efficacy
in the intestines of animals with colitis, and further decreases in TNF-α and IgE also affect
systemic immunity.

3.5. Histology of Large Intestine in DSS-Induced Colitis Mice

Finally, we observed morphological changes in the large intestine tissues of DSS-
induced colitis mice (Figure 4). The lengths of the epidermis and the dermis were sig-
nificantly reduced in the large intestine of DSS-induced colitis mice (Figure 4B). On the
other hand, a morphologically significant recovery was observed in the group fed NaB
(Figure 4C). However, a low-concentration intake in FB administered mice also showed
morphological recovery (Figure 4D), and many recoveries were confirmed in animals
treated with high-concentration FB (Figure 4E). In these results, FB contributes to the mor-
phological recovery of the large intestine but not a full recovery. This result showed similar
results to the relationship between the length of the field in Figure 2C.
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(Sigma-Aldrich), (D), Low concentration (50 mg/kg) of FB. (E), High concentration (100 mg/kg) of
FB. (F), Positive control (sulfasalazine, 50 mg/kg).

4. Discussion

In this study, butyrate, a metabolite of intestinal microorganisms, was produced through
fermentation by bacteria to find the effect of relieving inflammation using macrophages and
colitis in mice. As a result, concentration-dependent strong antioxidant and anti-inflammatory
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effects were found in macrophages, and cytokine production and the inflammatory factor
decreased in DSS-induced mice.

Colitis is induced by a radical imbalance in the activation of pro-inflammatory and
anti-inflammatory signaling pathways in the colon. NF-κB is a hallmark regulator of gene
transcription controlled by translocation of NF-κB into the nucleus. NF-κB signaling is often
dysregulated, resulting in inflammation in colitis patients [21]. Cytokines not only drive
intestinal inflammation and diarrhea in colitis but may also regulate extra-intestinal disease
manifestations (for example, arthralgia or arthritis) and systemic effects. Furthermore,
cytokines seem to have a crucial role in driving complications of IBD, such as intestinal
stenosis, fistula formation, and colitis-associated neoplasias [22]. Anti-cytokine therapies
involving TNF-specific agents form a pivotal factor in clinical therapy in both CD and UC.
TNF-specific antibodies suppress chronic intestinal inflammation, and they may induce
mucosal healing in colitis [23]. Chronic inflammation contributes to a high risk of colorectal
cancer (CRC) development. TNF-α and Ig-E are cytokines and important inflammatory
mediators that play a pivotal role in malignant cellular proliferation, angiogenesis, and
tissue invasion and metastasis [22]. In this study, we tested that butyrate down-regulated
the levels of pro-inflammatory factors TNF-α and Ig-E in a dose-dependent manner.

Industrial development is creating many harmful substances that cause inflamma-
tion in the human body. For that reason, many people are increasingly concerned about
their health, and they prefer healthy functional foods that can defend against harmful
substances [24,25]. Red ginseng is widely known as a material for enhancing immunity.
However, researchers are discovering many other materials through research. Most of the
materials with anti-inflammatory effects contain significant numbers of polyphenols and
various anthocyanins [26]. In addition, research results show that materials that are in the
spotlight show the beneficial effects on the human body, such as skin and brain health,
of materials that help intestinal health [27]. Changes in the intestinal environment can
be induced through various beneficial bacteria (such as Bifidobacterium, Lactobacillus,
Lactococcus, and Enterococcus) but it is known that microorganisms in the intestine can
also be changed into metabolites that eat and discharge nutrients [28]. We showed the
results of anti-inflammatory efficacy and inflammation relief in colitis using FB among
metabolites. Additionally, we have also recently derived the results that FB relieves inflam-
mation in the brain [4,29]. In these results, it is hypothesized that FB showed an overall
anti-inflammatory effect on the DSS-induced mice and on RAW 264.7 cells.

In conclusion, through this study, FB showed non-toxic, anti-inflammatory, and strong
antioxidant effects through macrophages, resulting in alleviation of inflammation in the
DSS-induced mice model. However, FB showed morphological remodeling of the large
intestine, but it was not completely recovered. FB showed results that could alleviate
inflammation of the whole body; and, through this material, we envisage that it will be a
material for anti-inflammatory health functional foods and for probiotics and co-effects;
further research is needed.
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