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1H NMR spectra of sera have been used to define the changes induced by vaccination with
Pfizer-BioNTech vaccine (2 shots, 21 days apart) in 10 COVID-19-recovered subjects and
10 COVID-19-naïve subjects at different time points, starting from before vaccination, then
weekly until 7 days after second injection, and finally 1 month after the second dose. The
data show that vaccination does not induce any significant variation in the metabolome,
whereas it causes changes at the level of lipoproteins. The effects are different in the
COVID-19-recovered subjects with respect to the naïve subjects, suggesting that a
previous infection reduces the vaccine modulation of the lipoproteome composition.
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INTRODUCTION

While health systems worldwide race to vaccinate people against SARS-CoV-2, several studies have
appeared where the measured levels of antibodies in the blood before vaccination and then after each
of the two vaccine doses (Ebinger et al., 2021, 2; Mazzoni et al., 2021, 19). These studies have
highlighted different response in COVID-19-recovered or naïve subjects in terms of antibody levels,
which is the most relevant information for the design and implementations of efficient mass
vaccination campaigns in the context of COVID-19 emergency. One of the main outcomes of such
studies in mRNA vaccines indicates that subjects who previously had COVID-19 get a strong
immune response from a single dose (Levi et al., 2021; Mazzoni et al., 2021).

1H nuclear magnetic resonance (NMR) spectroscopy analysis of biofluids produces profiles that
show characteristic responses to changes in physiological status and has been used in a few studies in
the past to monitor changes in urinary metabolite levels in mice administered different types of
influenza vaccines (Sasaki et al., 2019) or to identify serum markers predictive of adverse reactions
against smallpox (McClenathan et al., 2017) as well as metabolic signatures of responses induced by a
series of commonly used human vaccines, as reviewed in (Diray-Arce et al., 2020). On the other
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hand, 1H NMR has been also successfully used to monitor
changes in metabolites and lipoproteins induced by SARS-
CoV-2 infection (Bruzzone et al., 2020; Kimhofer et al., 2020;
Ballout et al., 2021; Baranovicova et al., 2021; Bizkarguenaga et al.,
2021; Julkunen et al., 2021; Lodge et al., 2021; Masuda et al., 2021;
Meoni et al., 2021).

Here, we monitored the time-dependent response to the mRNA
Pfizer-BioNTech vaccine in a cohort of 20 healthcare workers, 10 of
them had a previous history of COVID-19 and 10 were COVID-19
naïve. All of them received two doses, 21 days apart. The NMR
spectra of serum samples collected at six different time points were
analyzed to monitor time-dependent intra-individual changes
induced by vaccination and to explore possible differences
between individual previously infected with COVID-19 and
individuals without prior infection. While no significant
differences between the two groups exist before vaccination, the
first dose is sufficient to induce changes in the lipoproteins levels (but
not in metabolites), whose size and nature depends upon absence or
presence of previous infection. Differences between the two groups of
individuals are maintained along the monitored timeline. The second
dose is essentially inconsequential in the group of COVID-19-
recovered subjects.

MATERIAL AND METHODS

Study Design
The study was conducted at the beginning of the Italian vaccination
campaign against COVID-19 using the Pfizer-BioNTech mRNA
vaccine (January-February 2021). Twenty Caucasian healthcare
workers of the Careggi University Hospital of Florence were
recruited, 10 of them had a previous history of COVID-19
(hereafter called “COVID-19-recovered”), and 10 were COVID-19
naïve (“COVID-19-naïve”) (Figure 1A). The main features of the
cohort are provided in Figure 1B. The COVID-19-recovered subjects
have been infected in the period March-April 2020, with the Wuhan
strain; they recovered from the disease on average 255 days before
vaccination (range 208–280 days). The inclusion/exclusion criteria
were those used for Pfizer-BioNTech vaccine administration for
healthcare workers.

The study was conducted in accordance with the Declaration of
Helsinki. The study was approved by the Careggi University Hospital
Ethical Committee (n. 19466_spe). Written informed consent was
obtained from recruited subjects.

For all subjects blood serum samples were collected at six
different time points: before the first dose (T0); 7 and 14 days after

FIGURE 1 | (A) Schematic representation of the study design. (B) Table summarizing the main demographic characteristics of the subjects included in the study;
the COVID-19-recovered and - naïve subjects are indicated with C and N, respectively; for the COVID-19-recovered group the column “Grade” refers to the grade of the
disease severity, i.e. mild, moderate (mod.) or critical; the column “Time” refers to the time (in days) from COVID-19 diagnosis to the first dose of vaccine. (C) Individual
metabolic phenotype as it results from a PCA-CA score plot (binned NOESY spectra). Each color represents a different subject; squares: COVID-19-naïve; circles:
COVID-19-recovered. Numbers indicate the collection time: T0 = 0, T7 = 7, T14 = 14, T21 = 21, T28 = 28, T1M = 1M.
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the first dose (T7 and T14, respectively); 21 days after the first
dose, just before the second dose (T21); 28 days after the first dose
and 7 days after the second dose (T28); 1 month after the second
dose (T1M) (Figure 1A). Blood samples were collected (4 h after
breakfast) in a BD vacutainer clot-activator tube for serum
collection and processed within 1 hour from sample collection.
After processing, all the serum samples were immediately stored
at −30°C until NMR analysis (February-March 2021).

NMR Sample Preparation and Data
Acquisition
NMR samples were prepared according to standard procedures
(Takis et al., 2019; Vignoli et al., 2019). Frozen serum samples
were thawed at room temperature. A total of 350 μl of sodium
phosphate buffer (70 mM Na2HPO4; 20% (v/v) 2H2O; 6.1 mM
NaN3, 4.6 mM sodium trimethylsilyl [2,2,3,3−2H4] propionate
(TMSP), pH 7.4) was added to 350 μl of each serum sample; the
mixture was homogenized by vortexing for 30 s. A total of 600 μl
of each mixture was transferred into a 5.00 mm NMR tube
(Bruker BioSpin) for the analysis. 1H-NMR spectra were
acquired using a Bruker 600 MHz spectrometer (Bruker
BioSpin) operating at 600.13 MHz proton Larmor frequency
and equipped with a 5 mm PATXI 1H−13C−15N and
2H-decoupling probe including a z axis gradient coil, an
automatic tuning-matching (ATM) and an automatic and
refrigerated sample changer (SampleJet, Bruker BioSpin). A
BTO 2000 thermocouple served for temperature stabilization
at the level of approximately 0.1 K at the sample. Before
measurement, samples were kept for 5 min inside the NMR
probe head, for temperature equilibration at 310 K.

For each serum sample, three one-dimensional (1D) 1H NMR
spectra were acquired with water peak suppression and different
pulse sequences that allowed the selective observation of different
molecular components: 1) a standard NOESY 1Dpresat
(noesygppr1d.comp; Bruker BioSpin) pulse sequence (using 32
scans, 98,304 data points, a spectral width of 18,028 Hz, an
acquisition time of 2.7 s, a relaxation delay of 4 s and a mixing
time of 0.01 s); 2) a standard CPMG (cpmgpr1d.comp; Bruker
BioSpin) pulse sequence (using 32 scans, 73,728 data points, a
spectral width of 12,019 Hz and a relaxation delay of 4 s); 3) a
standard diffusion-edited (ledbgppr2s1d.comp; Bruker BioSpin)
pulse sequence (using 32 scans, 98,304 data points, a spectral
width of 18,028 Hz and a relaxation delay of 4 s). All spectra were
recorded at the Magnetic Resonance Center of the University of
Florence (CERM).

Free induction decays were multiplied by an exponential
function equivalent to a 0.3 Hz line-broadening factor before
applying Fourier transform. Transformed spectra were
automatically corrected for phase and baseline distortions and
calibrated (glucose doublet at δ 5.24 ppm) using TopSpin 3.5
(Bruker BioSpin).

Assignment and Quantification
The metabolites, whose peaks in the NMR spectra were well
defined and resolved, were assigned and their concentrations
determined; the assignment procedure was performed using an

1H NMR spectra library of pure organic compounds
(BBIOREFCODE, Bruker BioSpin). The concentrations of 22
metabolites (Supplementary Table S1) were analysed using In
Vitro Diagnostics research (IVDr) B.I.-Quant PS tool (Bruker,
BioSpin). One hundred fourteen components associated to
lipoprotein main parameters, i.e. triglycerides (TG), bound and
free cholesterol (Chol and Free Chol), phospholipids (PL),
apolipoproteins A1, A2 and B100 (ApoA1, ApoA2 and
ApoB100) in each of the main lipoprotein classes, i.e. very
low-density lipoproteins (VLDL), high-density lipoproteins
(HDL), intermediate-density lipoproteins (IDL), and low-
density lipoproteins (LDL) and in their respective subfractions
were also analysed (Supplementary Table S2) through the IVDr
Lipoprotein Subclass Analysis B.I.-LISA tool (Bruker, BioSpin)
(Jiménez et al., 2018).

Statistical Analysis
All data analyses were performed using the “R” software.
Multivariate analyses were applied on NOESY binned spectra.
To this aim, each spectrum in the region 10.00–0.2 ppm was
divided into 0.02 ppm chemical shift bins, and the corresponding
spectral areas were integrated using the AMIX software. The area
of each bin was normalized to the total spectral area, calculated
with exclusion of the water region (4.50–5.00 ppm). Principal
component analysis (PCA) was used as unsupervised exploratory
analysis to obtain an overview of the data to detect the presence of
clusters (function prcomp); canonical analysis (CA) was used in
combination with PCA to increase the supervised separation
among individuals (in house developed script) and to define
their individual metabolomic fingerprint (Assfalg et al., 2008;
Bernini et al., 2009). The global accuracy for classification was
assessed by means of a Monte Carlo cross-validation scheme.

For univariate analyses, the non-parametric Wilcoxon-Mann-
Whitney test was used to infer differences between the
metabolite/lipoprotein levels in the comparison between
COVID-19-recovered group and COVID-19-naïve group.
Instead, for pairwise comparison within each group, the paired
Wilcoxon signed-rank test was used to analyzed the differences
between the samples of a given individual at each time point with
respect to T0 (Neuhäuser, 2011).

RESULTS

It is known that the NMR detectable part of the blood
metabolome/lipoproteome contains a strong signature that
defines the individual metabolic phenotype that, in the
absence of pathophysiological perturbations, remains stable
over a time span of the order of years (Holmes et al., 2008;
Yousri et al., 2014; Ghini et al., 2015). The distribution of the
metabolic phenotype of the 20 subjects under study is shown in
Figure 1C. Notably, we don’t observe any clustering in the
metabolic space of the samples from COVID-19-naïve subjects
with respect to those of COVID-19-recovered subjects; this result
is not unexpected given the fact that COVID-19-recovered
subjects are sampled after more than 7 months from infection
and do not report any long-COVID symptoms.
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As shown in Figure 2, in our cohort the differences that exists
at T0 between the two groups are not significant, although the two
groups are not identical, as it is normal to expect for the

comparison of any 10 randomly selected individuals against
any other 10. The intra-individual differences (Figure 2)
remain smaller than the inter-individual ones upon

FIGURE 2 | Level plot of Log2(FC) of (A) lipoprotein related parameters and (B) metabolites; red/blue values indicate higher/lower concentration at T0, T7, T14,
T21, T28 and T1M samples of COVID-19-recovered group with respect to COVID-19-naïve group. The brightness of each color corresponds to themagnitude of the FC.
Asterisks indicate statistical significanceThe level plot has been created using the function levelplot implemented in the R package “Lattice”.
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vaccination, which therefore does not represent a major
modification of the metabolic phenotype. The inter-individual
discrimination considering the six samples collected for each
subject is >85%. Nevertheless, in response to vaccination we
could observe some common changes that are consistently
occurring in all subjects within each group at a given time. As
shown in Figure 2, the differences between the two groups are
essentially restricted to a small number of lipoprotein parameters.
They mainly involve HDL4 subfractions (with some p-value <
0.05) and appear from T14. Although not statistically significant,
a clear trend is observed also for all the VLDL subfractions along
the time line T0-T1M; the log2(FC) is maximum at T7 and T14
and then decreases, until at T1M it tends towards the re-
establishment of the pattern observed at T0.

To better analyze the origin of the time-dependent changes, we
performed a paired analysis, so to highlight the common intra-
individual variations in each group. To this purpose the
concentration of all measurable species for a given individual
at each time point was compared to that of the same individual at
T0. Figure 3 reports the log2(FC) of the lipoprotein parameters
that were observed to change significantly in the COVID-19-
naïve and COVID-19-recovered groups, separately. The pattern
of changes is clearly different between the two cohorts. In the

former case (Figure 3A), we observe an overall decrease in
concentration of lipoproteins with average absolute values
decreasing from T7 to T21, and then increasing again after the
second dose (T28) and again decreasing at T1M. Contemporarily,
when the time distance from dose administration increases, we
observe an increase in the number of dysregulated features. With
the help of Figure 4, we can identify the following trends. In
terms of main parameters, the most affected along the time series
are the ApoB100 and total cholesterol. In terms of main fractions,
we observed a continuous dysregulation of the LDL parameters,
with the only exception of that associated to triglycerides; these
changes persist up to T1M. The earliest (T7) changes are
associated to the LDL5 subfraction. For VLDL, the affected
main parameters are phospholipids and triglycerides; the
largest changes are observed at T7 and T28 (i.e. at the first
time point evaluated after the first and second dose,
respectively), where the absolute values of their Log2(FC) is
>0.7; these changes do not persist after T28. The HDL
subfractions, with the exception of those associated to
triglycerides, change significantly only at T1M, but the extent
of the changes is quite small. A completely different trend is
observed when looking at the lipoproteins in the COVID-19-
recovered subjects (Figure 3B), where the changes are much

FIGURE 3 |Bar plots of Log2 (FC) of lipoprotein related parameters significantly different for the comparison at T7, T14, T21, T28 and T1Mwith respect to T0, in (A)
COVID-19-naïve (green plots) and (B) COVID-19-recovered (orange plots) groups. Features with Log2(FC) positive/negative values have higher/lower concentration in
T7, T14, T21, T28 and T1M samples with respect to T0.
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smaller in size, of the opposite sign (with the only exception of the
decrease in Free Cholesterol- and Phospholipids-VLDL5), and
essentially negligible after the second dose. Also the number of
affected features is very small and substantially limited to HDL4
and LDL5 parameters (Figure 3, Figure 4). In neither case,
COVID-19-naïve and recovered groups, the measured levels of
lipoproteins exceeded the range of values typical of a population
of healthy adults (Jiménez et al., 2018). Interestingly, no
consistent changes could be observed for any of the
metabolites at any of the sampled time points, in neither group.

DISCUSSION
1H NMR provides a unique tool to measure the levels of lipoprotein
main parameters, main fractions and subfractions (Jiménez et al.,
2018), in addition to metabolites. Here, NMR allowed us to monitor
the effects of the Pfizer-BioNTech vaccine in people who never had a
contact with the virus and in those with prior COVID-19 infection. In
the former group, changes are relatively large in size and mainly
involve a downregulation of LDL -cholesterol, -free cholesterol,
–phospholipids and–apolipoprotein B100 along with a
downregulation of VLDL-phospholipids and–triglycerides; LDL5
emerges as the main dysregulated subfraction. In the latter group
instead, the overall changes are small and limited to few lipoprotein
components (HDL4 and LDL5 features).

Although this is a small-size pilot study, those described above
are clear-cut differences that is extremely unlikely to happen due
to chance. The interpretation of the observed changes is far from
straightforward. An obvious comparison is with the
immunological response. Indeed, the same subjects have been
analyzed by some of us in terms of their immune response
(Mazzoni et al., 2021). The anti–SARS-CoV-2 serum antibody
levels in COVID-19–recovered subjects reach a plateau after the
first dose (T7-T14), without any additional improvement after
the second one. Instead, in the COVID-19-naïve subjects these
levels are not reached even after the second dose (T28).

There is not a common pattern in the timeline trend of immune
response and lipoprotein alterations, the only common trait being a
reduced response to the second dose in the COVID-19-recovered
subjects. What we observe by NMR is most probably an interplay of
multiple effects, with a different modulation in the two groups of
vaccinated subjects. The fact that previous infection limits the extent
of the observed effects suggests that whatever process remodulates the
lipoproteins following vaccination in COVID-19-recovered subjects,
it has to be related to the “new” encounter with the spike protein. It is
worth noting that lipid stripping from cell membrane is a
phenomenon associated to the specific action of the spike protein
andmight be differently operative in recovered and naïve individuals.
It is also known that LDL and cholesterol are key mediators of
inflammation (Chróinín et al., 2014), which could also have a
different extent in recovered and naïve subjects following
vaccination. Notably during acute COVID-19 infection, where
both lipid bilayer degradation induced by the spike protein and

FIGURE 4 | Level plot of Log2(FC) of the lipoproteome: for COVID-19-
naïve and COVID-19-recovered groups (second and third columns,
respectively), red/blue parameters indicate higher/lower concentration at T7,
T14, T21, T28, and T1M serum samples with respect to T0 samples. For
COVID-19 positive subjects (first column), red/blue parameters indicate
higher/lower concentration in serum samples of 30 COVID-19 patients with
respect to 30 sex- and age-matched control subjects (Meoni et al., 2021). The
brightness of each color corresponds to the magnitude of the FC. Asterisks
indicate statistical significance. The level plot was created using the function
levelplot implemented in the R package “Lattice”.
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severe inflammation occur, cholesterol and LDL5 are also
significantly altered with respect to healthy values, Figure 4, first
column (Bruzzone et al., 2020; Kimhofer et al., 2020; Ballout et al.,
2021; Bizkarguenaga et al., 2021; Lodge et al., 2021; Masuda et al.,
2021; Meoni et al., 2021).

Although aware of the intrinsic limitations of the study, we
believe the results could stimulate future research addressing a
number of relevant aspects. This type of results, if confirmed in
larger and diverse (by age, sex, ethnicity, morbidities)
populations, might help defining abnormal response to
vaccination with the Pfizer-BioNTech formulation and
adverse events. A comparison between the effects induced by
the different vaccines (Pfizer vs. Moderna; mRNA vs. DNA
vaccines, etc.) might shed light on the existence of correlations
between fluctuations in the lipoprotein profiles and immune
status and to dissect them from the response to the specific
formulation.
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