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* Correspondence: waldemar.kaminski@pg.edu.pl

Received: 20 June 2020; Accepted: 11 July 2020; Published: 14 July 2020
����������
�������

Abstract: This paper proposes a method for determining the vertical deformations treated as random
fields. It is assumed that the monitored surfaces are subject not only to deterministic deformations,
but also to random fluctuations. Furthermore, the existence of random noise coming from surface’s
vibrations is also assumed. Such noise disturbs the deformation’s functional models. Surface
monitoring with the use of the geodetic levelling network of a free control network class is carried out.
Assuming that, in some cases, the control networks are insufficient in surface’s deformation analysis,
additional and non–measurable reference points have been provided. The prediction of these points’
displacements and estimation of the free control network points’ displacement are carried out using
the collocation method applying the total least squares adjustment. The proposed theoretical solutions
were verified by the simulation methods and on the example of a real control network.

Keywords: deformation analysis; free control network; collocation; total least squares

1. Introduction

Engineering structures require monitoring and estimation of their technical conditions.
Various systems and measurement techniques are used for this purpose, for example, those constructed
with the use of specialized sensors and detectors [1,2]. Geodetic methods used for accurate
determination of positions of monitored structure selected points have a significant role in the
stability monitoring of buildings, bridges, and dams, among others. Geodetic monitoring is conducted
using a variety of techniques and measurement methods. The most common are global navigation
satellite systems [3–5], photogrammetry, and remote sensing [6], as well as laser scanning [7]. However,
the classic geodetic control networks [8,9] still play a basic role in the engineering structures’ deformation
analysis with the use of the geodetic methods. Structural deformation is then determined on the basis
of changes of points’ positioning (displacements) within this network over time. Such changes are
determined on the basis of periodic measurements (measurement epochs).

Geodetic control networks are comprised of controlled points and reference points. Reference
points require a stability analysis carried out applying appropriate procedures and statistical tests [10,11].
On the basis of the networks measurements conducted in two or more epochs, the displacements
of controlled points and potential reference points are then determined. The displacements of
these points can be obtained by determining the differences between the estimators of the networks
coordinates in different measurement epochs. The displacements can be also treated as parameters
in models of the observations differences [12,13]. In this case, in the literature of the subject,
the displacement of individual points of the network is sometimes treated as the shift of the model’s
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parameters [14,15]. The resignation from the reference points leads to solutions that apply the
principles of free adjustment [16–19]. Such networks belong to the free control networks (FCNs)
class. The principles of free adjustment [16,17,19,20] are applied to determine these networks points’
displacements. These principles derive from the free adjustment theory presented in numerous
papers [21–25].

It is generally assumed that the deformation of a structure in time is deterministic. There are,
however, structures for which this assumption is inadequate, particularly if they are situated in a
dynamically changing environment or are a subject to dynamic loads [26]. For example, when analysing
the bridges’ deformations, not only deterministic deformations can be considered, but also the
deformations caused by vehicles traffic and other factors as well as random strains and vibrations of the
examined object [27,28]. This also applies to such structures as river dams, tunnels, port quays, and so
on [29,30]. In many cases, the object of interest is the deformation of selected surfaces of engineering
structures. The results of the object’s random deformations are the fluctuations of its surface, whereas
the result of the vibration is the random noise. In this approach, the monitored surfaces can be treated
as random fields represented by appropriate random functions.

In practice, there are situations when the subject of interest is focused on the positioning changes
not only of the controlled points (CPs), but also of the additional points that are not directly related
to the geodetic network. These points, hereinafter called the extended controlled points (ECPs),
are necessary for examining the engineering object condition. However, it is not possible to determine
their displacements based on the direct geodetic observations (e.g., covering, lack of access, damage).
It is assumed that ECPs are situated in close proximity to actual controlled points. Assuming that the
monitored surface is a random field, then the use of statistical interpolation and prediction methods
could be proposed to determine ECPs’ displacement. It is important to remember that there are
limited possibilities of using ECPs determined in this way. However, in certain cases, the solutions
proposed below can be the way to approach this issue (or to complete other methods) in difficult and
unconventional situations.

The least-squares collocation (LSC) is the most popular method of interpolating and predicting
the values of random functions measured in discrete points. The idea of this method was proposed
and developed in the following studies inter alia [31–35]. The LSC was applied in solving various
geodetic problems, including, inter alia, determination of gravimetric measurements results [36–38]
and coordinates transformation [39–42]. In the paper [43], the use of collocations in the mobile LiDAR
(Light Detection and Ranging) system was proposed. Tscherning [44,45] applied the LSC method in
analysing the observations gathered during the GOCE (Gravity field and steady-state Ocean Circulation
Explorer) mission. The principles of this collocation were also the basis of the analysis of deformations
caused by earthquakes [46]. Yang [47] presented a way for the robustness of the collocation method
against the observations’ gross errors.

In this paper, it is assumed that FCN is a levelling network. All of its points serve as CPs and are
located on a surface that is characterised by deterministic and random deformations. The general LSC
principles are applied in determining the vertical displacements of CPs as well as in displacements of
non-measurable ECPs. In the paper, it will be presented that surface noise leads to random disturbances
of the special matrices occurring in functional observation models. For this reason, the conventional
solutions used in LSC will be replaced by solutions proposed in the total least squares (TLS) theory.
The theory and basic applications of TLS were discussed, inter alia, in [48–50]. The collocation that
uses the TLS for solving the optimisation problem is called TLSC (total least-squares collocation).
The application of TLSC will allow not only the determination of the deterministic and random
displacements of CPs and ECPs, but also the estimation of the value of random disturbance in
these points.
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2. Basic Assumptions and Models

2.1. Surface Fluctuation

Assume that the surface π is the subject to the time-variable t ∈ T vertical displacements.
These deformations are expressed by changes in the heights H(t) of its points (in the adopted reference
system). Assume now that vertical deformations are subject to time- and position-dependent random
fluctuations. When fluctuations are described by the random function ξt(ω), where ω ∈ Ω is the
position parameter (e.g.,ω = (x, y)), then the heights of the points on the surface can be expressed as

H(t,ω) = H(t) + ξt(ω) (1)

For function ξt(ω), it is assumed that E
{
ξt(ω)

}
= 0, hence E

{
H(t,ω)

}
= H(t), where E(◦) is an

expected value. In the simplest case, the fluctuations can be treated as signals st(ω) with assumed
covariance function. In this case, ξt(ω) = st(ω). This approach is applied in solving physical geodesy
problems, for instance, in processes of filtering and predicting the gravimetric anomalies [32,33,38].

When surfaceπ is an element of the engineering object, then not only its deterministic deformations
and random fluctuations, but also additional noise caused by structural vibrations [28,29], should be
projected. This noise should be marked with et and called the primary surface noise. Assume that these
are random values with an expected value of E(et) = 0 and variance of σ2

e (for each t ∈ T). Furthermore,
similarly to [51], it is assumed that surface noise is Gaussian.

At each point P f ∈ πwith coordinates ω f , the primary surface noise can be modified (amplified or
damped) by signals st(ω f ) occurring at these points. Treating standardised signals s∗t(ω f ) = st(ω f )/σs

as noise-modifying functions, secondary noise ϑt at point P f is presented as

ϑt(ω f ) = et, f s∗t(ω f ) (2)

(σs—signal’s standard deviation identical for each t ∈ T). Equation (2) results in the fact that secondary
noise does not exist in two cases: (1) no object vibrations, hence no primary noise; and (2) there are
vibrations generating noise, but their secondary version decays in the absence of signals.

Assume now that the secondary noise generated from other points on the surface reaches each
specific point of surface π. At point Pi ∈ π, the total (resultant) noise presented in the following way
can be expected:

ϑi,t =
∞∑

f=1

ϑi,t(ω f ) =
∞∑

f=1

ei,t, f s∗t(ω f ) (3)

whereϑi,t(ω f ) = ei,t, f s∗t(ω f ) is the secondary noise generated at point P f reaching point Pi. The resultant

of secondary noise ϑi,t and the signal st(ωi) form the total fluctuations of the Pi point’s height on this
surface, that is,

ξt(ωi) = st(ωi) + ϑi,t (4)

In practice, the surface vertical deformations are determined on the basis of changes in heights
H(t) of CPs on the control levelling network (in this paper, it is assumed that this is the FCN). Points Pk
of this network create a set P = {P1, . . . , Pr}, whereas their positions are determined by coordinates
ωk = (xk, yk) included in this set Ω = {ω1, . . . ,ωr}. When surface points π are limited to the set P,
then in accordance with Equation (3), the resultant of secondary noise reaching point Pk ∈ P (CP) can
be presented as

ϑk,t =
r∑

f=1

ek,t, f s∗t(ω f ) = eT
k,ts
∗

t (5)

where ek,t = [ek,t,1, · · · , ek,t,r]
T, s∗t = [s∗1,t, · · · , s∗r,t]

T, s∗f ,t = s∗t(ω f ) = st(ω f )/σs, f = 1, . . . , r.
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In deformation analysis, an interesting issue along with displacement and signals at CPs is also
the prediction of displacements and signals at other non-measured points on the surface π. These
points (relative to FCN) are referred to as ECPs. These points and their coordinates create the sets
P
′ =

{
P′1, . . . , P′z

}
and Ω′ =

{
ω′1, . . . ,ω′z

}
, respectively. Moreover, assume that s∗t(ω

′

f ) = st(ω′f )/σs is a
standardised signal at point P′f ∈ P

′. Taking into account the ECPs, it leads to the resultant of secondary
noise reaching the measured point Pk ∈ P in the following, extended form

ϑk,t =
r∑

f=1

ek,t, f s∗t(ω f ) +
z∑

g=1

e′k,t,gs∗t(ω
′

f ) = eT
k,ts
∗

t + (e′k,t)
T(s′t)

∗ (6)

where e′k,t = [e′k,t,1, · · · , e′k,t,z]
T, (s′t)

∗ = [(s′1,t)
∗, · · · , (s′z,t)

∗]
T, (s′g,t)

∗ = s∗t(ω
′
g) = st(ω′g)/σs, g =

1, . . . , z On the basis of Equations (4) and (6), total fluctuation of the heights of point Pk ∈ P can be
presented as

ξt(ωk) = st(ωk) + ϑk,t = st(ωk) + eT
k,ts
∗

t + (e′k,t)
T(s′t)

∗ (7)

For the signals st(ω f ), ω f ∈ Ω ∪Ω′, it is assumed that they form a stationary and isotropic
process. In this case, the identical following covariance function for each t ∈ T can be assigned to these
magnitudes [52]

C(ωi,ω j) = C(ωi,ωi + ∆ω) = C(∆ω) = C(di, j) = σ2
sρ(di, j) (8)

where ωi,ω j ∈ Ω ∪Ω′, ∆ω = ω j −ωi, and di, j = ‖∆ω‖1/2 are distance between any random pair of
points belonging to the set P∪P′ (ρ(di, j)—correlation function). The following values can be obtained
using Function (8): covariances cov(sk, sl) = C(dk,l) of signals sk and sl at points Pk, Pl ∈ P (CPs),
covariances cov(s′q, s′p) = C(dq,p) of signals s′q and s′p at points P′q, P′p ∈ P′ (ECPs), and covariances
cov(s′q, sk) = C(dq,k) among signals at points P′q ∈ P′ and signals at points Pk ∈ P.

2.2. Heights and Displacements Models

Considering the total surface fluctuations, the height of point Pk ∈ P lying on this surface is
presented in the following form (based on Equations (1) and (7))

H(t,ωk) = Hk(t) + ξt(ωk) = Hk(t) + st(ωk) + eT
k,ts
∗

t + (e′k,t)
T(s′t)

∗= Hk,t + sk,t + eT
k,ts
∗

t + (e′k,t)
T(s′t)

∗ (9)

where Hk,t = Hk(t) and sk,t = st(ωk). After introducing a surface noise vector
_
e k,t = [eT

k,t, e′Tk,t]
T

, joint

for CPs and ECPs, and their joint vector of standardised signals
_
s
∗

t = [(s∗t)
T, ((s′t)

∗)
T
]
T

, Equation (9)
can also be written as

H(t,ωk) = Hk,t + sk,t +
_
e

T
k,t
_
s
∗

t (10)

In case of signals’ absence at all CPs and ECPs, model (10) is reduced to its classic formH(t,ωk) =

Hk,t. This means that, in this case, even if there are surface vibrations and there is random noise coming
from these vibrations, they do not contribute to the height model for point Pk. Consequently, similarly
to random measurement errors, surface noise will disturb the observation (these magnitudes cannot
be separated without additional assumptions). Whereas when ∀ f : ek,t, f = 0, e′k,t, f = 0, then surface
fluctuation is composed only of signals, this means that ξt(ωk) = st(ωk) takes place at point Pk ∈ P and

H(t,ωk) = Hk,t + sk,t (11)

In classic levelling networks forming the FCN, heights Hk,t are not directly measured. They are
treated as unknown parameters in functional observations models (the observations of heights
differences between pairs of points). In this case, separating the signals from non-random parameters
is a problem. Although it is possible to conduct the estimation of random parameters H(t,ωk) =

Hk,t + sk,t = Hrand
k,t (e.g., applying the Bayes method, such as in [53,54]), the determination of the height
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estimator Hk,t and the estimation of the signal sk,t related to this height remain an unsolved problem.
In the proposed model (10), there is not only a signal at point Pk, but there are also signals at other
CPs (and in ECPs) that, together with surface noise, form the resultant of secondary noise. Therefore,
the direct connection of deterministic parameters and random signals is violated here. This creates an
opportunity for separating them in the estimation process. Model (10) can be also applied in estimating
the surfaces noise contained in vectors

_
e k,t.

Assume now that

C_
s
=

[
Cs Css′

Cs′s Cs′

]
(12)

is a covariance matrix of the joint signal vector
_
s t = [sT

t , (s′t)
T]

T
determined on the basis of the

covariance function under Equation (8), where (Cs)k,l = cov(sk, sl), (Cs′)q,p = cov(s′q, s′p), (Cs′s)q,k =

cov(s′q, sk), and Cs,s′ = CT
s′,s ((C)i, j—i, jth element of the matrix C). If the covariance matrix C_

s
is positively defined, then there is a lower triangular matrix R for which C_

s
= RRT (Cholesky

decomposition, for example, [54]). The vector created on its basis

_
s
∗

t = R−1_s t (13)

has a covariance matrix C_
s ∗

= R−1C_
s
(R−1)

T
= Ir+z identical for each t ∈ T (Ir+z—unit matrix of r + z).

After Equation (13) is introduced into Equation (10), the result is

H(t,ωk) = Hk,t + sk,t +
_
e

T
k,tR

−1_s t (14)

The levelling geodetic networks CPs’ displacements are calculated on the basis of the observations
of the heights’ differences between these points, conducted during a few measurement epochs.
Assume that the height difference ∆H(k,l) = H(t,ωl) −H(t,ωk) between points Pk, Pl ∈ P is the object
of measurement in epochs tα, tβ ∈ T. On the basis of Equation (14), the heights of these points in epoch
tα can be written as

H(tα,ωk) = Hk,α + sk,α +
_
e

T
k,αR−1_s α, H(tα,ωl) = Hl,α + sl,α +

_
e

T
l,αR−1_s α (15)

In this case, the heights’ differences observation model ∆H(k,l) is formed as

hi,α =h(k,l),α = ∆H(k,l)α + vi,α = H(tα,ωl) −H(tα,ωk) + vi,α

=Hl,α −Hk,α + sl,α − sk,α +
_
e

T
l,αR−1_s α −

_
e

T
k,αR−1_s α + vi,α

=Hl,α −Hk,α + sl,α − sk,α +
_
ε

T
i,αR−1_s α + vi,α

(16)

where
_
ε i,α =

_
e l,α −

_
e k,α, i = (k, l). The random error of observation hi,α is marked with vi,α (with

expected value E(vi,α) = 0 and variance σ2
v). The elements of vector

_
ε i,α are differential noise with

identical variances σ2
E = 2σ2

e . The magnitudes of Hk,α and Hl,α, k, l = 1, . . . , r are the parameters of
the functional model (16), determined by estimation. For total FCN, these parameters form vector
Xα = [H1,α, · · · , Hr,α]

T. After using this vector, the model of ith observation can be presented as

hi,α = aiXα + aisα +
_
ε

T
i,αR−1_s α + vi,α (17)

where ai = [0, · · · , 0,−1k, 0, · · · , 0, 1l, 0, · · · , 0]. When surface vibrations are absent, then
_
ε i,α = 0, hence

hi,α = aiXα + aisα + vi,α = ai(Xα + sα) + vi,α = aiXrand
α + vi,α (18)
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where Xrand
α = Xα + sα. In this specific case, the random signals are combined with parameters,

which consequently leads to a random parameter Xrand
α with a covariance matrix of CXrand

α
= Cs.

Until this point, the signals in ECPs were treated only as the components of secondary noise
reaching individual points within the FCN. Assume that these magnitudes, that is, signals at points
P′1, . . . , P′z ∈ P′, will also be determined by estimation process. Then, according to the principles of
collocation [32–34], model (17) can be supplemented to the following form

hi,α = aiXα+aisα +
_
ε

T
i,αR−1_s α + 0 · sα(ω′1) + · · ·+ 0 · sα(ω′z) + vi,α

=aiXα + aisα +
_
ε

T
i,αR−1_s α + 0T

z s′α + vi,α

(19)

where 0z = [01, · · · , 0z]
T is the zero vector (the zero component 0T

z s′α added to model (17) does not
change the primary sense of this model). After further transformation of Equation (19), the formula is
as follows

hi,α = aiXα+aisα + 0T
z s′α +

_
ε

T
i,αR−1_s α + vi,α = aiXα + [ai, 0T

z ]

[
sα
s′α

]
+
_
ε

T
i,αR−1_s α + vi,α

=aiXα + bi
_
s α +

_
ε

T
i,αR−1_s α + vi,α = aiXα + (bi +

_
ε

T
i,αR−1)

_
s α + vi,α

(20)

where bi = [ai, 0T
z ]. For total FCN, that is, including all observations hi,α, i = (k, l) = 1, . . . , n, based on

Equation (20), the following model is obtained

yα = AXα + (B +
_
EαR−1)

_
s α + vα = AXα + (B +

_
Eα)

_
s α + vα (21)

where yα = [h1,α, · · · , hn,α]
T is the observations vector and vα = [v1,α, · · · , vn,α]

T is the vector of random
observation errors with a covariance matrix of Cv = σ2

vIn. Matrix A = [aT
1 , · · · , aT

n ]
T is a classic

coefficient matrix in functional models of levelling networks. What is notable, in a levelling FCN, is
that the A matrix is the matrix of vertically incomplete rank, that is, with rank(A) = u = r− d = r− 1
(d = 1—deficient rank). Furthermore, B = [A, 0n,z] (0n,z—zero matrix of n × z dimensions) and
_
Eα = [

_
ε 1,α, · · · ,

_
εn,α]

T
= [Eα, E′α]. The

_
Eα matrix is a matrix of random noise as a result of

surface vibrations, whereas Eα = [ε1,α, · · · , εn,α]
T applies to noise at CPs and E′α = [ε′1,α, · · · , ε′n,α]

T

is the noise matrix at ECPs. All elements of these matrices have common variance σ2
E = 2σ2

e .

Matrix
_
Eα =

_
EαR−1 = [Eα,E′α], where Eα = EαR−1, E′α = E′αR−1, is a matrix that disturbs the

corresponding blocks of B matrix (Eα disturbs the A matrix, whereas E′α disturbs the zero matrix 0n,z).
Similarly to above, the determination of the model of observation vector yβ in epoch tβ, that is,

based on Equation (21), gives

yβ = AXβ + (B +
_
Eβ)

_
s β + vβ (22)

(index α is substituted here with index β indicating the current measurement epoch).
Assume that the network points’ displacements are determined on the basis of difference

δy = yβ − yα of observation vectors in epochs tα and tβ. Using Equations (21) and (22), the following
model of this difference is obtained

δy = Au + (B+
_
Eβ)sβ − (B+

_
Eα)sα + υ (23)

where u = Xβ −Xα is the CPs’ vertical displacement in these epochs. The magnitude u will be also
treated as the deterministic parameter shift (e.g., [14]). Vector υ = vβ − vα is the vector of the differences
of the observations errors with a covariance matrix of Cυ = 2σ2

vIn.
In model (23), it is assumed that disturbances of the B matrix differ in epochs tα and tβ. In practice,

however, it is possible to adopt the assumption that object vibrations in both of these epochs are
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similar. In this case, it can be expected that primary noise et will have similar values coming from
these vibrations. It should be noted that, even with this simplification, fluctuations of heights of the
points in epochs tα and tβ can differ from one another. Signals st(

_
ω f ) modifying primary noise (see

Equation (2)) remain dependent on time. The assumptions made are not general in nature (i.e., they do
not correspond to each practical situation), but they can significantly simplify model (23). Without

this simplification, it may be difficult to estimate surface noise. Applying equation
_
E =

_
Eα =

_
Eβ,

and thus adopting identical disturbs of B matrix in both measurement epochs, that is,
_
E =

_
Eα =

_
Eβ,

the model of the vector of the observations’ differences of heights’ differences in epochs tα and tβ can
be expressed as

δy = Au + (B+E)(_s β −
_
s α) + υ = Au + (B+

_
E)_η + υ (24)

Vector
_
η =

_
s β −

_
s α = [ηT, (η′)T]

T
, where η = sβ − sα, η′ = s′β − s′α is a vector of differential

signals with zero expected values and covariance matrix of C_
η
= 2C_

s
. Its elements can be also treated

as signals for points‘ displacements in epochs tα and tβ. Vector η is thus the vector of CPs’ random
displacement, which can be used to determine the total displacements uη = u + η of these points,
in conjunction with deterministic displacements u. Meanwhile, the η′ vector is the vector of predictions
of random ECPs’ displacements. The deterministic displacements of these points are not parameters in
model (24), hence they are not determined by estimation process. However, if it is assumed that u′ECP
is the vector of interpolated ECPs’ displacements (calculated on the basis of the displacements of CPs
located in their proximity), then their total displacements can be expressed as u′η,ECP = u′ECP + η′.

For the purpose of further optimisation process, the
_
E matrix can be conveniently substituted

with a vector created from its subsequent columns, that is, with vector

v_
E
= vec(

_
E) = [vec(E)T, vec(E′)T]

T
(25)

with a covariance matrix of
Cv_

E
= σ2

EIn·(r+z) = σ2
E(In+z ⊗ In) (26)

(⊗ Kronecker product). Applying the following, general dependence (e.g., [49,51,55])

vec(ABC) = (CT
⊗A)vec(B) (27)

the expression can be converted to
_
E_η =

_
ER−1_η as

_
E_η =

_
ER−1_η = In

_
E(R−1_η) = (

_
η

T
R−1
⊗ In)v_

E
(28)

Introducing the above transformation into model (24), the result is as follows

δy = Au + (B +
_
E)_η + υ = Au + B

_
η + (

_
η

T
R−1
⊗ In)v_

E
+ υ (29)

3. Optimisation Problem and Its Solution

The unknown elements of model (29) can be determined according to the principles of the TLS
method (e.g., [49]). The following optimisation criterion is adopted

ϕ(υ, v_
E

,
_
η, u,λ) = υTC−1

υ υ+ vT
_
E

C−1
v_

E
v_

E
+
_
η

T
C−1
_
η

_
η − 2λT

(
W(υ, v_

E
,
_
η, u)

)
= min (30)

where

W(υ, v_
E

,
_
η, u) = Au + (B +

_
E)_η + υ− δy =Au + B

_
η + (

_
η

T
R−1
⊗ In)v_

E
+ υ− δy = 0 (31)
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is the equation that links the determined magnitudes (λ—vector of Lagrange multipliers).

The optimisation problem ϕ(υ, v_
E

,
_
η, u,λ) = min is solved by such magnitudes as υ̂, v̂_

E
,
_̂
η, û,

for which the following Euler–Lagrange conditions are fulfilled (e.g., [48–50])

∂ϕ

∂υ̂

∣∣∣∣∣
υ̂,v̂_

E
,
_̂
η,û,λ̂

= 2C−1
υ υ̂− 2λ̂ = 0 (32)

∂ϕ

∂v̂_
E

∣∣∣∣∣∣∣
υ̂,v̂_

E
,
_̂
η,û,λ̂

= 2C−1
v_

E
v̂_

E
− 2(R−1_̂η ⊗ In)λ̂ = 0 (33)

∂ϕ

∂
_
η

∣∣∣∣∣∣∣
υ̂,v̂_

E
,
_̂
η,û,λ̂

= 2C−1
_
η

_̂
η − 2(B +

_̂
E)

T

λ̂ = 0 (34)

∂ϕ

∂u

∣∣∣∣∣
υ̂,v̂_

E
,
_̂
η,û,λ̂

= 2ATλ̂ = 0 (35)

∂ϕ

∂λ

∣∣∣∣∣
υ̂,v̂_

E
,
_̂
η,û,λ̂

= Aû + (B +
_̂
E)_̂η + υ̂− δy = 0 (36)

Furthermore, the necessary conditions used to positively define second derivatives must be fulfilled here

∂2ϕ

∂υ̂∂υ̂T = 2C−1
υ ,

∂2ϕ

∂vE∂vT
E

= 2C−1
vE

,
∂2ϕ

∂η∂ηT = 2C−1
η (37)

The following residual vector is a result of Equation (32) and concerns the vector of observation
differences in epochs tα and tβ

υ̂ = Cυλ̂ (38)

Meanwhile, applying Equation (33) and taking into consideration the covariance matrix (26),
the following equation will be obtained

v̂_
E
= Cv_

E
(R−1_̂η ⊗ In)λ̂ = σ2

E(In+z ⊗ In)(R−1_̂η ⊗ In)λ̂ = σ2
E(R

−1_̂η ⊗ In)λ̂ (39)

Because v̂_
E
= vec(

_̂
E) and λ̂ = vec(λ̂), and based on Equation (27), the following matrix is determined

_̂
E = σ2

Eλ̂
_̂
η

T
(R−1)

T
= [Ê, Ê′] (40)

which constitutes the assessment of the noise matrix in CPs (Ê) and in ECPs (Ê′). Therefore, the matrix
that disturbs corresponding matrix blocks B = [A, 0n,z] is

_̂
E =

_̂
ER−1 = σ2

Eλ̂
_̂
η

T
(R−1)

T
R−1 = σ2

Eλ̂
_̂
η

T
C−1
_
s

= [Ê, Ê′] (41)

Using Equation (35), the following vector can be determined

_̂
η = C_

η
(B +

_̂
E)

T

λ̂ = [η̂T, (η̂′)T]
T

(42)
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Its corresponding blocks are the estimations of CPs’ random displacements (vector η̂) and prediction
of ECPs’ random displacements (vector η̂′). Inserting Equations (38) and (42) into Equation (36),
the result is

(B +
_̂
E)C_

η
(B +

_̂
E)

T

λ̂+ Cυλ̂+ Aû− δy = Dλ̂+ Aû− δy = 0 (43)

where

D = (B +
_̂
E)C_

η
(B +

_̂
E)

T

+ Cυ (44)

If rank(D) = n, then the solution of Equation (43) is the following vector of Lagrange multipliers

λ̂ = −D−1(Aû− δy) (45)

After inserting Equation (45) into Equation (35), the following equation is obtained

ATD−1Aû−ATD−1δy = 0 (46)

which can be used to determine the estimator û of the vector of deterministic displacements u.
Because rank(ATD−1A) = rank(A) = r− 1, then any of the g-inverse of matrix ATD−1A, should be

used to solve Equation (46). In free networks adjustment, the following g-inverse of minimum norm, is
particularly significant (e.g., [21–25,56])

(ATD−1A)
+
= ATD−1A

(
ATD−1A ·ATD−1A

)−
(47)

The estimator û determined with the use of this inverse fulfils the optimisation criterion ‖u‖2 =

uTu = min (other criteria are also used in similar problems, see, for example, [17]). Because the
rank of A matrix is known, the method based on the presentation of this matrix in form of block
A = [Aa, Ab] can be used to calculate (ATD−1A)

+
. The Aa matrix is a matrix with r − 1 columns,

for which rank(Aa) = rank(A), whereas Ab is a single-column matrix (e.g., [14,25,57]). Then,

(ATD−1A)
+
=

AT
a D−1Aa · (GGT)

−1
0r−1,1

AT
b D−1Aa · (GGT)

−1
0

 (48)

where G = [AT
a D−1Aa AT

a D−1Ab]. After applying Equation (48), the solution of Equation (46) is the
following estimator of CPs’ deterministic displacements

û = (ATD−1A)
+

ATD−1δy = GT(GGT)
−1

AT
a D−1δy (49)

The expressions obtained above indicate that the solution to the problem ϕ(υ, v_
E

,
_
η, u,λ) = min

is non-linear. It is required to use an iterative procedure with a properly selected starting step
and a rational stopping criterion. Owing to Equations (40) and (42), the starting matrix of random

noise
_
E plays a primary role in initiating iteration. Assume that

_
E
(0)

= 0 is this matrix. Then,
_
E
(0)

=
_
E
(0)

R−1 = 0 and

_
η
(0)

= C_
η
(B +

_
E
(0)

)

T

λ = C_
η

BTλ = C_
η
[A, 0n,z]

T
λ (50)

Because ATλ = 0 (see Equation (35)) and 0T
n,zλ = 0, then it is obtained that

_
η
(0)

= 0 for matrix
_
E
(0)

= 0. This means that, for this initial noise matrix, the iteration process will not start. A different,

non-zero matrix
_
E
(0)

should be thus adopted for the initiation of this process. On the other hand,
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there can be cases where there is no object’s noise, in that case,
_
E = 0. For this reason, the authors

propose that the elements of the starting matrix
_
E
(0)

should be small enough not to disturb the structure
of observation (in the case of the absence of noise), and large enough to ensure that the iteration
process is able to start (if noise exists). The authors propose that, according to the adopted nature of

the noise matrix
_
E , matrix

_
E
(0)

should be simulated with the use of a generator of Gaussian’s random
matrices with a standard deviation common to all of its elements σE(0) = cσE. The c coefficient should

be selected in such way that
_
E
(0)

fulfils the aforementioned requirements (e.g., c = 0.01).

For the adopted starting noise matrix and starting disturbance matrix
_
E
(0)

=
_
E
(0)

R−1, the following
iterative algorithm (i = 0, 1, 2, . . . , m) is proposed:

D(i+1) = (B +
_
E
(i)
)C_

η
(B +

_
E
(i)
)

T

+ Cυ (51)

G(i+1) = [AT
a (D

(i+1))
−1

Aa AT
a (D

(i+1))
−1

Ab] (52)

u(i+1) = (G(i+1))
T
(G(i+1)G(i+1)T)

−1
AT

a (D
(i+1))

−1
δy (53)

λ(i+1) = −(D(i+1))
−1
(Au(i+1)

− δy) (54)

υ(i+1) = Cυλ
(i+1) (55)

_
η
(i+1)

= C_
η
(B +

_
E
(i)
)

T

λ(i+1) (56)

_
E
(i+1)

= σ2
Eλ

(i+1)(
_
η
(i+1)

)
T

(57)

_
E

i+1
=

_
E
(i+1)

R−1 (58)

Iteration ends for such m that ‖u(m)
− u(m−1)

‖ < ξu, ‖λ(m)
− λ(m−1)

‖ < ξλ, ‖
_
η
(m)
−
_
η
(m−1)

‖ < ξη

and ‖
_
E
(m)

−
_
E
(m−1)

‖ < ξE (for given ξu, ξλ, ξη, ξE).

4. Numerical Tests

4.1. Simulated Levelling Network

Basic numerical tests were carried out on the example of simulated levelling network (Figure 1)
constituting the FCN. This network is composed of a set of P = {P1, . . . , Pr}, r = 25, CPs and a set
of P′ =

{
P′1, . . . , P′z

}
, z = 5, ECPs. The positions of these points are defined by their coordinates,

ωk = (xk, yk) ∈ Ω and ω′l = (xl, yl) ∈ Ω′ (for k = 1, . . . , 25 and l = 26, . . . , 30), respectively. It was
assumed that the network is measured in two epochs, tα and tβ. In each of these epochs, the observations
of heights differences hi, i = 1, . . . , 40 between CPs were simulated by adding the observations errors vi
of normal distributionN(0, σ2

v) to their theoretical values, where σv is the assumed standard deviation
of these errors. These errors were generated using a random number generator σvrandn(n, 1), n = 40
included in the MatLab package. Observation vectors yα = [h1,α, · · · , h40,α]

T and yβ = [h1,β, · · · , h40,β]
T

were obtained this way and then used to calculate the vector of observations differences δy = yβ − yα
in epochs tα and tβ.

The simulation of differential signals in CPs and in ECPs, that is, the random displacements of
these points, required the application of the following procedure:

1. Generation of mutually independent elements of vectors,
_
s
∗

t = [(s∗t)
T, ((s′t)

∗)
T
]
T
∼ N(0, I30),

t = tα, tβ using generator randn(r + z, 1).
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2. Creation of a covariance matrix C_
s

of signals vector
_
s t = [sT

t , (s′t)
T]

T
for the adopted covariance

function C(di, j) = σ2
sρ(di, j), i, j = 1, . . . , 30.

3. Calculation of signals vectors
_
s t = R

_
s
∗

t ∼ N(0, C_
s
), t = tα, tβ, based on the R matrix of

C(di, j) = σ2
sρ(di, j) = σ2

s exp(−kd2
i, j), C_

s
= RRT distribution and simulated vectors

_
s
∗

t .

4. Calculation of simulated random displacements vector of
_
η =

(_
s β −

_
s α ∼ N(0, 2C_

s
).
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Matrix of random noise resulting from surface vibrations, that is, the
_
E = [E, E′] matrix was

simulated using generator σErandn(n, r+ z). This matrix is the basis for the calculation of the
_
E =

_
ER−1

matrix that disturbs the B matrix in model (24).
The Gaussian’s covariance function of signals was adopted in the tests [41,42,54,58] in the

following form
C(di, j) = σ2

sρ(di, j) = σ2
s exp(−kd2

i, j) (59)

The k coefficient in the correlation function ρ(di, j) = exp(−kd2
i, j) was determined in such way that,

for the most distant points of network dmax = 230 m, the correlation coefficient between the signals at
these points has the assumed minimum value ρmin. The value of this coefficient must be selected in
such way that the covariance matrix C_

s
is positively defined (too high a value of ρmin leads to the

negative definitiveness). For instance, k = − ln(ρmin)/d2
max = 8.7 · 10−5 is obtained for ρmin = 0.01.

There are also functions that belong to other classes of theoretical covariance functions and can be
applied in practice. The chosen function should, however, correspond to the unique engineering
object’s specification as well as its monitoring programme and technical conditions.

The influence of not recognising random displacements and surface noise on estimators of the
u parameter in functional observation models was verified. For this reason, an analysis applying
the Crude version of the Monte Carlo method was carried out. For N = 5000 of independent

simulations of vectors vα,sim,vβ,sim,
_
s α,sim, and

_
s β,sim and matrices

_
Esim, the theoretical vector of

differential observations δy = Au was loaded with a random vector ξi
sim = (B+

_
E

i
)
_
η

i
sim + υi

sim, where
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_
E

i
=

_
E

i

simR−1, ηi
sim = si

β,sim − si
α,sim, and υi

sim = vi
β,sim − vi

α,sim (for each i = 1, . . . , N). The u vector is

the adopted theoretical displacement of CPs. LS-estimators ûi of u parameter were determined on
the basis of the model δy = Au + υ, for the simulated observations δi

y,sim = Au + ξi
sim. It should be

noted that the model adopted in this paper does not take into account the signals and noise, although
observations tend to be burdened by them. For comparison, the ûi

p LS-estimators determined on the
basis of observations burdened only with the vector of differential observation errors υi

sim (without
signals and noise) were also calculated. The estimators ûi and ûi

p, i = 1, . . . , N, were the basis for
calculating the magnitudes of

JMC
û =

N∑
i=1

(
‖u− ûi

‖
2
/r

)1/2
/N, JMC

ûp
=

N∑
i=1

(
‖u− ûi

p‖
2
/r

)1/2
/N (60)

which constitute the Monte Carlo assessment of the following comparative parameters

Jû =
(
‖u− ûi

‖
2
/r

)1/2
, Jûp

=
(
‖u− ûi

p‖
2
/r

)1/2
(61)

Calculations were carried out for three versions of the vector u

u = [u1, u2, u3, · · · , u25]
T =


[0, 0, 0, · · · , 0]Tmm

[−5, 0, 0, · · · , 0]Tmm

[−10, 0, 0, · · · , 0]Tmm

Estimators ûi = [ûi
1, · · · , ûi

25]
T and ûi

p = [ûi
p,1, · · · , ûi

p,25]
T were determined for different values

of signal’s standard deviations (the same for each measurement epoch): σs = 0 mm (no signals),
σs = 0.5 mm, and σs = 1.0 mm, and for different values of surface noise’s standard deviations:
σE = 0 mm (no noise), σE = 0.1 mm, σE = 0.2 mm, and σE = 0.3 mm. In each case, an identical
standard deviation of observations errors σv = 0.3 mm was adopted. The values of JMC

û and JMC
ûp

obtained using the Monte Carlo (MC) method are presented in Table 1 (all values are expressed in
mm). Figure 2 presents the courses of estimators ûi

k and ûi
p,k obtained in the sequence i = 1, . . . , N of

simulations (for variants u1 = 10 mm, σv = 0.3 mm, σs = 1.0 mm, and σE = 0.1 mm).
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Table 1. Comparative parameters JMC
û and JMC

ûp
obtained with the Monte Carlo (MC) method.

σs = 0

u1 = 0 u1 = −5 u1 = −10

σE σE σE

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

JMC
û 0.24 0.24 0.24 0.24 0.29 0.29 0.29 0.29 0.40 0.40 0.40 0.40

JMC
ûp

0.24 0.24 0.24 0.24 0.29 0.29 0.29 0.29 0.40 0.40 0.40 0.40

σs = 0.5

u1 = 0 u1 = −5 u1 = −10

σE σE σE

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

JMC
û 0.46 0.63 0.99 1.41 0.49 0.66 1.00 1.40 0.57 0.71 1.03 1.44

JMC
ûp

0.24 0.24 0.24 0.24 0.29 0.29 0.29 0.29 0.40 0.40 0.40 0.40

σs = 1.0

u1 = 0 u1 = −5 u1 = −10

σE σE σE

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

JMC
û 0.81 0.93 1.21 1.55 0.84 0.94 1.20 1.56 0.89 1.00 1.24 1.58

JMC
ûp

0.24 0.24 0.24 0.24 0.29 0.29 0.29 0.29 0.40 0.40 0.40 0.40

The obtained results indicate that the differential signals (random displacement) omitted in the
functional model can significantly affect the displacements values of the control network points that are
determined with the use of this model. According to the theoretical assumptions, this influence grows
together with the increase of noise values produced by surface vibrations. For instance, for noise with
standard deviations σE = 0.1 mm and σE = 0.3 mm, the difference between comparative parameters
JMC
û and JMC

ûp
will be 0.60 mm and 1.18 mm (for the variant, where u1 = 10 mm and σs = 1.0 mm),

respectively. What is noteworthy is that the influence of signals is present also when there is no noise.
In the discussed variant, JMC

û − JMC
ûp

= 0.49 was obtained for σE = 0 mm. However, in this and similar
examples, there is an issue with separating random signals from deterministic displacements (which
was discussed in the theoretical part of the paper).

Both differential signals and surface noise are random values that are difficult to foresee (similarly
to observations errors). In practice, it is thus impossible to eliminate their influence on the vector of
differential observations δy, and thus it is impossible to actually determine the ûp estimator. Extending
the observation model to the form of Equation (24) and applying the proposed TLSC method lead
to different solutions. In this case, the calculation results can go beyond TLSC estimators of the
u deterministic displacements, but also include estimations of the

_
η random displacements (with

their prediction for ECPs), and estimations of the
_
E noise matrices. The example of this solution is

presented below.
The example assumes the same simulated FCN as above. The simulation was carried

out for the following vector of CPs’ theoretical displacements of u = [u1, u2, u3, · · · , u25]
T =

[−5, 0, 0, · · · , 0]Tmm. The following values σv = 0.3 mm, σs = 1.0 mm, and σE = 0.1 mm were
adopted for each of the measurement epochs tα and tβ. Similarly to the previous analysis, the correlation
coefficient between the signals in the most distant points is ρmin = 0.01. The vector of observations

differences δy,sim = Au + ξsim, where ξsim = (B +
_
Esim)

_
ηsim + υsim, was determined in the same

way. The vector was the basis for iterative calculations performed with the use of algorithm defined
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by Equations (51)–(58). The starting matrix of random noise
_
E
(0)

was generated by adopting
σE(0) = 0.01, σE = 0.001 mm. The objects of these calculations are as follows: the û estimator of CPs’
deterministic displacements, the η̂ estimation of these points’ random displacements, the η̂′ prediction
of ECPs random displacements, the total CPs displacement ûη = û + η̂, prediction û′η = û′ + η̂′ of

ECPs’ total displacements, and estimation
_̂
E of the noise matrix. By comparison, the classic least

squares estimator ûLS of the u parameter was also determined. Model δy = Au + υ was the basis for
determining estimator ûLS and was used for the same observations’ differences vector δy,sim as above.
Simulated and determined values are presented in Table 2. The table also presents the values of the
following comparative parameters

Jû =
(
‖u− û‖2/r

)1/2
, JûLS =

(
‖u− ûLS‖

2/r
)1/2

,

Jη̂ =
(
‖η−η‖2/r

)1/2
, Jûη =

(
‖(uη − ûη)‖

2/r
)1/2 (62)

where uη = u + ηsim is the simulated total displacement.

Table 2. The results of estimation and prediction (in mm) for the simulated free control network (FCN).

CP u ûLS û ηsim η̂ uη = u + ηsim ûη = û + η̂

P1 −5 −4.43 −5.05 0.87 0.41 −4.13 −4.64
P2 0 0.86 0.05 0.57 0.60 0.57 0.64
P3 0 1.09 0.27 0.09 0.61 0.09 0.87
P4 0 1.08 0.51 0.11 0.36 0.11 0.86
P5 0 2.50 2.42 0.78 −0.13 0.78 2.29
P6 0 1.44 1.84 0.45 −0.61 0.45 1.23
P7 0 0.29 0.63 −0.07 −0.56 −0.07 0.08
P8 0 1.40 1.50 0.11 −0.31 0.11 1.19
P9 0 1.72 1.36 0.71 0.14 0.71 1.51
P10 0 0.88 0.14 0.81 0.52 0.81 0.66
P11 0 −0.73 −1.77 −0.05 0.82 −0.05 −0.95
P12 0 −0.11 −0.21 −0.26 −0.12 −0.26 −0.33
P13 0 0.33 1.10 −0.78 −0.99 −0.78 0.11
P14 0 −0.40 0.57 −0.61 −1.19 −0.61 −0.62
P15 0 0.69 1.29 0.14 −0.82 0.14 0.48
P16 0 0.44 0.67 −0.11 −0.45 −0.11 0.22
P17 0 −1.48 −0.64 −1.15 −1.05 −1.15 −1.69
P18 0 −1.47 −0.65 −1.58 −1.04 −1.58 −1.69
P19 0 −1.13 −1.07 −1.04 −0.28 −1.04 −1.35
P20 0 −1.55 −0.47 −0.73 0.70 −0.73 −1.77
P21 0 0.27 0.18 −0.86 −0.14 −0.86 0.05
P22 0 −0.50 −0.02 −0.98 −0.69 −0.98 −0.72
P23 0 −1.88 –1.19 –1.38 –0.91 –1.38 –2.09
P24 0 –0.85 – 0.55 –0.87 –0.52 –0.87 –1.07
P25 0 1.53 1.09 0.22 0.23 0.22 1.32

JûLS = 0.92 Jû = 0.79 Jη̂ = 0.62 Jûη
= 0.55

ECP û′ η′sim η̂′ û′η = û′ + η̂′

P′1 – – 0.16 0.19 0.61 – 0.77
P′2 – – 0.39 0.10 0.51 – 0.90
P′3 – – 1.49 0.41 0.21 − 1.70
P′4 − − −0.86 −1.16 −0.75 − −1.61
P′5 − − 0.29 −0.19 −0.08 − 0.21

The random displacements’ prediction η̂′ allows for prediction of ECPs’ total displacements.
However, an interpolation of deterministic displacements u′ of these points must be carried out first.
Assume that point P′i ∈ P

′ lies between points PkPl ∈ P, and for these points, the displacements
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estimators ûk and ûl have been determined. Then, in the simplest case, the linear interpolation
expressed by the following formula can be used to determine the displacement û′i

û′i = ûk +
ûl − ûk

dk,l
dk,i (63)

where dk,l is the distance between points Pk and Pl, whereas dk,i is the distance between point Pk and
point Pi

′. Interpolated displacements of points P1
′, . . .P5

′ (the û′ vector) and total displacements
of these points (vector û′η = û′ + η̂′) determined using Equation (53) are also presented in Table 2.
Final information about random, deterministic, and total displacements of all points (CPs and ECPs)
within a simulated free control network is presented in Figure 3.
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While analysing the obtained results, attention should be paid to the values of comparative
parameters JûLS = 0.92 mm and Jû = 0.79 mm. These values mean that the deterministic displacement
estimators designated using this method are generally closer to the theoretical values of these
displacements, compared with corresponding LS estimators. This particularly applies to displacement
u1, for which the absolute values of differences between its relatively high theoretical value u1 = −5 mm
and the designated estimators are

∣∣∣u1 − û1,LS
∣∣∣ = 0.57 mm and

∣∣∣u1 − û1
∣∣∣ = 0.05 mm, respectively.

The theoretical displacements of the remaining points are equal to zero. Assume that such displacements
are the u0 parameter that is common to these points. Then, LS and TLSC estimators of parameter
u0 can be treated as the realisations û0,k,LS and û0,k, k = 1, . . . , 25 of two random variables, û0,LS
and û0, respectively. In this approach, the comparisons regarding the quality of identification of
zero displacement can be made on the basis of the determined estimators’ histograms (Figure 4).
These histograms indicate that, compared with LS estimators, TLSC estimators are more focused
around the theoretical value u0 = 0 mm.
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Figure 4. The histograms of least squares (LS) and total least-squares collocation (TLSC) estimators
regarding zero CPs displacements.

Taking into account the issue of determining the network points’ displacements, it is interesting
that total displacement estimators agree with their simulated values. This is displayed by parameter
Jûη = 0.55 mm, which differs insignificantly from parameter Jη̂ = 0.62 mm that defines the quality of
random displacements estimation. These estimations are generally similar to the simulated values
(Figure 5a), whereas this similarity is also applicable for predictions at ECPs.
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Figure 5. Graphic illustration of estimation results: (a) simulated and determined random displacements
of CPs and ECPs, (b) simulated and determined surface noise in these points.

Owing to the random character of theoretical signals, a better match can hardly be expected
here, particularly with reference to specific, individual signals. Attention should also be paid to the
random noise estimations at CPs and ECPs, presented in Figure 5b. These general estimations have
lower values compared with simulated noise. This is primarily caused by the adopted, relatively small
standard deviation of these values. In this situation, although the adopted model should prevent them,
some noise becomes part of observations errors. The consequence of this autonomous integration is

that the assessments of the
_
E matrix elements are underestimated. From the theoretical point of view,
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this could be prevented by adopting a higher value for σE, for example, comparable with the value of
the observation’s standard deviation. The conducted numerical tests have, however, indicated that
the iteration under Equations (51)–(58) is not convergent in many cases. Substituting the proposed,
convenient iteration procedure with a different procedure in relation to such cases is an important issue,
which is, however, beyond the scope of this paper. In the presented example, the iteration process for
end criteria ξu = ξη = ξE = 0.001 mm and ξλ = 0.001 mm ended after m = 10 steps. The values of

norms ‖u(i)
− u(i−1)

‖, ‖λ(i) − λ(i−1)
‖, ‖

_
η
(i)
−
_
η
(i−1)
‖, and ‖

_
E
(i)
−
_
E
(i−1)
‖ obtained in individual steps are
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4.2. Real Free Control Network

The simulations presented in the previous section have been supplemented with the results of
real FCN calculations. The network was established to monitor the loading quays (Figure 7a). It is
comprised of CPs P1, . . . , P14, among which heights differences were measured (Figure 7b). In difficult
to measure but critical points of the quay, points P′1, . . . , P′4 were created, to be treated as ECPs.

The calculations were performed for two measurement epochs: the year tα = 1998 and the year
tβ = 2008. The specific nature of operations carried out on port quays justifies the application of the
proposed method. The ongoing operation of gantries and other loading equipment, the stacking and
lifting containers, and the docking of vessels can cause vibrations and elastic displacements. In this
case, not only the object’s deterministic deformations, but also random fluctuations consisting of
signals and surface noise can be expected.

Observations of heights differences h(k,l) among points Pk, Pl, k = 1, . . . , 14, l = 2, . . . , 14, 1
and differences δyi = h(k,l)β − h(k,l)α, i = (k, l) among these heights differences, obtained in both
measurement epochs, are presented in Table 3. In each measurement epoch, observations were
obtained assuming standard deviation σv = 0.2 mm. In practice, the selection of adequate signals
values and surface noise’s standard deviation is an important issue. In this example, calculations
were performed in two versions: for signal’s standard deviation, clearly exceeding observations’
standard deviation (σs = 3σν = 0.6 mm), and when these standard deviations are equal to each
other (σs = σν = 0.2 mm). In both versions, identical standard deviations were adopted for surface
noise σE = 0.1 mm. The subject of the calculations was the deterministic, random, and total CPs’
displacements (vectors û, η̂, and ûη = û+ η̂, respectively). For comparative reasons, a classic estimator
of displacement ûLS for these points was also determined. The calculations also produced the prediction
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η̂′ of random displacements regarding ECPs (i.e., points P1
′, . . . , P4

′). The η̂′ vector and interpolated
displacements û′ of ECPs were then used to determine their total displacements ûη = û+ η̂. The results
are shown in Table 4. A graphic presentation of determined random displacements and surface noise
is presented in Figure 8a,b. The iteration process leading to the presented results ends after eight steps.

The course of the most important norms ‖u(i)
− u(i−1)

‖ and ‖
_
η
(i)
−
_
η
(i−1)
‖ essential to this process is

presented in Figure 9.
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Table 3. Observation of heights’ differences within a real FCN (in mm).

h(1,2) h(2,3) h(3,4) h(4,5) h(5,6) h(6,7) h(7,8) h(8,9) h(9,10) h(10,11) h(11,12) h(12,13) h(13,14) h(14,1)

tα −6.9 11.6 −13.2 −25.3 −3.6 −14.9 20.6 −3.4 8.5 −15.7 8.2 0.1 12.1 −29.7
tβ −3.5 8.9 −6.6 23.4 −1.2 −13.9 23.2 −2.7 10.8 −17.5 7.9 −0.4 14.8 −38.2
δyi 3.4 −2.7 6.6 −1.9 2.4 1.0 2.6 0.7 2.3 −1.8 −0.3 −0.5 2.7 −8.5
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Table 4. The results of estimation and prediction for the real FCN (in mm).

CP
ûLS û η̂ ûη = û + η̂

σs = 0.2 σs = 0.6 σs = 0.2 σs = 0.6 σs = 0.2 σs = 0.6

P1 −5.97 −6.10 −6.35 0.03 0.10 −6.07 −6.24
P2 −2.98 −2.91 −2.76 −0.16 −0.49 −3.07 −3.25
P3 −6.12 −5.60 −4.58 −0.61 −1.82 −6.21 −6.39
P4 0.05 0.62 1.76 −0.66 −1.99 −0.04 −0.23
P5 −2.27 −2.44 −2.78 0.08 0.24 −2.36 −2.54
P6 −0.29 −0.72 −1.57 0.33 1.00 −0.39 −0.57
P7 0.27 0.21 0.09 −0.03 −0.09 0.18 −0.00
P8 2.45 2.33 2.09 0.03 0.08 2.36 2.17
P9 2.72 2.70 2.67 −0.08 −0.23 2.62 2.44
P10 4.60 4.16 3.30 0.34 1.03 4.50 4.32
P11 2.35 2.25 2.06 0.01 0.02 2.26 2.07
P12 1.59 1.72 1.96 −0.21 −0.64 1.51 1.32
P13 0.66 0.80 1.09 −0.24 −0.71 0.56 0.38
P14 2.95 2.97 3.02 −0.12 −0.35 2.85 2.67

ECP û′ η̂′ û′η = û′ + η̂′

P′1 −0.81 −0.37 −0.28 −0.83 −1.09 −1.20
P′2 −0.13 −0.51 0.07 0.21 −0.06 −0.30
P′3 2.48 2.32 0.01 0.04 2.49 2.36
P′4 3.52 2.87 0.27 0.81 3.79 3.68

The TLSC estimators of deterministic displacements for both versions of signals’ standard

deviations vary from each other. This is shown by the
(
‖û0.6 − û0.2‖

2/r
)1/2

= 0.55 mm parameter,
where û0.2 and û0.6 are heights’ difference estimators obtained for signals’ standard deviations,
σs = 0.2 mm and σs = 0.6 mm, respectively. The estimations of random displacements, for which(
‖η̂0.6 − η̂0.2‖

2/r
)1/2

= 0.58 mm is obtained, vary in a similar way. With reference to real FCNs, it is
particularly important to compare TLSC estimators of deterministic displacements with their classic LS

estimators. Calculating relevant comparative indicators, the results are as follows:
(
‖û0.2 − ûLS‖

2/r
)1/2

=

0.28 mm and
(
‖û0.6 − ûLS‖

2/r
)1/2

= 0.83 mm. For the variant where σs = 0.6 mm, the difference
between TLSC and LS estimators of deterministic displacements can have a practical significance.
However, paying attention to the total displacements of the analysed network points, for these

displacements, where σs = 0.6 mm
(
‖ûη,0.6 − ûLS‖

2/r
)1/2

= 0.28 mm is obtained. This parameter
shows that the total displacement estimations obtained using the TLSC method hardly differ from the
LS estimators of deterministic displacements (for σs = 0.2 mm, this parameter is 0.09 mm). This means
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that the displacements that were treated as deterministic in the LS method have been split into
deterministic and random in the TLSC method.

Additionally, in this practical example, the prediction of ECPs’ random displacements (for the
version in which σs = 0.6 mm) was analysed. For instance, point P′1 lies between points P4 and
P5 at similar distances, dP′1−P4 = 23 m and dP′1−P5 = 26 m. The random displacements recorded
for these points are η̂P4 = −1.99 mm and η̂P5 = 0.24 mm. At point P′1, the random displacement
prediction determined using the TLSC method is η̂′P′1 = −0.83 mm, which is the approximate
average of the displacements recorded in proximate points (this average is −0.875 mm). At this
moment, it should be noted that the closer CP has a bigger (but still unclear) influence on the random
displacement’s prediction at ECP. A different ECP, that is, point P′4, lies at distances from points P10

and P11 of dP′4−P10 = 35 m and dP′4−P11 = 69 m. For these points, the assessments of random vertical
displacements are η̂P10 = 1.03 mm and η̂P11 = 0.02 mm. The determined prediction of displacement
of point P′4 is equal to η̂′P′4 = 0.81 mm. In this case, the impact of closer CP on the displacement
prediction at ECP is definitely larger.

5. Conclusions

In this paper, the free control network was limited to the class of levelling networks. Such networks
play the important role in vertical surface deformations analyses. Splitting the points’ displacements
within an FCN into deterministic and random parts allows for expansion of the analysis, primarily in
terms of the character of monitored surface deformations. Identification of this aspect can be of high
practical importance. The different object’s reactions to deterministic deformations as well as to random
surface fluctuations can be expected. There are different ways of interpreting these deformations and
methods of preventing their effects.

The total displacement estimations obtained using the TLSC method hardly differ from the LS
estimators of deterministic displacements. When these methods are applied, the general conclusions
pertaining to network deformations can be similar. Therefore, if the character of deformations is not
the object of interest, TLSC may be treated as an alternative to the LS method. The proposed method,
however, opens the path to more detailed interpretation of displacements, and to these magnitudes’
prediction, for additional points of the monitored surface that are not connected to the control network.

The solution of the optimisation problem in TLSC is iterative. The iterative process is generally
convergent and ended after 8–10 steps in the tests conducted as part of the study. The problem with
the convergence of the iterative process occurs only when the surface noise’s standard deviations
are too large (equal to or exceeding the values of observations’ standard deviations). Selecting the
surface noise’s standard deviations, adequate to the specific, monitored object, as well as signals’
standard deviations, is a separate problem requiring additional analyses. This also applies to the
selection of adequate covariance functions and their parameters. In this study, the role of empirical
examples and analyses was limited to demonstrating the results that could be expected after applying
the proposed method. For this reason, the most popular Gaussian’s covariance function using the
parameter coming from the adopted, minimum value of correlation coefficient was applied. In specific
instances, this function can be replaced by a different, more justified covariance function.

Author Contributions: Conceptualization, Z.W. and W.K.; Methodology, Z.W. and W.K.; Software, Z.W.; Validation,
W.K.; Formal analysis, Z.W.; Investigation, Z.W.; Resources, W.K.; Writing—original draft preparation, Z.W.;
Writing—review and editing, W.K.; Visualization, Z.W. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Institute of Geodesy, University of Warmia and Mazury in Olsztyn,
statutory research grant no. 28.610.002–300 and from funds of the Faculty of Civil and Environmental Engineering,
Gdansk University of Technology allocated for scientific research.

Conflicts of Interest: The authors declare no conflicts of interest.



Sensors 2020, 20, 3913 21 of 23

References

1. Meo, M.; Zumpano, G. On the optimal sensor placement techniques for a bridge structure. Eng. Struct. 2005,
27, 1488–1497. [CrossRef]

2. Glišić, B.; Inaudi, D. Fibre Optic Methods for Structural Health Monitoring; John Wiley & Sons: Chichester, UK,
2007; p. 276.

3. Cai, J.; Wang, J.; Wu, J.; Hu, C.; Grafarend, E.; Chen, J. Horizontal deformation rate analysis based on
multiepoch GPS measurements in Shanghai. J. Surv. Eng. 2008, 134, 132–137. [CrossRef]

4. Li, L.; Kuhlmann, H. Deformation detection in the GPS real–time series by the multiple Kalman filters model.
J. Surv. Eng. 2010, 136, 157–164. [CrossRef]

5. Yi, T.H.; Li, H.N.; Gu, M. Experimental assessment of high–rate GPS receivers for deformation monitoring of
bridge. Measurement 2013, 46, 420–432. [CrossRef]

6. Xiao, Z.; Liang, J.; Yu, D.; Asundi, A. Large field–of–view deformation measurement for transmission tower
based on close–range photogrammetry. Measurement 2011, 44, 1705–1712. [CrossRef]

7. Lindenbergh, R.; Pietrzyk, P. Change detection and deformation analysis using static and mobile laser
scanning. Appl. Geomat. 2015, 7, 65–74. [CrossRef]

8. Pingue, F.; Petrazzuoli, S.M.; Obrizzo, F.; Tammaro, U.; De Martino, P.; Zuccaro, G. Monitoring system of
buildings with high vulnerability in presence of slow ground deformations (The Campi Flegrei, Italy, case).
Measurement 2011, 44, 1628–1644. [CrossRef]

9. Baselga, S.; García–Asenjo, L.; Garrigues, P. Deformation monitoring and the maximum number of stable
points method. Measurement 2015, 70, 27–35. [CrossRef]

10. Chen, Y.Q.; Chrzanowski, A.; Secord, J.M. A strategy for the analysis of the stability of reference points in
deformation surveys. CISM JACSGG 1990, 44, 141–149. [CrossRef]

11. Amiri–Simkooei, A.R.; Alaei–Tabatabaei, S.M.; Zangeneh–Nejad, F.; Voosoghi, B. Stability Analysis of
Deformation–Monitoring Network Points Using Simultaneous Observation Adjustment of Two Epochs. J.
Surv. Eng. 2017, 143, 1–12. [CrossRef]

12. Koch, K.R. Parameter Estimation and Hypothesis Testing in Linear Models, 2nd ed.; Springer: Berlin/Heidelberg,
Germany, 1999; p. 334. [CrossRef]

13. Durdag, U.M.; Hekimoglu, S.; Erdogan, B. Reliability of Models in Kinematic Deformation Analysis. J. Surv.
Eng. 2018, 144, 1–15. [CrossRef]
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