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Abstract

This study introduces an ability-based method for personalized keyboard generation, wherein 

an individual’s own movement and human–computer interaction data are used to automatically 

compute a personalized virtual keyboard layout. Our approach integrates a multidirectional point-

select task to characterize cursor control over time, distance, and direction. The characterization 

is automatically employed to develop a computationally efficient keyboard layout that prioritizes 

each user’s movement abilities through capturing directional constraints and preferences. We 

evaluated our approach in a study involving 16 participants using inertial sensing and facial 

electromyography as an access method, resulting in significantly increased communication rates 

using the personalized keyboard (52.0 bits/min) when compared to a generically optimized 

keyboard (47.9 bits/min). Our results demonstrate the ability to effectively characterize an 

individual’s movement abilities to design a personalized keyboard for improved communication. 

This work underscores the importance of integrating a user’s motor abilities when designing 

virtual interfaces.
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1. Introduction

In recent years, mobile devices have increasingly begun to integrate customizable features 

to provide users with the experience of a more directed, or “personalized,” service. Far 

more than added convenience, these customizations often provide valuable assistance for 

people with complex communication needs who rely on personal computers, tablets, or 

smartphones to supplement or replace their oral speech [1-3]. Accessibility features such as 

increased text size and weight, reachability, magnification, and color inversion are among 

the myriad of customization options that allow people who rely on augmentative and 

alternative communication (AAC) to successfully engage with others [4].

1.1. Motivation

Although there exists a wide range of customizable device features to facilitate AAC, some 

individuals remain poorly served. Those with concomitant motor impairments—as in some 

developmental disabilities (e.g., cerebral palsy, muscular dystrophy), acquired neurogenic 

disorders (e.g., stroke, traumatic brain injury), and degenerative neurological conditions 

(e.g., amyotrophic lateral sclerosis, multiple sclerosis)—often lack the manual dexterity 

needed to control AAC technology and, as a result, require alternative access through 

switch scanning, head- or eye-tracking, and/or touchscreen devices accessed via finger or 

typing stick, among other methods. Unfortunately, current AAC technologies with computer 

interfaces offer limited access efficiency and subpar personalization options, which do little 

to facilitate communication for those with severe motor impairments who rely on alternative 

access methods. This is because customizing these alternative access methods largely fails 

to fully address or compensate for the access barriers that individuals with severe motor 

impairments often face. Poor technical knowledge amongst caregivers and support staff 

(e.g., due to limited training [5]) and precise mounting requirements that necessitate manual 

device adjustments [6] are among the largest barriers to communication, despite these 

individuals being matched to a device that best fits their residual motor capabilities and 

use preferences [7,8]. Because of this, AAC users that require both alternative access and 

augmentative speech options are often excluded from successful use of AAC devices [9-11], 

contributing to the nearly one-third of patients who abandon their clinically prescribed 

AAC device in favor of less-effective dysarthric speech or manual gestures, among other 

communication methods [12,13]. In addition to customizing an individual’s computer access 

method, another strategy to achieve more efficient communication when using an alternative 

access strategy could be to personalize the individual’s computer interface.

Current computer interface customization methods to improve AAC devices beyond lexical 

prediction and/or manually personalizing keyboard content [9] focus on computational 

strategies for universally rearranging elements within an AAC interface. These strategies 

often aim to decrease the time needed to traverse a keyboard (such as the ubiquitous 
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QWERTY keyboard) by organizing frequently occurring characters closer to each other. One 

popular method leverages Fitts-Digraph Energy, a cost function that weights the travel time 

between keys by the frequency of character-to-character (“digraph”) transitions within a 

language. Fitts-Digraph Energy is commonly used for solving the Metropolis algorithm 

in order to reduce the probability of accepting subpar keyboard layouts [14-16]. This 

method has been examined for single-input keyboard optimization to create a layout of 

alphabetic [16,17] and phonemic [18] keys (the latter of which validated Fitts-Digraph 

Energy—and, by proxy, Fitts’ Law—for examining motor performance in individuals with 

motor impairments). Although these computational approaches are an automated option for 

increasing communication rates [14-16] through more efficient virtual keyboard layouts, 

they do not account for any element of personalization that is often critical for AAC users 

who rely on alternative computer access.

1.2. Ability-Based Design for AAC

With this absence of AAC technology that automatically personalizes to the individual, the 

field of accessible computing has recently focused on designing devices directly around an 

individual rather than training an individual to use a piece of technology out of the box. 

This technique, known as ability-based design [19,20], is based on the principle of designing 

technology that conforms to an individual as opposed to an individual conforming to the 

technology. An example of this is the SUPPLE system [21], which comprises automated 

methods for designing a user interface based on the dexterity of an individual’s control and 

their preference for specific graphical elements.

Methods that utilize ability-based design for keyboard optimization are substantially limited 

for AAC use. Recent work by Sarcar and colleagues [22] merged adjacent keys from the 

QWERTY keyboard and adapted parameters—such as key size and number of predicted 

words—to specific diseases, including tremor, dyslexia, and memory dysfunction. While the 

authors present methods that potentially improve text-entry speed, this work has significant 

limitations in that (i) the complex and heterogenous motor and communication needs 

of AAC users even within a single disease population make it difficult to effectively 

generalize keyboard interactions by disease [23,24]; (ii) ability-based optimization methods 

were validated in only two participants; and (iii) the authors adopt the inefficient, multi-

input QWERTY layout for use with a single-input access method [14,15,25-29]. Methods 

that account for user-specific movement patterns have been developed for automatically 

adapting key presses on a touchscreen [30], wherein adapted keypress classification models 

discriminate between actual and intended key presses. Unfortunately, this method is only 

validated for multi-input typing using a QWERTY layout. There remains a need for 

ability-based optimization of single-input keyboards for use by people with complex 

communication needs and concomitant motor impairments.

Applying the principles of ability-based design to the field of AAC is an important step 

toward developing technology that can effectively serve any individual who relies on 

alternative communication methods. As of today, personalized AAC technology is still 

largely limited to case-by-case examples of manual customization due to the immensely 

complex and heterogenous motor function of this population [31]. Thus, there is a crucial 
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need for AAC technology that can be automatically and directly tailored to prospective 

users.

1.3. Current Investigation

Using principles of ability-based design, the purpose of this work was to overcome 

limitations with current single-input AAC interface technology to provide a solution that 

automatically arranges a keyboard interface to an individual’s cursor control or residual 

motor ability to improve communication efficiency. To achieve this goal, we developed an 

AAC system that calibrates a single-input access method to an individual’s motor abilities, 

and then uses those same motor abilities to automatically organize a personalized keyboard 

for the individual.

Our approach integrates established principles of Fitts-Digraph Energy following the work 

of Cler and colleagues (2019) in optimizing a phonemic keyboard for individuals with 

motor impairments to computationally optimize a keyboard of orthographic characters 

(i.e., English letters A–Z, space) to an individual [18]. However, whereas Fitts-Digraph 

Energy is classically computed using a single set of generic movement constants to describe 

anticipated user movement while traversing an interface (e.g., [14-16,18,25,26,29,32,33]), 

in this study we examine the feasibility of using person- and direction-specific constants 

within Fitts’ Law to characterize movement for optimizing a directionally personalized 

keyboard. Movement direction is an important variable in ability-based design since AAC 

users may have conditions that preclude access to the full interface—such as limited or 

unequal range of movement (e.g., due to cerebral palsy) or a visual field cut or condition that 

results in peripheral focus (e.g., due to brainstem stroke) [34,35]—and because directional 

performance differences have been observed even in individuals without motor impairments 

[36-39]. These preferences and abilities could result in, for example, keyboards that are 

more vertically oriented for individuals that have difficulty moving a cursor left to right, 

or cross-shaped keyboards for individuals that have difficulty controlling diagonal cursor 

movement or prefer to move the mouse in orthogonal x or y directions at a time.

As such, we tested our personalization methods among 16 participants without motor 

impairments when using an alternative access method to evaluate method effectiveness 

and determine feasibility for testing in the anticipated target population of AAC users 

who require alternative access. Although the motor control of AAC users has been 

specifically observed to differ with intended movement direction [34,35] (thus presumably 

resulting in a personalized keyboard reflecting those abilities), motor control has been 

shown to substantially differ across movement direction even in individuals without motor 

impairments [36-39]. We argue that these feasibility results lay the groundwork for the 

development of personalized keyboards for individuals with constrained and/or uneven 

mobility. Communication performance was examined while using this access method to 

create messages using a series of two-dimensional (2D) interfaces: (i) a keyboard generated 

using our personalization methods, (ii) a keyboard generated via traditional optimization 

parameters, and (iii) the ubiquitous QWERTY keyboard.

We hypothesized that participants would exhibit movement strategies that differed 

throughout the possible range of motion within a 2D virtual interface using an alternative 
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access method [40]. Due to hypothesized differences with respect to direction, we further 

hypothesized that the personalized keyboards that integrated a user’s directional information 

would lead to better communication performance when compared to both a generically 

optimized keyboard, as well as a QWERTY keyboard.

2. Materials and Methods

In this section, we detail the methods used to generate virtual keyboards, followed by a 

description of the experimental study used to evaluate the keyboards.

2.1. Keyboard Personalization

We designed algorithms to characterize an individual’s 2D cursor control abilities 

by capturing unique relationships between movement time and distance over different 

directions of movement. These algorithms leverage an expanded version of Fitts’ Law to 

estimate 2D movement time and distance relationships relative to a given target angle (i.e., 

rather than the typical approach of grouping time and distance data irrespective of angle) 

within a modified multidirectional point-select task, as described in detail below.

2.1.1. Movement Characterization

The goal of the task was to navigate to and select the highlighted targets amongst a screen 

of blank keyboard keys configured in a 2D grid to capture movement control data across 

a range of movement distances and directions. Specifically, we arranged hexagonal keys in 

a 9 × 9 honeycomb grid. Sequential targets were presented across 16 angular ranges with 

respect to one another: four to capture the cardinal directions provided by the access method 

(i.e., up, down, left, right), four for the intercardinal directions that bisect the four cardinal 

directions, and eight to capture the half-directions that bisect the cardinal and intercardinal 

directions (see Figure 1a,b).

The task was initially seeded with 225 targets to ensure that at least 10 movement 

trajectories of varying distance could be captured for each angular range [41]. Distance 

(D) was calculated as the Euclidean distance between sequential target click locations. Using 

Mackenzie’s Shannon formulation of Fitts’ Law (Equation (1); [42,43]), each distance D 
was converted to an index of difficulty (ID) with W representing a constant target width 

(pixels). Actual target width W was used instead of effective target width, We, since—given 

unlimited chances to choose a target—the error rate is 0%. This also avoids misestimation of 

bits/s classically associated with W as opposed to We [44]. Movement time (MT) to select 

the target was calculated as the travel time of the cursor between clicks on sequential targets.

MT = a + b × ID, where ID = log2
D
W + 1 (1)

Nine unique IDs were used ranging from 0, the minimum inter-key distance to capture an 

estimate of user movement (a in Equation (1)), to 8, the maximum inter-key distance in 

one direction. Unlimited chances to select a target were provided to each participant to 

effectively capture accidental clicks as well as repeatable click errors relative to a given 
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movement distance and/or direction. Twenty-five targets were seeded for each ID. The 

resulting sequence of 225 targets were randomized and organized into a queue.

At completion of the initial target selection task, linear regressions were performed across 

each angular range tested to derive angle-specific regression constants a and b of Fitts’ Law 

(Equation (1)). To account for the possibility that occasional target selection errors led to 

outlier movement times, the target selection process was repeated for any angular ranges 

with weak MT-ID correlations (via a coefficient of determination, or R2 ≤ 0.25 [45]) to 

glean more representative distance–direction information for the participant. This process 

was repeated until either the number of targets reached 400—an empirically determined 

cut-off to maintain a task time approximately under 20 min and to minimize the possibility 

of participant fatigue—or if each angular range contained 10 or more targets, exhibited 

a moderate or better correlation between MT and ID (R2 > 0.25 [45]; Figure 1b), and 

all outliers (defined as a target ±3 standard deviations from the regression) had been 

successfully repeated. During the task, participants were able to signal to the experimenter 

through hand gestures if a break was needed—in such cases, participants were instructed to 

relax for two minutes and refrain from selecting targets.

2.1.2. Personalized Keyboard Generation—Personalized keyboards were created 

from the ability-based keyboard optimization algorithm by leveraging digraph transition 

occurrences (i.e., representing letter-to-letter transitions when spelling messages) and user 

MT relative to both ID and target selection angle. As detailed below, these keyboards 

were designed by solving the quadratic assignment problem (QAP) using the GraphMatch 

function in the Python graspologic library (Microsoft, Redmond, WA, USA; [46,47]) as it 

does not require hyperparameter tuning (unlike the Metropolis algorithm [48]).

The QAP problem is designed to minimize the cost of arranging N items where the cost 

is proportional to the flow and distance between items [49]. In this application of the 

QAP problem, the flow between items is represented by all possible digraph transitions 

between N characters (English letters A–Z, space), resulting in a matrix of size N × N. 

Distance is represented as movement time between all possible positions M to place a 

target, thus is an M × M matrix. Values for this matrix were determined in a three-step 

process consisting of (i) calculating the target selection angle between every M position, 

(ii) sampling a and b user-specific Fitts’ Law constants for the specified angle and (iii) 

applying resulting constants to Fitts’ Law (Equation (1)) to derive MT. In this way, 

unique movement times are provided for a given user. With the flow and distance matrices 

successfully populated, the personalized keyboard arrangement is then configured via the 

Fast Approximate QAP Algorithm of the GraphMatch function. In the current study, the 

digraph transition occurrences for the keyboard personalization algorithms were obtained 

from a corpus of phrase sets for evaluating text-entry techniques [50]. Each keyboard 

included 27 keys comprising the 26 English orthographic letters and a space.

2.2. Keyboard Evaluation

The personalized keyboard methods were evaluated in a series of experimental sessions 

amongst 16 participants. The sessions included tasks to characterize user movement and 
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generate a unique, virtual keyboard for a given participant, as well as transcription tasks to 

evaluate keyboard performance relative to a generically optimized keyboard (i.e., the current 

state-of-the-art) and the ubiquitous QWERTY (typewriter-style) keyboard. Evaluation 

methods are described in detail below.

2.2.1. Experimental Overview—To quantify any communication benefits presented by 

our personalized keyboard methods (example keyboard shown in Figure 2a), communication 

performance was compared against a generically optimized keyboard (Figure 2b) as well as 

the ubiquitous QWERTY keyboard (Figure 2c) for 16 participants. Whereas personalized 

keyboard generation included custom a and b Fitts’ Law constants relative to movement 

direction, the optimized keyboard was generated using standard Fitts’ Law constants of 

cursor movement with delay (a = 0.127 s) and acceleration (b = 1/4.9 s/bits) across 

all target selection angles [14,29]. Our QWERTY keyboard was arranged following the 

standard QWERTY (typewriter-style) layout except for the space key; to be able to compare 

performance using QWERTY to the other keyboards (i.e., personalized, optimized), the 

width of the space key was set equal to all other keys and positioned to the right of the “M” 

key (see Figure 2c).

The experiment comprised nine sessions, each on unique days, to assess participant 

communication ability. Prior to the experiment, participants were pseudorandomly assigned 

a keyboard order between optimized and personalized keyboards: generically optimized 

first or personalized first. Order assignment was counterbalanced across participants to 

ensure an equal number followed each order. Performance using QWERTY was analyzed 

in the final session—i.e., after participants were familiar with the access method—to serve 

as a reference for communication performance as participants did not need training with 

QWERTY due to widespread familiarity in using it for mobile device communication (see 

self-reported familiarity scores with QWERTY in Section 2.2.2).

2.2.2. Participants—Sixteen individuals (8 cisgender female, 8 cisgender male; 27.9 ± 

5.1 years) without history of speech or motor impairments participated in the study. All 

individuals gave written, informed consent in compliance with the Western Institutional 

Review Board (WIRB Protocol #20192468, approved 23 September 2021). According to 

self-reports based on Likert scale ratings, all participants were proficient in English (6.7 ± 

0.8, where 1 = “Very Bad” and 7 = “Very Good”) and familiar with QWERTY (6.3 ± 1.2, 

where 1 = “Not Familiar” and 7 = “Very Familiar”).

2.2.3. Sessions—All participants completed nine experimental sessions, each lasting 1–

1.5 h. Sessions with consecutive use of the same keyboard were performed 24 h apart; 

all other sessions were separated by a minimum of 24 h except for one participant 

who participated in sessions 1 and 2 separated by a 3-h break. Each session comprised 

sensor application and calibration, a short familiarization task for participants to test their 

movement and click control, then either the movement characterization task or keyboard 

communication task. Within a session, participants were exposed to one of five keyboards: 

one of two generically optimized keyboards (vertically flipped versions of each other), one 

of two personalized keyboards (from the movement characterization tasks in sessions 1 and 

5), or the QWERTY keyboard.
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At the start of the first session, experimenters explained that the purpose of the study was to 

evaluate a set of keyboards, but did not describe the differences between the keyboards, how 

they were generated, or the expectations for performance between keyboards. After carrying 

out the familiarization task, participants completed the first movement characterization 

task; the resulting movement data were used to inform the design of the first personalized 

keyboard.

The next four sessions (2–5), referred to as the “first block”, required participants to perform 

the communication task using their first assigned keyboard (optimized or personalized 

first) for sessions 2 and 3, then their second assigned keyboard for sessions 4 and 5. The 

movement characterization task was repeated at the end of session 5 to generate a new 

personalized keyboard. The next four sessions (6–9), called the “second block,” required 

participants to use their second personalized keyboard as well as a flipped version of the 

optimized keyboard per their assigned keyboard order. Instead of repeating the movement 

characterization at the end of session 9, participants took a break to minimize fatigue 

and then carried out the keyboard evaluation task using QWERTY. An overview of these 

experimental sessions is shown in Figure 3.

2.2.4. Access Method Setup and Calibration—Computer access in this study 

was provided via a method that combines surface electromyographic (sEMG) sensing 

of musculature and inertial sensing (IMU) of motor capabilities to control cursor clicks 

and cursor movement, respectively. The hybrid sEMG/IMU access method demonstrates 

flexibility across environmental conditions [40,51], showing promise for single-input cursor 

control for those with severe motor impairments who cannot maintain one body position 

(e.g., due to changes in posture by caregivers or the users themselves) and require 

continuous use throughout the course of the day. Hybrid sEMG/IMU access was provided 

through a single Trigno Mini sensor (Delsys, Natick, MA, USA). IMU signals were sampled 

at 148 Hz and comprised tri-axial (x, y, z) acceleration signals, whereas sEMG signals were 

sampled at 2222 Hz, band-pass filtered between 20 and 450 Hz, and amplified by a gain of 

300. Signals were transmitted wirelessly from the sEMG/IMU sensor to a Trigno acquisition 

system and digitally acquired via a custom Delsys API Python wrapper.

Using methodology from [40], the sEMG/IMU access method was configured to translate 

the gravitational acceleration vector from tri-axial acceleration signals into tilt angles that 

correspond to the velocity of the cursor movement. To do so, acceleration signals were 

first averaged over 54 ms windows, then converted to tilt angles (β, γ, θ) from rectangular 

coordinates (x, y, z). Incoming tilt angle signals were detrended and normalized via values 

as calculated during system calibration. The resulting control was thus specific to the range 

of head tilt angles exhibited by the individual, with smaller tilt angles corresponding to 

lower velocity cursor movements while maintaining 360-degree control. To perform clicks, 

the root-mean-square (RMS) values obtained over 54 ms windows of the sEMG signal were 

calculated and a click occurred if the RMS value exceeded 70% of the maximum RMS set 

during the calibration. Once a click was activated, a second click could not be performed 

until the RMS fell below 30% of the maximum RMS to minimize double-clicks. These 

thresholds for determining clicking behavior were adopted from [52].

Mitchell et al. Page 8

Multimodal Technol Interact. Author manuscript; available in PMC 2022 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



At the beginning of each session, the skin surface was prepared by cleaning the sensor sites 

with alcohol pads and gently exfoliating with medical-grade adhesive tape to remove excess 

dead skin and oils [53-55]. Double-sided medical adhesive tape was used to secure the body 

of the sEMG/IMU sensor to the center of the forehead, with the y-axis of the IMU parallel to 

the transverse axes of the head and the EMG sensor component applied over the orbicularis 

oculi of the preferred eye (N = 7 left, N = 9 right).

Computer access thresholds were calibrated by instructing each participant to comfortably 

tilt their head to the left, right, up, and down twice, and wink or hard blink twice [40,51]. 

These data were used to tune the 2D range of cursor movement from head tilt angle (left, 

right, up, down) and threshold for cursor clicks from eyeblink activity. Participants tested 

each calibration by navigating in different directions on the interface and selecting multiple 

targets. Calibrations were repeated if participants were not satisfied with their control (e.g., 

poor or inconsistent movement and/or click control).

2.2.5. Virtual Interface Setup and Evaluation—An external monitor of resolution 

1920 × 1080 pixels was used to display the virtual interfaces and was connected to a 

laptop controlled by the experimenters. Experimental software presented to participants 

was built in Python 3, relying on the following open-source packages: pandas [56,57], 

SciPy [58], NumPy [59], Matplotlib [60], graspologic [46], and PyInstaller [61]. The 

software displayed the assigned interface to participants (movement characterization task 

or personalized/optimized/QWERTY keyboard) on a gray screen with hexagonal keys. All 

key shapes were hexagonal, as this shape has been shown to allow effective movement 

between keys [16,48]. All keys were set to a width of 130 pixels to contain up to 9 keys 

horizontally or vertically to accommodate keyboards of different shapes and orientations 

given the monitor resolution. Audible click feedback was played through speakers when 

participants clicked using the sEMG/IMU access method. An example of an individual using 

the setup is shown in Figure 4.

Sessions involving the movement characterization task were carried out within the 9 × 

9 honeycomb grid described in Section 2.1.1. The three keyboard types (personalized, 

generically optimized, QWERTY) were evaluated in a separate communication task in 

which participants used the sEMG/IMU access method to navigate to and select keys to 

spell out a set of prompts presented from a corpus for evaluating text-entry techniques [50]. 

The communication task was self-paced, wherein participants first pressed “Enter” on a 

physical keyboard when they were ready to begin a trial. After pressing “Enter,” a prompt 

would appear above the virtual keyboard and the letters on the keyboard would disappear; 

this was done so the participants would focus on the words in the prompt as opposed to 

plotting the path they would take on the keyboard (see Figure 3). Once ready to begin 

spelling out the prompt using the virtual keyboard, participants pressed “Enter” a second 

time on the physical keyboard to make the letters on the virtual keyboard reappear. At this 

point, participants spelled out the prompt, pressing “Enter” a final time to end the trial 

once they had finished selecting characters. Participants were instructed to continue without 

interruption if mistakes were made during the spelling process [18]. Participants took breaks 

as needed between trials and repeated this process for a series of 20 prompts within a given 

keyboard.
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2.3. Data Analysis

Primary outcome measures for each evaluation aimed to capture both participant-specific 

movement characteristics as well as each participant’s communication ability. To capture 

movement characteristics, we measured target selection accuracy (%), speed via words 

per min (WPM), and information transfer rate (ITR; bits/min). WPM was assessed as the 

number of characters, correct or incorrect, per minute divided by an average of 5 characters 

per word [16]. Accuracy was either 100% when the target was successfully selected or 0% 

when a participant failed to select it. ITR was measured using Wolpaw’s method to consider 

MT and accuracy relative to the number of possible targets [62].

Statistical analysis was performed in jamovi (version 1.8; [63-66]). A series of linear 

mixed-effects models (LMMs) were constructed to examine the effect of the keyboards 

on outcome measures of accuracy, WPM, and ITR when considering the random effects of 

the participant. Target selection accuracy data were transformed prior to parametric testing 

via a Box-Cox transformation to account for deviations from normality.

A set of LMMs were first implemented to understand the effects of participant (random), 

computational keyboard efficiency (covariate)—calculated using Fitts-Digraph Energy [16]

—and fixed effects of keyboard (personalized, optimized), keyboard exposure (first exposure 

to keyboard, second exposure to keyboard), as well as keyboard block (sessions 2–5, 

sessions 6–9) and the interactions of keyboard × exposure and keyboard × block on each of 

the outcome measures (i.e., target selection accuracy, WPM, ITR). These fixed effects were 

treated as within-subject factors. Computational keyboard efficiency was included here as 

a covariate since two different personalized keyboards were implemented, which may not 

only stem from variability in the participant, but also from differences in motor ability as 

individuals learn to use the sEMG/IMU access method.

An additional set of LMMs were then constructed to examine communication performance 

between the second personalized keyboard (used within the second keyboard block) and 

QWERTY (fixed factor) when considering the random effects of participant. For this 

analysis, keyboard (personalized, QWERTY) was treated as a within-subject factor. Given 

the nontraditional placement and size of the space key in our QWERTY keyboard (Figure 

2c) relative to the standard QWERTY keyboard, we compared personalized and QWERTY 

keyboards with and without movements to and from the space key on each keyboard. The 

metric that disregarded involving the space key (WPM*) was included to ensure that WPM 
for QWERTY would not be skewed lower from our unique placement of the space key 

alone.

For each set of LMMs, an α level of 0.05 was used. Effect sizes were estimated for fixed 

factors using partial eta squared (ηp
2), interpreted with cutoffs of 0.01, 0.06, 0.14 for small, 

medium, and large effect sizes, respectively [45]. Post hoc analyses were conducted on 

significant main effects via Tukey simultaneous tests using a Bonferroni correction for 

multiple comparisons.
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3. Results

The findings for the movement characterization and keyboard evaluation tasks are described 

for the 16 participants below.

3.1. Movement Characterization

The participants were presented with an average of 283.4 targets (SD = 46.8) to characterize 

their movement patterns. The linear regressions performed on the resulting movement data 

to compare Fitts’ Law-based MT to target ID exhibited an average R2 = 0.55 (SD = 0.02, 

range = 0.06–0.96). Additionally, Fitts’ Law constants computed relative to movement 

direction produced average values of a = 0.83 (SD = 0.53) and b = 0.91 (SD = 0.44) and can 

be seen in more detail for session 5 in Figure 5.

3.2. Optimized vs. Personalized Keyboards

Table 1 displays the model summaries constructed for target selection accuracy, WPM, 

and ITR between optimized and personalized keyboards. For all models, no significant 

interaction effects (keyboard × block, keyboard × exposure) were observed (p ≥ 0.05).

3.2.1. Target Selection Accuracy—The model for accuracy showed significant effects 

for block (p < 0.001) and exposure (p = 0.006); however, post hoc analyses of the fixed main 

effects showed that effect sizes were small for block (ηp
2 = 0.01) and negligible for exposure 

(ηp
2 < 0.01). No significant effects were seen for efficiency or keyboard (Figure 6a).

3.2.2. WPM—The model for WPM revealed a significant, small effect for computational 

keyboard efficiency (p < 0.001, ηp
2 = 0.02); a significant, medium effect for exposure (p < 

0.001, ηp
2 = 0.09); and significant, large effects for both keyboard (p = 0.015, ηp

2 = 0.23) 

and block (p < 0.001, ηp
2 = 0.29). Post hoc analyses of the fixed main effects revealed that 

personalized keyboards averaged 0.57 wpm greater than the optimized keyboards (7.86 wpm 

vs. 7.29 wpm; see Figure 6b). Higher WPM were also observed when participants were 

exposed to a keyboard for the second time (7.83 wpm vs. 7.32 wpm) and when carrying out 

the second experimental block (8.11 wpm vs. 7.05 wpm).

3.2.3. ITR—The model for ITR showed a significant, small effect of computational 

keyboard efficiency (p < 0.001, ηp
2 = 0.01); significant, medium effect for exposure (p 

< 0.001, ηp
2 = 0.07); and significant, large effects for both keyboard (p = 0.014, ηp

2 = 0.21) 

and block (p < 0.001, ηp
2 = 0.25). Post hoc analyses of the fixed main effects revealed 

higher average ITR values when participants used their personalized keyboards (52.0 bits/

min) compared to the optimized keyboards (47.9 bits/min; see Figure 6c). Higher average 

ITR values were also observed when participants were exposed to a keyboard for the second 

time (51.7 bits/min vs. 48.1 bits/min), as well as during the second experimental block 

compared with the first (53.8 bits/min vs. 46.1 bits/min).

3.3. Personalized vs. QWERTY Keyboards

Target selection accuracy data were first transformed via a Box-Cox transformation to 

meet the assumptions of normality for the planned parametric LMM. The resulting LMMs 
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showed that the keyboard (personalized, QWERTY) exhibited a significant, large main 

effect in the models for target selection accuracy (p = 0.005, ηp
2 = 0.42), WPM (p < 0.001, 

ηp
2 = 0.51), WPM* (p < 0.001, ηp

2 = 0.20), and ITR (p < 0.001, ηp
2 = 0.87; Table 2).

Post hoc analyses revealed that communicating using QWERTY led to significantly lower 

mean target selection accuracies than when using personalized keyboards (99.0% vs. 

99.4%; Figure 7a), although all accuracies were very high. Similarly, WPM and WPM* 

were significantly smaller with QWERTY (6.79 and 7.03 wpm, respectively) compared 

to personalized keyboards (8.36 and 7.90 wpm, respectively; Figure 7b,c). Personalized 

keyboards also led to significantly greater average ITRs (55.6 bits/min) than QWERTY 

(44.4 bits/min; Figure 7d).

4. Discussion

In this study, methods for automatically configuring a keyboard to an individual’s 2D 

cursor control were built and evaluated amongst participants without motor impairments. 

This study establishes the feasibility of personalizing a keyboard to an individual through 

uniquely capturing an individual’s preferred movements. Overall, our results support our 

hypotheses that (i) participants would exhibit diversity in movement capabilities across 

direction, and (ii) participants’ personalized keyboards would lead to greater communication 

performance when compared to generically optimized and QWERTY keyboards. These 

findings are described in detail below.

4.1. Movement Characterization

In characterizing an individual’s cursor control within a 2D interface, we hypothesized 

that participants would exhibit movement strategies that differed throughout the possible 

360 degrees of motion. Indeed, our results support this hypothesis, wherein participants 

exhibited variability across Fitts’ Law constants (a and b in Equation (1)) for different 

movement directions (see Figure 5). Our approach to characterizing cursor control via 

expanding Fitts’ Law to encapsulate a table of constants across movement direction, on 

average, demonstrated a robust ability to capture this variability (R2 = 0.55) with a range of 

performance spanning small (R2 = 0.06) to large (R2 = 0.96) relationships between expected 

MT and task ID. Relationships below the cutoff set in the multidirectional point-select task 

(R2 = 0.25) were observed when participants reached the 400 target limit; these observations 

were rare, only occurring in 3.9% of MT-ID relationships.

Our results highlight the immense variability in Fitts’ Law parameters obtained within and 

across participants, with standard deviations of 0.53 s for a and 0.44 s/bits for b. The 

variability observed in directional Fitts’ Law constants for these participants supports the 

notion that individuals exhibit different control strategies when using the sEMG/IMU access 

method to navigate a 2D interface and, furthermore, suggests that movement direction may 

be an important factor to consider when capturing these movements. On average, a and 

b Fitts’ Law constants were greater (a = 0.83 s and b = 0.91 s/bits) than those reported 

in literature (a = 0 or 0.127 s and b = 1/4.9 s/bits; e.g., [14,29]); however, these findings 

likely reflect differences in access method compared to those examined in prior works (i.e., 

sEMG/IMU vs. stylus and touchscreen).
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Much of the work using Fitts’ Law to assess 2D tasks has been pioneered by MacKenzie 

[67-73], who has demonstrated the utility of using this “model by analogy” to empirically 

evaluate user control with a 1D or 2D task. Many studies leveraging MacKenzie’s Shannon 

formulation of Fitts’ Law to evaluate movement systematically vary target angle to 

effectively “smooth over” the effects of movement direction [44,74-76]. To do so, these 

works typically utilize an ISO-standard multidirectional point-select task that leverages a 

cluster of circular targets of equal diameter positioned equidistantly around a large circle; 

by instructing participants to navigate and select diametrically opposite targets, the effects of 

movement direction can be effectively ignored when relating movement time to task index 

of difficulty (i.e., via achieving robust R2 values across direction).

Because the current study aimed to design a keyboard interface in which users would not 

necessarily be choosing diametrically opposite characters to spell messages, we chose not 

to employ this classic point-select task. Other studies that specifically focus on the effects 

of movement direction within 2D point-select tasks do indeed provide evidence that the 

angle of target selection influences performance [36-39]. Thus, we designed our movement 

characterization task to facilitate user movement in a variety of distances and directions to 

be able to capture a spectrum of cursor control data. Our findings suggest that there may be 

some utility to capturing directional variations when using our sEMG/IMU access method 

for our specific purpose of personalizing a virtual keyboard interface to an individual’s 

unique motor abilities. Future work may find value in exploring other applications for a 

directionally expanded Fitts’ Law, such as for website design or home screen configuration 

on mobile devices.

4.2. Keyboard Communication

The communication rates of the participants across the three keyboard types (optimized, 

personalized, QWERTY) were well within the range of those described in the literature 

for similar head tracking-based access methods. Specifically, average ITR values have been 

shown to range from 5.4 to 120.7 bits/min when used by controls for AAC [52,77-79]. 

Average ITR values were similar across keyboards, ranging from 44.4 bits/min when using 

QWERTY to 47.9 bits/min and 52.0 bits/min, on average, when using optimized and 

personalized keyboards, respectively. Our average speed, measured through WPM, exceeded 

those presented in the literature for sEMG-based access methods [52,77-79], which reached 

rates up to 5.8 wpm.

4.2.1. Optimized vs. Personalized Keyboards—We hypothesized that a 

personalized keyboard would lead to better communication performance compared to a 

generically optimized keyboard. Indeed, we found our personalization methods produced 

keyboards that—when evaluated amongst 16 participants without motor impairments against 

a generically optimized keyboard that was created using the same character transition 

occurrences—led to greater communication rates (via higher ITR and WPM values). 

Importantly, we did not find evidence of a speed–accuracy trade-off, as is often reported 

for virtual keyboard technology [80]; on average, participants improved in their ability 

to accurately select targets while increasing speed for personalized keyboards relative to 

the optimized keyboards. Although the keyboard demonstrated a significant, large main 
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effect when comparing ITR and WPM across participants, a significant main effect was 

not demonstrated for target selection accuracy. This may be a byproduct of optimizing the 

keyboards for speed, not accuracy. Yet the benefits of increased speed provided by the 

keyboards also translate to ITR, a parameter that unifies both speed and accuracy. These 

results therefore highlight the importance of using metrics that unify movement time and 

selection accuracy as well as these individual components of alternative communication to 

comprehensively capture such benefits.

In addition to the observed communication improvements when using a personalized 

keyboard rather than a generically optimized keyboard, we observed significant relationships 

between communication outcomes and use time. Firstly, we observed that increased 

exposure to a keyboard led to improved communication via increased accuracy (albeit 

negligible effect size), WPM, and ITR. These findings imply that participants were able 

to communicate more effectively with increased familiarity with a keyboard interface. 

Our experimental paradigm was designed to create a new personalized keyboard for each 

participant after extensive use of the sEMG/IMU access method (~5 h) to test whether 

differences between keyboards persisted after gaining proficiency with the access method. 

Because there were significant differences in communication performance for the main 

effects of keyboard and block but not for the interaction of keyboard and block, our results 

indicate that participants gained familiarity with the access method over time and, further, 

that the personalized keyboards were superior for communicating even after learning the 

access method. Taken together, these results indicate that there is benefit in configuring 

characters based on transition probabilities as well as an individual’s movement behaviors.

4.2.2. Personalized vs. QWERTY Keyboards—We hypothesized that a personalized 

keyboard would lead to better communication performance than QWERTY. Our results 

support this hypothesis, wherein keyboard (personalized, QWERTY) exhibited a significant 

main effect in the models for accuracy, WPM, WPM*, and ITR. Notably, the significant 

findings observed for WPM* indicates that differences in speed between keyboards 

cannot be attributed to the size and placement of the space key. Overall, these findings 

are of interest since participants reported high familiarity with QWERTY. Prior work 

suggests that it takes around 4–5 h of interaction to gain proficiency with an unfamiliar 

keyboard interface configuration [18]. Yet our results indicate that—even when factoring 

in additional visual search time required for an unfamiliar layout [18]—personalizing a 

keyboard to an individual’s motor capabilities is an effective way to improve communication 

performance over using a QWERTY keyboard. These results highlight the previously 

regarded inefficiencies noted about QWERTY for single-input use [14,16,29].

4.3. Limitations and Future Directions

In this study, we developed and evaluated an automated method to personalize a virtual 

keyboard for AAC use. To minimize exposure to the ongoing COVID-19 pandemic in 

high-risk populations, we opted to examine the methodological feasibility in individuals 

without motor impairments rather than our intended target population of individuals with 

motor disabilities. It is thus unsurprising that a ceiling effect in target selection accuracy 

occurred across nearly all participants and all keyboards. Although outside the scope of 
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this feasibility study, future work in control populations should examine the stability of 

outcome parameters (e.g., target selection accuracy) to account for differences in user 

control over time, as may occur in degenerative motor disorders such as amyotrophic lateral 

sclerosis. However, we examined Fitts’ Law parameters at two timepoints (sessions 1 and 

5) to generate personalized keyboards before and after sufficient exposure to the alternative 

access method. In addition to these results, however, our keyboard personalization methods 

successfully captured directional movement preferences amongst participants without 

motor disabilities. As such, this methodology shows promise for individuals with motor 

disabilities, especially for those with unequal ranges of movement or a visual field cut or 

condition that results in peripheral focus [34,35]. Future work therefore aims to employ 

similar methodology in the target population of people with motor disabilities.

This study was designed using a single-point access method configured on the forehead; 

we selected this configuration to minimize possible confounds by offering multiple access 

methods across multiple access points in establishing proof-of-concept effectiveness. With 

the diverse manifestation of neurological disorders, however, it is difficult to generalize 

the ability of our target population to sufficiently use the system with this fixed access 

method and, specifically, access point (i.e., forehead). By providing preliminary support for 

a directionally dynamic AAC system that can be personalized to an individual, future work 

will aim to expand access modalities. Due to our use of digraph transitions to facilitate key 

placement, the integration of additional keys such as numbers, ‘return’, and ‘backspace’, 

among other keys, was not possible for this current study, but with the expansion of the 

methods, these keys, as well as other functions offered by standard keyboards, could be 

employed in future work.

We additionally recognize the potential translation of this work to the field of human–

computer interaction due to existing research that highlights performance variability with 

different access points across direction [36-39]. For example, given thumb performance 

differences with direction when using a mobile device [36], mobile device interfaces could 

be configured to minimize thumb flexion–extension movements compared to abduction–

adduction movements. Additionally, expanding access methods alongside personalization 

methods such as SUPPLE [21] could yield interfaces beyond keyboards that are flexible 

for people with or without motor impairments. Within this vein, we acknowledge that our 

system could integrate common communication options offered in many AAC devices—

such as word completion, dynamic target size, and dwell click—and think these options 

would also be valuable to include as we expand the capabilities of our system.

5. Conclusions

In this work, we present and evaluate methods to develop personalized, virtual keyboard 

interfaces for alternative communication against existing methods for computationally 

optimizing keyboards as well as the standard QWERTY keyboard. Communication 

performance benefits were observed when using a personalized keyboard compared to 

existing optimized keyboards as well as the QWERTY keyboard. Our results suggest that 

the benefits provided by personalized keyboards are related to the combined improvements 

in the speed and accuracy of selecting characters on the keyboard to construct messages. 
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Overall, our results show that personalizing a keyboard is an effective strategy to improve 

communication with a single-input AAC access method and can achieve communication 

rates higher than the ubiquitous QWERTY layout. This work highlights the first instance 

of applying automated algorithms to tailor the layout of a virtual keyboard to an individual 

based on their motor abilities and, moreover, demonstrate promise for using ability-based 

methods to design personalized assistive technology.
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Figure 1. 
Example target selection data from movement characterization task. (a) Movement time 

shown as a function of target selection angle, split into 16 angular ranges (black lines). 

One section is highlighted with pink dots to highlight data collected within a single angular 

range. (b) Example regression of movement time against index of difficulty (bits) from the 

highlighted data taken in (a) to obtain Fitts’ Law constants.
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Figure 2. 
Keyboards used for study and their generation from Fitts’ Law constants when relevant. (a) 

Example of Fitts’ Law constants (left, middle) and keyboard (right) for one participant. 

(b) The static Fitts’ Law constants (left, middle) used to generate the optimized keyboard 

(right). (c) The QWERTY keyboard.
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Figure 3. 
Organization of the 9-session study.
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Figure 4. 
Example experimental setup and personalized keyboard. An individual navigates their 

personalized keyboard to spell “I FOUND IT” using the sEMG/IMU access method.
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Figure 5. 
Fitts’ Law constants a and b for each participant. Constants a (left) and b (right) interpolated 

throughout the range of motion for participants (e.g., P1) for session 5.
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Figure 6. 
Marginal means for outcomes of transcription task when comparing optimized and 

personalized keyboards. (a) Target selection accuracy, (b) words per minute (WPM), and 

(c) information transfer rate (ITR) shown across keyboards. Error bars represent 95% 

confidence intervals. * p < 0.05.
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Figure 7. 
Marginal means for outcome measures of transcription tasks comparing personalized and 

QWERTY keyboards. (a) Target selection accuracy, (b) words per minute (WPM), (c) words 

per minute without space (WPM*), and (d) information transfer rate (ITR) shown across 

keyboards. Error bars represent 95% confidence intervals. * p < 0.05.
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Table 1.

Linear mixed-effects models for outcome measures comparing generically optimized and personalized 

keyboards.

Model Effect df η p 
2 F p

Target Selection Accuracy

Efficiency (1, 129) – 2.75 0.100

Keyboard (1, 74) – 1.79 0.185

Block (1, 2519) 0.01 15.07 <0.001

Exposure (1, 2518) 0.00 7.55 0.006

Keyboard × Block (1, 2519) – 1.72 0.190

Keyboard × Exposure (1, 2518) – 0.27 0.605

WPM

Efficiency (1, 2473) 0.02 43.33 <0.001

Keyboard (1, 24) 0.23 6.93 0.015

Block (1, 2519) 0.29 1045.90 <0.001

Exposure (1, 2518) 0.09 249.95 <0.001

Keyboard × Block (1, 2519) – 0.00 0.971

Keyboard × Exposure (1, 2518) – 1.30 0.254

ITR

Efficiency (1, 2403) 0.01 33.24 <0.001

Keyboard (1, 27) 0.21 6.87 0.014

Block (1, 2519) 0.25 845.75 <0.001

Exposure (1, 2518) 0.07 188.21 <0.001

Keyboard × Block (1, 2519) – 0.16 0.692

Keyboard × Exposure (1, 2518) – 0.46 0.482

Note. df = degrees of freedom (numerator, denominator), ηp2 = partial eta squared, F = F-statistic, p = p-value, WPM = words per minute, ITR = 

information transfer rate. Dashes (−) indicate non-significant findings (p ≥ 0.05). Bold rows indicate significant effects.
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Table 2.

Linear mixed-effects models for outcome measures comparing personalized and QWERTY keyboards.

Model Effect df η p 
2 F p

Target Selection Accuracy Keyboard (1, 15) 0.42 10.8 0.005

WPM Keyboard (1, 15) 0.51 71.6 <0.001

WPM* Keyboard (1, 15) 0.20 74.5 <0.001

ITR Keyboard (1, 15) 0.87 97.2 <0.001

Note. df = degrees of freedom (numerator, denominator), ηp2 = partial eta squared, F = F-statistic, p = p-value, WPM = words per minute, WPM* 

= words per minute without space, ITR = information transfer rate.
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