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Accumulating studies have revealed that necroptosis plays a vital role in the

occurrence and development of pancreatic adenocarcinoma (PAAD). We

aimed to construct a prognostic model for PAAD on the basis of

necroptosis-related lncRNAs (NRLs). A coexpression network between

necroptosis-related mRNAs and NRLs based on The Cancer Genome Atlas

(TCGA) was constructed. Then, differentially expressed necroptosis-related

lncRNAs (DENRLs) were screened from TCGA and Genotype-Tissue

Expression project (GTEx) datasets. Univariate Cox regression (uni-Cox)

analysis was performed on these DENRLs to identify lncRNAs significantly

correlated with prognosis. Least absolute shrinkage and selection operator

(LASSO) regression was performed for preventing overfitting on these lncRNAs.

Multivariate Cox analysis (multi-Cox) was performed to establish a risk model

based on lncRNAs that served as an independent prognostic factor. Next, the

Kaplan–Meier analysis, time-dependent receiver operating characteristics

(ROC), uni-Cox, multi-Cox regression, nomogram, and calibration curves

were constructed to support the accuracy of the model. Gene set

enrichment analysis (GSEA) and single-sample GSEA (ssGSEA) were also

performed on risk groups, and it was found that the low-risk group was

closely correlated with immune infiltration and immunotherapy. To further

evaluate the immune differences between different clusters, we divided the

patients into two clusters. Cluster 2 was more significantly infiltrated with

immune cells and had higher immune scores. These results shed new light

on the pathogenesis of PAAD based on NRLs and develop a prognostic model

for diagnosing and guiding personalized immunotherapy of PAAD patients.
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Introduction

Pancreatic adenocarcinoma (PAAD) is the fourth leading

cause of cancer-related deaths worldwide, with 5-year survival

rates of less than 11% (Siegel et al., 2022). Although significant

progress has been made in the treatment of pancreatic cancer in

the past few decades, the postoperative prognosis of pancreatic

cancer patients is not ideal because of the insidious onset and

high recurrence and metastasis rate of pancreatic cancer

(Neoptolemos et al., 2018; Mizrahi et al., 2020). Compared

with a single clinical marker, a model integrating multiple

markers can more accurately predict patient prognosis and

provide targets for therapy on the basis of the development of

large-scale genome sequencing technologies. Therefore, it is

important to construct a molecular model that can predict

patient prognosis and guide individualized therapy.

Necroptosis is a form of programmed cell death that can

serve as a mode for cells to overcome apoptotic resistance (Gong

et al., 2019), which plays an important role in inflammation,

microbial infection, and tumor metastasis (Seifert et al., 2016;

Place et al., 2021; Liu Z. et al., 2021; Yan et al., 2022). Long

noncoding RNAs (lncRNAs), which are defined as RNA

molecules more than 200 nucleotides in length and have

limited protein-coding ability, play an important part in the

development and progression of different cancers, including

PAAD (Liu et al., 2019; Zhou et al., 2020). Accumulating

evidence revealed that lncRNAs are involved in the

occurrence and development of necroptosis (Wang et al.,

2020; Harari-Steinfeld et al., 2021). However, the role of

prognosis and potential molecular mechanism associated with

NRLs is currently unclear in PAAD.

In the present study, we established a prognostic model based

on NRLs and found that it was able to divide patients into two

groups with significant differences in prognosis and immune

infiltration, which may provide diverse insights into a clinical

therapy for PAAD patients.

Materials and methods

Acquisition of datasets and patients’
information of PAAD

The PAAD RNA-seq dataset and GTEx data were downloaded

from UCSC Xena (http://xena.ucsc.edu/) (including 178 tumor

samples and 171 normal samples). Corresponding clinical data

(including age, gender, survival time, survival status, grade, and

pathological stage) were also obtained from UCSC Xena. Then we

converted the data of GTEx in the form of log2 (X+0.001) to log2

(X+1) to be consistent with the data of PAAD by Strawberry Perl.

The study excluded patients with missing survival information to

reduce statistical bias in this analysis.

Identification of DENRLs

A total of 67 necroptosis-related genes (NRGs) were collected

from previous literature (Zhao et al., 2021). Then,

356 necroptosis-related lncRNAs (NRLs) were obtained from

a correlation analysis performed between NRGs and lncRNAs of

PAAD (|Pearson correlation coefficients| > 0.7, and p < 0.001).

The mRNA–lncRNA coexpression network was visualized by the

“igraph” R package. The Wilcox test was performed to explore

the expression of 356 NRLs between PAAD and normal tissues

with the “limma” package (Ritchie et al., 2015) in R (Rx64 4.1.2,

https://www.rstudio.com/) (Log2 fold change (FC) > 1, false

discovery rate (FDR) < 0.05). Finally, 172 DENRLs were

obtained and visualized by the “pheatmap” R package.

Construction and validation of a
prognostic NRL model for PAAD

DENRLs’ expression data merged with the survival

information of 176 patients were retrieved and regrouped into

the train, test, and entire group randomly by the Perl script and

the “caret” R package with a ratio of 1:1. Based on uni-Cox

analysis with p < 0.01 as the threshold, prognosis-related

lncRNAs were screened and incorporated into a Lasso

regression analysis to conduct multivariate Cox proportional

hazard regression analysis with p < 0.05 as the threshold.

After narrowing the range of prognosis-related lncRNAs and

preventing overfitting, a model was constructed by using the R

package “glmnet” (Friedman et al., 2010; Simon et al., 2011). The

risk score is calculated by the following formula:

risk score � ∑
n

i�1
coefficient(lncRNAi)pexpression(lncRNAi).

The patients were divided into low-risk and high-risk groups

by the median risk score. The Chi-square test was used to

evaluate the correlation of clinical factors with the model and

visualized by the R package “survminer.” Univariate Cox and

multivariate Cox regression analyses were developed to

determine whether the risk score and clinical characteristics

were independent predictors. The R package “survivalROC”

was used to evaluate the accuracy of the constructed model.

The larger the AUC (area under the ROC curve), the higher the

prediction accuracy of the model.

Construction and validation of the
nomogram

To improve the predictive accuracy of NRLs in the model of

PAAD patients, a nomogram was established for forecasting 1-,

2-, and 3-year OS integrating risk scores, age, gender, grade, T
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stage, N stage, and pathological stage by the “rms” R package.

Then, the calibration curve was used to illustrate the

discrimination between the nomogram-predicted value and

the true value.

Gene set enrichment analysis between
high- and low-risk groups

We used gene set enrichment analysis (GSEA) software 4.2.1

(http://www.gsea-msigdb.org/gsea/index.jsp) to investigate the

significantly predefined biological pathways between the high-

and low-risk groups with the threshold: p < 0.01 and FDR <0.1.
c2. cp.kegg.v7.1. symbols.gmt was chosen from the Molecular

Signatures Database (MSigDB http://software.broadinstitute.org/

gsea/msigdb/index.jsp) as the reference file. All these results were

visualized by ggplot2, grid, and gridExtra R packages.

Exploration of immune infiltration and
immune checkpoints

To figure out the correlation between NRL signatures in the

model and the tumor immune microenvironment, we calculated

the infiltration values for PAAD patients based on seven

algorithms: XCELL (Aran et al., 2017), TIMER (Li et al.,

2017), QUANTISEQ (Finotello et al., 2019), MCPCOUNTER

(Becht et al., 2016), EPIC (Racle et al., 2017), CIBERSORT−ABS

(Newman et al., 2015), and CIBERSORT (Newman et al., 2015).

Then, Spearman correlation analysis visualized in a bubble chart

was used to evaluate the relationship between the immune and

risk scores. Subsequently, single-sample GSEA (ssGSEA) was

performed for investigating the difference between immune cells

and immune function between high- and low-risk groups. The

stromal score, immune score, and ESTIMATE score of each

patient in different risk groups were calculated. The differences

were visualized by the “ggpubr” R package. In addition, different

expressions of immune checkpoint genes between the risk groups

were evaluated by the “ggpubr” R package.

Clusters based on the expression of
lncRNAs in the model

As the literature illustrated previously, different subtypes

usually contributed to different immune microenvironments

(DeBerardinis, 2020). To explore the immunotherapy response

of different subtypes, subgroups based on the expression of

lncRNAs in the model by ConsensusClusterPlus (CC)

(Wilkerson and Hayes, 2010) R package were performed to

investigate the response to immunotherapy within them.

Parameters of the consensus clustering model were set as

maxK = 9, reps = 50, pItem = 0.8, pFeature = 1, clusterAlg =

"km,” and distance = "euclidean.” Principal component analysis

(PCA), T-distributed stochastic neighbor embedding (t-SNE),

and Kaplan–Meier survival curve were constructed by the

“Rtsne” R package.

Cell culture and quantitative real-time RT-
PCR (RT-qPCR)

Normal human pancreatic ductal epithelial cells hTERT-HPNE

and two pancreatic cancer cells MiaPaCa-2 and BxPC-3 were

purchased from the Cell Bank of Type Culture Collection of the

Chinese Academy of Sciences (Shanghai, China). HPNE and

MiaPaCa-2 were cultured in Dulbecco’s Modified Eagle Medium

(Gibco, United States) with 10% fetal bovine serum (FBS) and 1%

penicillin/streptomycin. BxPC-3 was cultured in Roswell Park

Memorial Institute (RPMI) medium (Gibco, United States) with

10% FBS. A humidified atmosphere containing 5% CO2 at 37 °C was

provided to culture all cells. A Fastgen 200 RNA isolation kit

(Shanghai, China) was used to extract the total RNA according to

the protocol provided. Then, the total RNA was reverse transcribed

into cDNA by using the Prime Script RT reagent kit (TaKaRa,

Dalian, China). RT-qPCRwas performed using theCFXManager 2.1

fluorescent quantitative PCR kit (Bio-Rad Laboratories, United

States). The primer sequences were as follows: linc01089 (human),

sense 5′-CCTCTAGCAGAGTGCCTTGG-3′ and antisense 5′-AGG
TAACCGGGGTCAGATCA-3’; GAPDH (human), sense 5′-GGA
GCGAGATCCCTCCAAAAT-3′ and antisense 5′-GGCTGTTGT
CATACTTCTCATGG-3’. GAPDH was used as an internal control.

Results

Identification of necroptosis-related
lncRNAs

A total of 178 tumor samples and 171 normal samples

(167 samples from GTEx) were obtained from UCSC Xena

based on TCGA and GTEx. Then we identified 356 NRLs and

expression data by Pearson correlation analysis based on

69 NRGs (|Pearson correlation coefficients| > 0.7, and p <
0.001). The network between NRGs and NRLs are shown in

Figure 1A. Subsequently, 172 DENRLs were screened between

tumor and normal samples, of which 66 were downregulated and

106 were upregulated (Log2 fold change (FC) > 1, false discovery

rate (FDR) < 0.05, Figure 1B).

Construction and validation of the
prognostic model based on TCGA cohorts

To predict the prognosis and provide therapeutic targets for

PAAD patients, we constructed a prognostic model based on
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FIGURE 1
Identification and selection of NRL prognostic signatures in PAAD. (A) Coexpression network between NRGs and NRLs (|Pearson correlation
coefficients| > 0.7, and p < 0.001). (B) Volcano plot of 172 DENRLs. (C) The expression profiles of 36 prognostic-related NRLs. (D) The Sankey diagram
of prognostic NRLs, NRGs, and risk type. (E) The LASSO coefficient profile of necroptosis-related lncRNAs. (F) The 10-fold cross-validation for
variable selection in the LASSO model.
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FIGURE 2
Prognosis value of the five NRLmodels in the train, test, and entire sets. (A) Risk score distribution, scatter plots, and KM survival curve analysis of
patients with PAAD in the training cohort. (B) Risk score distribution, scatter plots, and KM survival curve analysis of patients with PAAD in the testing
cohort. (C) Risk score distribution, scatter plots, and KM survival curve analysis of patients with PAAD in the entire cohort. (D) Univariate Cox
regression showing that the age, grade, and risk score were associated with the OS (p < 0.05). (E)Multivariate Cox regression showing that the
risk score (p < 0.001) was an independent prognostic indicator of the OS in patients with PAAD. (F) 1-, 3-, and 5-year ROC curves of the entire set. (G)
1-year ROC curves of the risk score and clinical characteristics.
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NRLs. A total of 36 prognostic-related NRLs were screened by

univariate Cox regression (p < 0.01) and visualized with a

heatmap based on their expression between tumor and

normal samples (Figure 1C). The correlations between

prognostic NRLs, NRGs, and the risk type were displayed by

a Sankey diagram (Figure 1D). To narrow the range of prognosis-

related lncRNAs and avoid overfitting, we performed Lasso

regression and extracted nine NRLs (Figures 1E,F). Then,

multivariate Cox proportional hazard regression analysis was

conducted and five NRLs were screened to establish a prognostic

NRL signature model (U62317.1, AC099850.3, LINC01089,

LINC01133, and LINC00996). The risk score formula was as

follows: (0.4675 × U62317.1 expression) + (0.3947 × AC099850.3

expression) + (−0.5810 × LINC01089 expression) + (0.2759 ×

LINC01133 expression) + (−2.0985 × LINC00996 expression).

With this formula, we calculated the risk score for each patient

based on personalized NRL expression levels in train, test, and

entire groups and grouped them into low- and high-risk groups

by the median risk score. All these results implied a significant

statistical difference in the OS between the high- and low-risk

groups, indicating that these developed signatures effectively

predict prognosis (Figures 2A–C, Supplementary Figure S1).

Subsequently, univariate and multivariate Cox regression

analyses were performed to determine whether risk scores and

clinical characteristics are independent prognostic factors for the

OS in patients with PAAD. The hazard ratio (HR) (95% CI) for

the risk score was 1.272 (1.189–1.361) in univariate Cox

regression analysis (p < 0.001, Figure 2D) and 1.262

(1.175–1.355) in multivariate Cox regression analysis (p <
0.001, Figure 2E), which indicates that the NRLs in our model

are independent prognostic indicators. In addition, the model

was evaluated by ROC analysis at 1, 3, and 5 years to verify its

predictive value, and the corresponding AUC was 0.759, 0.766,

and 0.783, respectively. (Figure 2F). Furthermore, we combined

the clinical information of age, gender, grade, and stage to

construct a time-dependent ROC curve to predict the 1-year

survival rate of patients with PAAD, and the AUC was 0.540,

0.565, 0.597, and 0.483 (Figure 2G). To evaluate the importance

FIGURE 3
Survival rate of PAAD patients with high- and low-risk patients in the subgroups based on clinicopathological characteristics.
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of NRLs in the progression of PAAD, we investigated the

correlation between the risk score and clinical characteristics.

As shown in Figure 3, the OS rate in the high-risk group of

subgroups separated by age, gender, T stage, N stage, M stage,

clinical stage, and grade was lower than that of the low-risk group

(p < 0.05). Taken together, the risk model we constructed was

feasible and reliable in identifying the risk of PAAD patients.

Construction and verification of the
nomogram

To further enhance the predictive power of the risk model, we

constructed a nomogram integrated with clinicopathological

factors to predict 1-, 2-, and 3-year OS (Figure 4A). Based on

the nomogram score, the 1-, 2-, and 3-year OS could be well

predicted. In addition, as shown in Figure 4B, good consistency

between the nomogram-predicted OS and observed OS could be

found at 1, 2, and 3 years with calibration curves. The

aforementioned results indicated that the nomogram had a

good predictive value in PAAD patients.

Gene set enrichment analysis between the
high- and low-risk groups

To further investigate the biological functions of the prognostic

signature, we performedGSEA between the risk groups in the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway in the entire

set (Figure 5A). The P53 signaling pathway (NES = 1.95, p = 0.000),

cell cycle (NES = 1.91, p = 0.006), base excision repair (NES = 1.90,

p = 0.000), pyrimidine metabolism (NES = 1.86, p = 0.000), and

homologous recombination (NES = 1.85, p = 0.002) were enriched

in the high-risk group. Neuroactive ligand-receptor interactions

(NES = -1.78, p = 0.002), adipocytokine signaling pathway

(NES = -1.75, p = 0.004), FC epsilon RI signaling pathway

(NES = -1.75, p = 0.008), calcium signaling pathway (NES =

-1.74, p = 0.008), and type II diabetes mellitus (NES = -1.70, p =

0.006) were enriched in PAAD samples with the low-risk

group. These results indicated that the prognostic signature in

the model may be associated with tumor progression and

perineural invasion.

Investigation of the correlation of immune
infiltration in risk groups

A stronger correlation existed between the various immune cells

and the low-risk group on different platforms (XCELL, TIMER,

QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and

CIBERSORT) exhibited with an immune cell bubble chart

(Figure 5B). Then we found that the low-risk group had a higher

immune score and ESTIMATE score, displaying a significant

difference from the high-risk group (Figure 5C). In addition, the

stronger correlation between immune function-associated

biomarkers and ssGSEA scores showed that the low-risk group

had a higher immune infiltration status (Figures 5D,E). The

expression levels of immune checkpoints and/or their ligands

may reflect the effect of immunotherapy. Then the correlation

between the expression of 29 immune checkpoint genes and risk

scores was investigated (Figure 5F). Low-risk patients exhibited a

higher expression of 25 immune checkpoint genes, namely, BTLA,

CD200, NRP1, LAIR1, CD244, LAG3, CD200R1, ICOS, CD40LG,

CTLA4, CD48, CD28, HAVCR2, ADORA2A, KIR3DL1, TNFSF14,

CD160, IDO2, IDO1, PDCD1, TNFRSF8, CD27, BTNL2, TIGIT,

and CD86, while the remaining four were highly expressed in the

high-risk group. Collectively, these results indicated that NRL

signatures in the model affect tumor-infiltrating immune cell

FIGURE 4
Construction and validation of the nomogram. (A) Prognostic nomogram that integrated risk score, age, gender, grade, T, N, and tumor stage
predicted the probability of 1-, 2-, and 3-year OS. (B) Calibration curves for 1-, 2-, and 3-year OS.
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(TIC) infiltration and can be a candidate biomarker for

immunotherapy.

Clusters

To evaluate the immune differences between different

clusters, patients were divided into different clusters by the

“ConsensusClusterPlus” R package based on the expression of

NRLs in the model (Supplementary Figure S2). According to the

results of clustering analysis, the optimal number of clusters was

2 (Figure 6A). The correlation between two clusters and risk

groups is vividly shown in Figure 6B by a Sankey diagram. T-SNE

and PCA indicated that the risk groups and two clusters could be

distinguished clearly (Figure 6D). Furthermore, cluster 2 (C2)

had better OS than cluster 1 (C1) (Figure 6C). As shown in

FIGURE 5
Investigation of tumor immune factors. (A) Top five pathways significantly enriched in the high- and low-risk groups were exhibited byGSEA. (B)
Immune cell bubble of risk groups. (C) Comparison of immune-related scores between low- and high-risk groups. (D) Difference of immune
functions in risk groups. (E) Difference of immune cells in risk groups. (F) Differential expression of 29 checkpoints’ expression in risk groups.

Frontiers in Genetics frontiersin.org08

Mo et al. 10.3389/fgene.2022.940794

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.940794


Figures 6F,G, C2 had a higher immune score, estimate score, and

immune cell infiltration, signifying a higher immune infiltration

status than C1. With the immune checkpoint gene comparison,

we found that C2 tends to have a higher expression of 19 immune

checkpoint genes, namely, BTLA, CD200, NRP1, LAIR1,

CD200R1, ICOS, CD40LG, CTLA4, CD48, CD28, ADORA2A,

KIR3DL1, TNFSF14, CD160, IDO2, PDCD1, CD27, TIGIT, and

CD86, while the remaining six immune checkpoint genes

(TNFRSF14, LGALS9, TNFSF9, TNFSF15, HHLA2, and

CD70) were highly expressed in C1 (Figure 6E). Based on the

FIGURE 6
Distinction between different clusters. (A) Patients divided into two clusters by ConsensusClusterPlus. (B) Sankey diagram of different clusters
and risk groups. (C) Kaplan–Meier survival curves of OS in clusters. (D) PCA and t-SNE of risk groups and clusters. (E) Differential expression of
25 checkpoint genes in different clusters. (F) Comparison of immune-related scores between clusters 1 and 2. (G) Heatmap of immune cells in
clusters.
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NRLs of different clusters, we could further explore the

correlation between immunotherapy and NRL signatures in

PAAD patients.

Validation of the expression and
prognostic value of linc01089 in PAAD

The expression and prognosis value of linc01089 was

explored based on RT-qPCR and TCGA dataset.

Consistent with the previous results (Figure 1C), the

expression of linc01089 was lower in PAAD cells than in

HPNE (Figure 7A). Furthermore, the expression of

linc01089 in stages III and IIV was lower than that in

stages I and II (Figure 7B). Univariate and multivariate

analyses revealed that the N stage and

linc01089 expression were independent factors affecting

the prognosis of PAAD patients (Figures 7C,D).

Discussion

Pancreatic cancer is a highly malignant tumor of the

digestive system. Because of its insidious symptoms and

rapid disease progression, most patients present with

locally advanced or metastatic disease at diagnosis and the

treatment effect is not ideal (Park et al., 2021). Currently, the

gene signatures of distinct molecular subtypes based on cell

activities including autophagy (Hu et al., 2020), metabolic

(Yang et al., 2020), immune (Kandimalla et al., 2020), and so

on, show good predictive value for individual risk assessment

in cancers. Given this reason, constructing a molecular

prediction model in PAAD for guiding personalized

therapy and predicting the prognosis is particularly

important.

Necroptosis is a form of cell death which occurs

downstream of protein kinase C-related kinase 1 and 3

(PRK1 and RIPK3) as members of the oligomeric

complex termed the necrosome (Galluzzi et al., 2012).

Accumulating studies illustrated that necroptosis plays a

tumor inhibitory role (Newton, 2015) and reduces the

incidence of metastasis by the accumulation of high ROS

levels (Lawlor et al., 2015). LncRNAs involved in

necroptosis have been continuously identified (Jiang

et al., 2021). Harari-Steinfeld et al. (2021) found that

lncRNA H19-derived microRNA-675 promotes liver

necroptosis by targeting FADD. Wang et al. (2020) found

that ammonia regulates chicken tracheal cell necroptosis via

FIGURE 7
Validation of the expression and clinical characteristics of linc01089 in PAAD. (A) Expression of linc01089was downregulated in PAAD cells than
that in HPNE. (B) Correlation between linc01089 and the pathology stage in PAAD. (C,D) Univariate and multivariate analyses indicated that
linc01089 and N stage were independent prognostic factors affecting the OS of PAAD patients.
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the lncRNA-107053293/miR-148a-3p/FAF1 axis. Although

several NRL signatures of cancer have been reported (Wang

and Liu, 2021; Zhao et al., 2021), there is no study associated

with NRL signatures of pancreatic cancer. In this study, we

established a prognostic model with five NRLs (U62317.1,

AC099850.3, LINC01089, LINC01133, and LINC00996). On

the basis of univariate and multivariate Cox regression

analyses, the NRL signatures in the model are

independent prognostic indicators, implying a moderate

predictive value. In addition, the ROC curve and

nomogram displayed a good predictive effect to predict

prognosis and guide immunotherapy.

Among these NRLs in the model, all were associated with

tumor progression in previous research. U62317.1 is

identified as an lncRNA biomarker for the early diagnosis

of oral squamous cell carcinoma (Li Y. et al., 2020).

AC099850.3 is a member of the biomarkers that

participate in autophagy, immune, and stemness (Jia

et al., 2020; Wu et al., 2021; Zhang et al., 2021).

LINC01089 inhibits the progression of gastric cancer

(Guo and Li, 2020), cervical cancer (Li et al., 2021),

colorectal cancer (Li and Guo, 2020), and lung cancer (Li

X. et al., 2020) by sponging miRNA. LINC01133 aggravates

the epithelial-mesenchymal transition through the Wnt/β-
catenin pathway by silencing AXIN2 (Liu Y. et al., 2021).

LINC00996 is a potential therapeutic target in pulmonary

adenocarcinoma and squamous cell carcinoma (Yan et al.,

2021). However, studies on cell activities and NRLs are still

lacking. Thus, more experimental evidence of correlations

between NRLs and PAAD is needed.

Growing evidence suggests that immune cells

contribute to tumor progression when present in the

tumor microenvironment (TME) (Hinshaw and Shevde,

2019). The efficacy of immunotherapy and overall

survival were significantly correlated with the

composition of the TME (Petitprez et al., 2020). In this

study, patients with a low-risk score had a higher

infiltration level with immune cells including B cells,

CD8+T cells, dendritic cells, and NK cells and a stronger

correlation with immune function, confirming the function

of NRLs in tumor immune infiltration. Immune checkpoint

blockade (ICB) enhances the efficiency of anti-tumoral

immune response by the way of immune infiltration

(Petitprez et al., 2020). Interestingly, CTLA4, IDO1, and

PDCD1 were highly expressed in the low-risk group,

implying that low-risk patients may benefit more from

immunotherapy. There is a difference between different

subtypes and immune scores which contribute to different

prognoses and immunotherapy responses (DeBerardinis,

2020). Then we divided patients into two clusters on the

basis of NRL expressions in the model. As expected,

differences existed between clusters in the immune score

and immune cell infiltration. C2 had a higher immune score

and estimate score. At the same time, C2 had more immune

cell infiltration and a higher expression of CTLA4 and

PDCD1, which confirmed that C2 may benefit more from

immunotherapy than C1. Above all, these NRLs could

accurately predict the prognosis of PAAD patients and

guide personalized immunotherapy.

There are still several limitations in the current study.

First, external validation with data integrated with

complete clinical and lncRNA information will be

searched and analyzed subsequently. Second,

functional experiments including cell and animal

experiments will be in our plans to explore molecular

mechanisms in-depth.

Conclusion

All in all, we constructed a model with NRLs to predict

prognosis and guide personalized immunotherapy in PAAD

patients. Targeting these lncRNAs will be a promising way for

systemic therapy failure and new pathways of

immunotherapy. Therefore, molecular mechanisms

between NRLs, necroptosis, and PAAD are worth

investigating.
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