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ABSTRACT
Introduction: Wounds and their complications present a frequent cause of morbidity and 
mortality in everyday clinical practice. In order to reduce the wound burden, much effort has 
been directed into the physiology of healing and new therapeutic approaches. Aim: This paper 
provides an overview from the literature about the role of endothelial and epithelial cells in tis-
sue filler employment for wound healing. Material and Methods: The scientific literature was 
reviewed through PubMed, Medline and Science Direct. The articles were chosen in correla-
tion with the study objective and their scientific relevance. Results: Successful wound healing 
depends on many diverse processes, cell types and molecular mediators. The definitive aim 
of wound healing is a properly healed wound. Tissue fillers are becoming an important alter-
native in wound management, although augmentation of soft tissue can present a demanding 
problem due to the difficulties in tissue survival. In order to prevent its failure, an optimal vas-
cular network needs to form from wound edges into the filler. Conclusions: Because of the im-
portance of chemotaxis and angiogenesis in various physiological and pathological processes, 
both events present an extensive area of intense research. Additionally, epithelial cells are 
needed to cover the wound defect and sealing the wound environment from outer world.
Keywords: wound, wound healing, angiogenesis, epithelialization, tissue filler.

1.	 INTRODUCTION
In everyday clinical practice, 

wounds occupy a significant place. 
As a result, a correct and efficient 
wound management is essential (1, 
2). Much effort has been directed 
into understanding the physiology of 
healing and wound care with empha-
sis on new therapeutic approaches 
for both acute and chronic wound 
treatment (3, 4).

Wounds can be classified accord-
ing to various criteria. According to 
the timeliness of healing, they are 
clinically categorized into acute and 
chronic wounds (5-7). Other criteria 
for wound classification include aeti-
ology, morphological characteristics, 
degree of contamination and possi-
ble communication with hollow or 
solid organs (5, 7, 8). Wound healing 
begins at the moment of injury. It is 
a complex process and as such in-
volves cell populations, extracellular 
matrix and the action of soluble me-
diators. Although the course of heal-
ing is continuous, it may be arbitrary 
classified into the four time-limited 
phases: I) coagulation and haemosta-
sis, beginning immediately after in-
jury; II) inflammation, which begins 
shortly thereafter; III) proliferation, 

starting within days after injury and 
encompassing major healing pro-
cesses; and IV) wound remodelling 
as the last phase, in which scar tissue 
formation takes place and may last 
up to a year or even longer (9-11).

A correct approach to the wound 
treatment may effectively influence 
the clinical outcome. In clinical prac-
tice, various techniques have been 
implemented to promote and speed 
up the wound healing process. One 
novel technique for wound heal-
ing, still partly in the experimental 
phases, is a technique of tissue aug-
mentation, which may be used for 
various reluctantly healing tissue 
defects, especially for bone, skin and 
subcutaneous tissue defects. As suc-
cessful angiogenesis forms the basis 
of a tissue filler survival in the wound 
bed, this will in turn determine the 
outcome of the healing process. Be-
cause of the importance of chemo-
taxis and angiogenesis in various 
physiological and pathological pro-
cesses, both events present an ex-
tensive area of intense research (12, 
13). Additionally, epithelial cells are 
almost equally important, covering 
the wound and protecting it from in-
fection and exterior noxious factors.
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2.	 AIM
This paper provides an overview from the literature 

about the role of endothelial and epithelial cells in the 
technique of tissue augmentation, which is conducted 
with tissue filler employment and used for wound heal-
ing purposes.

3.	 MATERIAL AND METHODS
Literature search was conducted for this review. The 

data about wound healing, tissue augmentation and the 
importance of endothelial and epithelial cells was col-
lected from various sources. These included electronic 
databases PubMed, Medline and Science Direct. The 
search was performed using a combination of the follow-
ing terms: wound and wound healing, tissue augmenta-
tion, tissue filler, angiogenesis and epithelialization. The 
articles were selected in correlation with the study objec-
tive and their scientific relevance.

4.	 RESULTS
4.1. TISSUE DEFECTS AND THEIR AUGMENTATION WITH TISSUE 

FILLERS
The regeneration of damaged tissues is one of the ma-

jor scopes in modern medicine. How the wound will 
heal, is determined by the size of the defect that the 
granulation tissue must fill (14, 15). A complex wound 
with wide tissue defects, wounds located in function-
ally active regions or fractures with bone shortage and 
large areas of exposed functional structures will heal 
very reluctantly or not at all (16). Such wounds may be 
successfully treated with a novel technique of tissue aug-
mentation (17-19). The augmentation of bone tissue has 
already been implemented in clinical practice. The ap-
proach depends on the amount of the bone defect and 
the reconstruction procedure. Bone fillers must be opti-
mally fitted to the recipient place in order to facilitate the 
revascularization (17). Widely used in maxillofacial sur-
gery, facial defects and deformities, bone augmentation 
has also been successfully employed in the treatment of 
osteomyelitis and trauma caused bone defects (20-22). 
Soft tissue augmentation, on the other hand, may pose a 
demanding problem due to the difficulties connected to 
the survival of the tissue filler after the reconstruction, 
as enough nutrients and oxygen are needed by the cells 
in the filler. These could be provided only by a sufficient 
capillary network, in turn dependent on the endotheli-
al cell action (23). For example, the irradiation and in-
fection aligned complications may destroy the vascular 
network, thus preventing the use of tissue fillers by any 
means. Such wounds present a demanding problem for 
successful treatment (24-26).

4.2. THE IMPORTANCE OF ENDOTHELIAL CELLS
Wound healing is a complex event, where a variety of 

cell types interact with various functions (8, 27). Imme-
diately after injury, coagulation and haemostasis are trig-
gered in the wound (28-30]. The main aim is the preven-
tion of exsanguination and the formation of supportive 
matrix for invading cells, needed later during the wound 
healing. A dynamic balance between endothelial cells, 
thrombocytes, coagulation and fibrinolysis regulates the 

haemostasis (30, 31). Humoral and cellular inflammatory 
phases follow with the formation of an immune barrier 
against invading microorganisms. The wound healing 
mechanisms in the acute wound are shifted toward tis-
sue repair (32-34). Among the diverse processes in the 
proliferative phase, the angiogenesis and epithelializa-
tion are of particular importance. The endothelial cells 
have a special role. They make the growth and survival 
of newly formed tissue possible, as all tissues depend on 
a blood supply and this in turn depends on endothelial 
cells (36-38).

4.3. ANGIOGENESIS IN THE WOUND BED
The final aim of wound healing is a properly healed 

wound. Therefore, an optimal vascular network must 
form by extension from the wound edges into the provi-
sional matrix or into the filler that may be placed into the 
wound defect. Angiogenesis, which takes place in tissue 
regeneration during wound healing, is initiated by a large 
number of biological effectors in the form of diverse 
growth factors (39). The variety of different biochemical 
stimuli evokes alterations in the vascular wall, influenc-
ing proliferation, survival, differentiation and migration 
of various cell types, including the endothelial cells (13, 
40, 41).

New vessels start off as micro capillaries. Endotheli-
al cells are quiescent in the beginning and must be ac-
tivated at first. Resident endothelial cells are responsive 
to a number of angiogenic factors, including fibroblast 
growth factor (FGF), vascular endothelial growth factor 
(VEGF), platelet-derived growth factor (PDGF), angio-
genin (ANG) and transforming growth factors alpha and 
beta (TGF-alpha, TGF-beta). The fine balance is kept by 
the action of inhibitory agents such as angiostatin and 
steroids (42-44). Stimulatory and inhibitory agents can 
act in concert on endothelial cells directly, activating and 
assisting in mitosis and promoting locomotion, or indi-
rectly, by turning on the host cells to release endothelial 
growth factors. What is more, the growth of endotheli-
al cells is stimulated by molecules secreted from tissue 
during the hypoxia conditions (45, 46). In response, en-
dothelial cells undergo a complex set of four-step events: 
I) production of proteases for degradation of the basal 
lamina of the parent vessel in order to crawl through the 
extracellular matrix; II) chemotaxis; III) proliferation; 
and IV) remodelling and differentiation. FGF and VEGF 
play a vital regulatory role in all of the processes (45-49). 
New vessels are formed as capillary sprouts from already 
existing small vessels in the process of angiogenesis. 
Endothelial cells that form a new capillary proliferate 
and migrate into the surrounding tissue. Finally, cells 
differentiate and form a continuous lumen. After a cap-
illary sprout has hollowed out into a tube, it connects 
to another capillary or the neighboring sprout, allowing 
blood to flow (42, 45). There is no vascular supply in the 
wound center initially and viable tissue is limited to the 
wound margins only. They are perfused by uninjured 
blood vessels and by diffusion through uninjured inter-
stitium (5, 27, 51). As a result, when placing tissue filler 
into a wound, the cells there may survive only within the 
distance covered by diffusion, which covers one or two 
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centimeters from the wound margins. For cells at more 
distant locations, survival depends only on capillary for-
mation. For this reason, neovascularization is a prereq-
uisite for successful wound healing (50).

4.4. ENDOTHELIAL CELLS CHANGE IN MORPHOLOGY DURING THE 
ANGIOGENESIS

The endothelial cells are not static. During the growth 
of capillaries, they undergo a series of morphological 
alterations that are under biochemical control. Chemo-
tactic agents direct the cell movement throughout the 
process. They act on cell surface receptors to guide mi-
gration, an important property in angiogenesis during 
the wound healing (12, 52). Factors that contribute to 
motility and act as mediators for vessel wall repair and 
neovascularization at the site of injury include endothe-
lial cell growth factor (ECGF), VEGF, TGF-alpha, fibrin, 
angiopoietin 1, heparin and lipid growth factors. They 
are also important modulators of cell growth and differ-
entiation (40).

By definition, the chemotaxis is the ability of cells to 
move along a chemical gradient (53, 54). This biochemi-
cal mechanism enables the cells to reply properly to the 
environmental stimuli determining the proliferation, dif-
ferentiation and migration. Migration, the consequence 
of chemotactic activity, plays an important role in vascu-
lar remodelling and it is a necessary condition for angio-
genesis. As a complex process that involves coordinated 
changes in cytoskeletal organization, signal transduction 
and cell adhesion, it is dependent on the actin rich net-
work beneath the plasma membrane and regulated by 
physical and chemical factors in the vascular system. The 
regulation is achieved by three types of mechanisms: 
chemotaxis (migration towards the concentration gradi-
ent of the chemo attractive substance), haptotaxis (mi-
gration in response to a gradient of immobilized ligands) 
and mechanotaxis (migration induced by mechanical 
forces) (13, 55). The cellular motility requires three dis-
tinct actions: I) protrusion at the cell front; II) adhesion, 
to attach the actin cytoskeleton to the substratum; and 
finally III) traction, propelling the trailing cytoplasm for-
ward (56-58).

Protrusion
The cell cytoskeleton is attached at cell-cell junctions 

and cell-extracellular matrix adhesions, providing me-
chanical support for the cell (55). The actin network acts 
as a mechano effector, being important in coordinating 
the cell migration. Multiple signalling pathways and 
regulatory proteins control actin dynamics and chang-
es of cell morphology (55, 57, 59). During the first step 
of locomotion, the actin polymerization takes place at 
the leading edge of the cell, determined by the highest 
concentration of chemo attractive substance, pushing 
the plasma membrane outward. A protruding structure 
forms, in the case of endothelial cell known as filopodia, 
which is filled with filamentous actin. The unidirectional 
movement of the cell is maintained through the action 
of a cyclic assembly and disassembly of actin filaments 
in front of and behind the leading edge, respectively (58, 
60, 61).

Adhesion

Adhesion to a solid substratum is particularly import-
ant step in cell migration (31, 61, 62). It is mediated by 
integrins, which act as primary receptors for extracel-
lular matrix proteins. Endothelial cells can adjust the 
adhesion intensity, weakly adhesive cells moving faster 
than highly adhesive ones. After attachment to the ex-
tracellular matrix, the cell changes its morphology from 
an oval or spindle-shape to irregular flattened one. These 
alterations in shape are governed by integrin signalling 
and depend on integrin contacts with the extracellular 
matrix in focal complexes, forming initially at the ends 
of filopodia (56, 62). Not only important in cell motili-
ty, the integrins are also involved in signal transduction, 
regulating and stimulating migration. Endothelial cells 
migrate fastest immediately after injury. Then, they enter 
a slower migration rate, maintained during the healing 
process (59, 63).

Traction
The direction of migration requires initial polarization 

of the cell and both physical and chemical stimuli influ-
ence it, as has been discussed above (24, 25, 42, 50, 64-
66). The contractile forces, transmitted through the in-
tegrin-cytoskeletal connections, allow the cell to pull its 
cytoplasm forward by generating the traction to the sub-
stratum. The force for movement is provided by myosin 
motor proteins, linked to contractile actin bundles along 
the cell. Interactions between myosin and actin fibres 
pull the cell body forwards. At the same time, the extra-
cellular matrix-binding proteins on the trailing edge of 
the moving cell must release these connections (55, 62, 
67). The degree of the strength of integrin coupling to 
the cytoskeleton is influenced by the rigidity of the sub-
stratum. With stronger couplings to a firm surface, the 
force can be transmitted through the migrating cell more 
efficiently (56). During the locomotion, traction forces 
generated at the sites of contact can be high enough to 
deform the extracellular matrix and to rearrange it sig-
nificantly (54, 68).

5.	 DISCUSSION
5.1. THE ENDOTHELIUM AND EPITHELIUM ACTING IN CONCERT
As already discussed above, numerous cell mediators, 

such as cytokines, hormones and growth factors, are 
important in guiding the wound healing process. Angio-
genesis is therefore not an exception. New blood vessel 
formation is critical in wound healing and takes place at 
the same time during all the stages of reparation (69, 70). 
In addition to attracting other cell types, the neutrophils 
and macrophages, platelet derived growth factor (PDGF) 
and transforming growth factor 1 (TGF-1) that are se-
creted during the hemostatic phase, promote angiogen-
esis. By cell migration, endothelial cells are capable of 
remodelling and extending the network of blood vessels 
in almost every tissue in the body. In addition, macro-
phages release a number of angiogenic substances, mag-
nifying the endothelial cell proliferation (5, 28, 48). Cap-
illary sprouts from the surrounding wound edges invade 
the blood clot in the wound gap and within a few days, a 
microvascular network is formed, composed of copious 
new capillaries. Proliferating fibroblasts, macrophages 
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and vascularized stroma, in concert with collagen, fibrin-
ogen, fibronectin and hyaluronic acid, constitute acute 
granulation tissue that replaces the fibrin based provi-
sional matrix, which was formed in the initial stages of 
wound healing. With collagen accumulation, density of 
blood vessels diminishes and granulation tissue gradual-
ly matures to produce a scar (48, 60, 71). The final stage 
of wound healing is the remodelling phase. New epithe-
lium develops and final scar tissue formation takes place. 
With time, the growth of capillaries stops, blood flow to 
the area diminishes and the metabolic activity of the scar 
drops. The final result is a fully matured scar with a de-
creased number of cells, blood vessels and with a high 
tensile strength (72, 73).

Equally important to endothelium are the epithelial 
cells. Their migration starts from the wound edges with-
in a few hours of wounding. A single layer of cells initially 
forms over the defect, accompanied by a marked increase 
in epithelial cell mitotic activity around the wound edg-
es. Cells migrating across them attach to the provisional 
matrix in the wound bed. After 12 to 24 hours, when the 
advancing epithelial cells meet, migration is stopped and 
basement membrane starts to form. The wound is cov-
ered with epithelium and isolated from the outer world 
(27, 37, 74).

6.	 CONCLUSIONS
Successful wound healing depends on many biochemi-

cal processes, molecular mediators, cell types and struc-
tural elements. New blood vessel formation through 
the process of angiogenesis is critical in wound healing 
(75, 76). It can be affected by numerous pathophysio-
logical and metabolic factors resulting in poor outcome. 
However, the angiogenesis is not important only during 
wound healing, but also in several pathological condi-
tions. Progress in this area brings new opportunities for 
developing therapies that enhance or inhibit vascular 
formation, such as inhibitors of aberrant vessel forma-
tion and stimulators of angiogenesis in ischemic condi-
tions (27, 77, 78).
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