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The linear model often serves as a starting point for applying statistics in psychology.

Often, formal training beyond the linear model is limited, creating a potential pedagogical

gap because of the pervasiveness of data non-normality. We reviewed 61 recently

published undergraduate and graduate textbooks on introductory statistics and the

linear model, focusing on their treatment of non-normality. This review identified at

least eight distinct methods suggested to address non-normality, which we organize

into a new taxonomy according to whether the approach: (a) remains within the linear

model, (b) changes the data, and (c) treats normality as informative or as a nuisance.

Because textbook coverage of these methods was often cursory, and methodological

papers introducing these approaches are usually inaccessible to non-statisticians, this

review is designed to be the happy medium. We provide a relatively non-technical

review of advanced methods which can address non-normality (and heteroscedasticity),

thereby serving a starting point to promote best practice in the application of the linear

model. We also present three empirical examples to highlight distinctions between

these methods’ motivations and results. The paper also reviews the current state

of methodological research in addressing non-normality within the linear modeling

framework. It is anticipated that our taxonomy will provide a useful overview and starting

place for researchers interested in extending their knowledge in approaches developed

to address non-normality from the perspective of the linear model.

Keywords: linear model, non-normality, sandwich estimators, bootstrap, robust statistics, transformation, best

practice

Psychological science rests on the application of statistical models to data, with the purpose of
better understanding and predicting phenomena. Because of its parsimony and well-understood
characteristics, the linear model is one of the most popular models employed in the social and
behavioral sciences. The multiple linear model (MLR; Cohen et al., 2003) subsumes the t-test, and
ANOVA as special cases. This set of models are unified under the assumption of normality. In
practice, however, data is often observed to be non-normal in psychology (Micceri, 1989; Cain
et al., 2017) and its allied sciences (Bono et al., 2017), potentially limiting the degree to which
linear models can be appropriately fit to data. Stated differently, non-normality is among the
most commonly encountered experiences in statistical practice, especially in psychology, possibly
inhibiting the utility of popular linear models.
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In the long history of statistics, many approaches to address
non-normality have been developed. These approaches differ
widely in their philosophies, assumptions, and results. The
motivating questions behind this review are: How well does
current pedagogy of linear models, in the form of textbooks,
acknowledge and address non-normality? Which methods for
addressing non-normality are popular and valid? When should
one method be applied over others? To address these questions,
this review surveys, organizes, and describes a large body of
methodological research on approaches developed to address
non-normality. We emphasize approaches that continue to
fall within the linear-modeling framework because researchers
already familiar with the linear model can seamlessly incorporate
these less well-known advances in practice. By appropriately
addressing non-normality, resulting conclusions are more
defensible against threats to statistical conclusion validity due to
model misspecification (Shadish et al., 2002).

We begin by reviewing the linear model and it assumptions,
followed by briefly describing methods developed to address
assumption violation, especially normality. Next, we report
results of a review of statistics textbooks, primarily used in the
behavioral sciences, which were published from 2003 to 2018.We
then present a new taxonomy for organizing the many alternative
approaches identified in the textbook review according to their
underlying motivations and outcomes. We anticipate that this
framework will provide a structured overview in terms of how
these methods relate to one another, and when should one
method be applied over others. Because the treatment of these
methods in the reviewed textbooks was often cursory, we also
extensively describe each of these methods in a relatively non-
technical manner and illustrate their application. Our examples
remain within the linear modeling framework, emphasizing
situations where distinct results can arise from the same data.
Because the choice of one approach over another can change
results, we conclude with a general discussion of guidelines for
best practice.

1. THE LINEAR MODEL

The MLR is a general analytic framework where t-tests and
ANOVA are special cases. For the single case i, where i =
1, · · · ,N, the linear model is expressed as

yi = β0 + β1x1i + · · · + βKxKi + ǫi, (1)

where yi is the observed value for the continuous dependent
variable (DV) or outcome for case i; xki is the observed value
for case i on the kth independent variable (IV) or predictor,
where k = 1, · · · ,K; and ǫi is the unknown error for case i.
The unknown population model parameters to be estimated are
the intercept, β0, and the K regression slopes, β1, · · · ,βK . The
intercept is interpreted as the expected value of ywhen all xk = 0;
and each kth regression slope is the expected conditional change
in y due to a 1-unit change in xk, holding all other IVs in the
model constant.

To obtain sample estimates, β̂ = (β̂0, β̂1, · · · , β̂K)′, of the
unknown parameters, β = (β0,β1, · · · ,βK)′, the ordinary least

squares (OLS) criterion is applied where the sum of squared
residuals,

∑N
i=1 e

2
i , is minimized. Residuals for each case i, ei,

serve as estimates of the N unknown errors ǫi, where ei = yi −
[β̂0+β̂1x1i+· · ·+β̂KxKi]. Obtaining estimates for the parameters
in Equation (1) does not require any distributional assumptions.

1.1. Assumptions
The linear model has four assumptions. First, the relationship
between the IVs and the DV is linear. Second, when inferences
about the population parameters are to be made, it is only in
the instance when N is not large enough that the distributional
assumption of normality is placed on the errors [i.e., ǫi ∼
N (0, σ 2), where σ 2 is the unknown variance of the errors].
Normality of ǫi assures that the sampling distribution of the
estimates follow a t-distribution when σ is estimated. When N
is large enough, the sampling distribution will be approximately
normal because of the Central Limit Theorem (CLT; described
later in more detail). Common inferential devices are null
hypothesis significance tests (NHSTs) and their p-values, and
confidence intervals (CIs), which are probabilistic statements
about the unknown population parameters based on sample
estimates. Third, σ 2 is assumed to be finite. Fourth, the N cases
are assumed to be independently and identically distributed (i.e.,
no dependencies). Given these assumptions and N observations,
the vector of errors ǫ follow a multivariate normal distribution
with mean vector 0, and a homogeneous variance structure
6ǫ = σ 2IN , where IN is a N × N identity matrix such that
ǫ ∼ MVN (0, σ 2IN). For instance, when N = 2, 6ǫ = σ 2I2 =
(

σ 2 0
0 σ 2

)

.

When the assumption of normality is placed on the errors, it
is often implicitly assumed that the predictors, X = (xi, · · · , xK)′,
are fixed (e.g., levels of drug dosage which were randomly
assigned). An alternative approach is to consider observed values
on the IVs as realizations of random variables (e.g., scores on
GPA); this alternative requires the additional assumption that
X is independent of ǫ. It follows then that the errors, ǫ, of the
linear model incorporating such IVs would also follow the same
normal distribution where the IVs are assumed to be fixed. In
brief, either scheme of fixed or random IVs results in essentially
equivalent distributional assumptions. Interested readers should
refer to Sampson (1974) for nuances between the scheme of fixed
vs. random IVs.

In practice, the assumption of normality (and
homoscedasticity) of the errors, ǫ, is empirically evaluated
by examining the distribution of the residuals, e (illustrated in
the examples to follow). It would be inappropriate to examine
the distribution of y = (y1, · · · , yN)′ independent of the K
predictors because the distributional assumption is about ǫ. It
is only under the intercept-only model, where the distributional
properties of y are identical to ǫ, that in this vein, the distribution
of y is analogous to e (shown in the first two examples). However,
the accuracy of using e to approximate ǫ remains to be evaluated.

In the review of textbooks to follow, the following methods
were mentioned as approaches that take assumption violation
into account: data transformations (i.e., apply a non-linear
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function to the data); invoking the CLT; rank-based non-
parameteric approaches (e.g., the sign test); the bootstrap
(i.e., empirically constructing the sampling distribution of
estimates); trimming (i.e., removing outliers); Winsorizing
(i.e., recoding outliers to less extreme values); heteroscedastic
consistent covariance matrices (HCCMs; which allows for
heteroscedasticity in place of homoscedasticity); and non-linear
models (e.g., logistic regression). Details to these methods,
and examples of their application, are provided later in the
section on addressing non-normality. SAS and R code showing
how these methods can be applied are provided in the
Supplemental Material.

2. SYSTEMATIC REVIEW OF TEXTBOOKS

2.1. Methodology
In this review, we report on the recommendations made in
textbooks focused on the linear model when non-normality
is encountered in practice. A total of N = 61 applied
statistics textbooks were identified from several sources:
educational publishers’ websites (e.g., Pearson Education,
Houghton Mifflin Harcourt, Sage Publishers, and Taylor and
Francis), Amazon.com, and research university library catalogs.
The keywords used in the textbook search are “linear" or
“introduction", and “statistics." There were two inclusion
criteria: (a) textbooks must have adequate coverage (i.e., several
book chapters) of the linear model and its special cases (i.e.,
z-test, t-test, ANOVA, correlation, linear regression), and (b)
the content must be applied in nature where focus is placed on
data analysis and interpretation. Textbooks on research methods
associated with the linear model (e.g., Goodwin and Goodwin,
2016; Wilson and Joye, 2016) were excluded from this review.

Each selected textbook was independently coded by a senior
and junior coder for the frequency of methods noted as a
workaround to non-normality. Both coders are authors of this
article and have formal training in quantitative methodology and
behavioral statistics. The frequency of suggested methods, which
are objective observations, were double coded to avoid data entry
errors. All disagreements were cross-checked and verified by
referring back to the relevant textbook entry, resulting in a single
and accurate data set for analysis. This coding methodology
is consistent with similar reviews (e.g., Weidman et al., 2017).
Note that only the latest available edition of a textbook was
included in the review; textbooks with distinct titles but written
by the same authors were included without corrections to content
dependency (e.g., Statistics for the Behavioral and Social Sciences:
A Brief Course by Aron et al., 2010 and Statistics for Psychology by
Aron et al., 2012).

2.2. Results and Discussion
Table 1 presents results of the review, stratified by graduate
vs. undergraduate textbooks. The presentation of the methods
are ordered according to how often they were suggested in
graduate textbooks, with data transformations being mentioned
most often (89%), followed by an argument of robustness of the
results due to the CLT (56%) Next, rank-based non-parameteric
methods (50%) and the bootstrap (50%) were equally suggested,

TABLE 1 | Frequency and counts of approaches for addressing non-normality

across statistics textbooks published from 2003 to 2018.

Graduate (n = 18) Undergraduate (n = 43)

n % n %

Transform 16 89 17 38

Reverse transform 3 17 2 4

CLT 10 56 35 78

Rank-based Nonparametric 9 50 34 76

Bootstrap 9 50 6 13

Trim 6 33 9 20

Winsorize 5 28 4 9

HCCM 3 17 0 0

Nonlinear models 3 17 0 0

Not covered 1 6 3 7

Methods are ranked ordered according to the most popular method mentioned in

graduate textbooks. CLT, central limit theorem; HCCM, heteroscedasticity-corrected

covariance matrix. Not covered implies that even the CLT was not mentioned. The

percentages reported do not sum to 100% because textbooks can include more than

one method for addressing non-normality.

followed by less popular methods. Note that the method of
applying a reverse transformation is only pertinent to the
method of data transformations; given that data transformations
were recommended, reverse transformations were also suggested
19% of the time. Reverse transformations are also called back
transformations. Let y represent an observed variable, which
is non-normally distributed, and g(·) be a transformation such
that g(y) follows a normal distribution. The reverse of the
transformation, g(·), is denoted by g−1(·). As an example, g(·) can
be log(·) such that the reverse transformation, g−1(·), is exp(·).
Mathematically expressed, g(y) = log(y) = w; then g−1(w) =
exp(w) = y.

The rank order of suggested methods was different between
graduate vs. undergraduate textbooks. Instead of most often
recommending data transformations, undergraduate textbooks
emphasized robustness due to the CLT (78%) as well as the use
of rank-based non-parametric counterparts (76%). This trend
is unsurprising because the CLT does not require changing
the usual data analytic approach within the linear modeling
framework. Most undergraduate textbooks also introduced rank-
based non-parametric methods in later chapters, justifying
their recommendation in earlier chapters focused on the linear
model. Transformations, including reverse transformations
(12% of instances where transformations were suggested), was
recommended 38% of the time followed by the less popular
methods. Though limited in frequency of being recommended,
reverse transformations require careful implementation to obtain
accurate results (Duan, 1983; Zhou and Gao, 1997; Pek et al.,
2017a,b).

Trimming is recommended more often than Winsorizing
(33 vs. 28% among graduate textbooks, and 20 vs. 9% among
undergraduate textbooks). Finally, it is of concern that a small but
non-zero proportion of textbooks did not address non-normality.
Conversely, it was a positive note that a larger but limited number
of textbooks recommended non-linear models.
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TABLE 2 | Taxonomy of methods developed to address non-normality.

Method Linear

model

Keep data

as is

Non-normality

is informative

CLT 3 3 7

HCCM 3 3 7

Bootstrap 3 3 7

Trim or Winsorize 3 7 3†

Transform 3 7 Depends

Rank-based Nonparametric 7 7‡ 7

Nonlinear models 7 3 7

CLT, central limit theorem; HCCM, heteroscedasticity-corrected covariance matrix.
†Trimming and Winsorizing treat non-normality as an indication of contamination by

outliers; the outliers are themselves treated as nuisance. ‡Rank-based nonparametric

approaches tend to focus on the rank order in the data by ignoring any quantitative

information; technically, instead of transforming the data, order statistics (e.g., minimum

and maximum observations) are computed to take the place of usual sufficient statistics

(e.g., mean and variance).

To provide guidance regarding these methods, we detail
underlying causes of non-normality below. Then, each suggested
method from Table 1 is described in relation to the assumptions
of the linear model, and classified according to a taxonomy
organized by three characteristics: (a) remain within the linear
modeling framework, (b) change the nature of the data, and (c)
treat non-normality either as a nuisance or an important aspect
of the data (see Table 2).

3. ADDRESSING NON-NORMALITY (AND
HETEROSCEDASTICITY)

Recall that the assumption of normality can be relaxed when
sample sizeN is large enough; the errors need not follow a normal
distribution because of the CLT. Regardless of the distribution of
ǫ, the CLT assures that the sampling distribution of the estimates
will converge toward a normal distribution as N increases to
infinity, when ǫ are independent and identically distributed,
and when σ 2 is finite. Stated differently, the assumption of
normality is inessential with large enough N. By employing the
CLT, inference should technically be based on the z-distribution
instead the t-distribution. One practical question is, how large
should N be such that the CLT can be reasonably invoked? For
the limited case of a DVwithout IVs, the reviewed textbooks have
suggested a range of N ≥ 15 (e.g., Jaccard and Becker, 2009) to
N ≥ 50 (e.g., Hanna and Dempster, 2013). Such rules of thumb
tend to be inaccurate because the size of N for the CLT to be in
place is a function of the number of K IVs and the extent of non-
normality of the errors (e.g., see Pek et al., 2017b). In general,
largerN is required when the errors depart more from normality;
specifically, convergence due to the CLT is faster when errors are
symmetric in distribution (i.e., less skewed; Lange et al., 1989; Pek
et al., 2017b).

When non-normality in e is observed, two assumptions in
the linear model are potentially unmet. First, non-normality in
e suggests non-normality in ǫ (i.e., the assumed structure of ǫ

is misspecified), which results in inaccurate inferential results
regarding p-values and CI coverage. Second, the relationship
between X and y may not be linear, and the misfit could
be observed from non-normal residuals. Additionally, if the
unknown population functional form between X and y is non-
linear and a linear model is fit, instead, the estimates of the
linear model are biased estimates of the unknown population
parameters. Stated succinctly, the observed non-normality in
e may indicate model misspecification in terms of the linear
relationship between X and y.

Violating the assumption of normal ǫ is, however, not
necessarily fatal when sample size,N, is large enough for the CLT
to be at work. Besides invoking the argument of robustness of
model results due to the CLT, several other methods have been
suggested among the 61 reviewed textbooks to take into account
non-normality of observed e. These methods are classified in
Table 2 according to whether they remain within the linear
modeling framework, modify the data, and treat the presence of
non-normality as informative or a nuisance. In general, other
than the CLT and bootstrap, methods which remain within
the linear modeling framework are implicitly small sample
alternatives.

The methods listed in Table 2 are rank ordered according
to how much they depart from OLS regression (i.e., CLT).
The CLT relies on the robustness of the solution when N is
large, requiring no changes in the application of the linear
model to data. Using heteroscedasticity-corrected covariance
matrices (HCCM) or the bootstrap changes only the estimator in
terms of determining the sampling distribution of the estimates.
Trimming and Winsorizing involve changes to the data, by
removing or modifying outliers, which necessitates a change
in the estimator although the linear model continues to be
applied to the data. Depending on the transformation used, non-
normality is either treated as a nuisance or informative. When
rank-based non-parametric and non-linear models are applied to
data, the linear model is abandoned. Rank-based non-parametric
methods circumvent the issue of non-normality of the residuals
by analyzing ranks of the data. In non-linear models, the non-
normality in the residuals are explicitly modeled. Below, we detail
thesemethods, and illustrate the utility of methods, which remain
within the linear model, with several empirical examples.

3.1. Heteroscedastic Corrected Covariance
Matrix (HCCM)
As nomenclature suggests, the method of HCCMs was
developed to specifically address violation of the homoscedastic
distributional assumption (i.e., the covariance structure of the
errors, 6ǫ = σ 2IN), and not that of normality. Very often,
however, HCCMs are applied in practice to address general
forms of misspecification including non-normality (Dudgeon,
2017). We thus review HCCMs for completeness, and clarify
that HCCMs do not take into account non-normality. All
three graduate textbooks which mention HCCM (see Table 1)
correctly identify the method as an approach to address
heteroscedasticity. By employing this approach to address
observed heteroscedasticity in e, the user implicitly assumes that
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model misspecification is in the covariance structure of ǫ. By
contrast, the functional form relating X to y is assumed to be
correct. Here, heteroscedasticity of unknown form in ǫ, which
is estimated by e, is regarded as a nuisance to be addressed.
Note that ǫ can still follow a multivariate normal distribution
but be heteroscedastic. Given N = 2, an example of a normal

but heteroscedastic covariance structure is 6ǫ =
(

σ 21 0

0 σ 22

)

, where

σ 2
1 6= σ 2

2 .
Given homoscedasticity and the Gauss Markov theorem, OLS

is the best linear unbiased estimator (BLUE) for the linear
model, and β̂ = (X′X)−1X′y. Further, the asymptotic covariance

matrix of β̂ , 6
β̂

= (X′X)−1X′6ǫX(X
′X)−1 (Hayes and Cai,

2007), reduces to σ 2(X′X)−1 because 6ǫ = σ 2IN . Here, σ 2

is estimated by the mean squared residual, σ̂ 2 =
∑N

i=1 e
2
i /df ,

where df = (N − K) is the degrees of freedom. Standard

errors of β̂ are the square root of the diagonal elements of

6
β̂
. When homoscedasticity is violated, β̂ remains unbiased

but p-values reflecting NHSTs and CI coverage about β will be

incorrect (Long and Ervin, 2000), because β̂ no longer retains

the property of BLUE. As such, β̂ will not have the smallest
variance among all the linear unbiased estimators of β . When
N is not large, assuming homogenous variance in the presence
of heteroscedasticity can result in either conservative or liberal
NHSTs and improper CI coverage.

The development of HCCMs can be traced to Eicker (1963,
1967) and Huber (1967). Later, White (1980), MacKinnon
et al. (1985), and Davidson and MacKinnon (1993) formalized
the form of the HCCM known as HC0 and presented three
alternatives for small sample conditions called HC1 (derived by
Hinkley, 1977), HC2, and HC3. More recently, Cribari-Neto and
colleagues developed further modifications called HC4 Cribari-
Neto (2004), HC4M Cribari-Neto and da Silva (2011), and HC5
Cribari-Neto et al. (2007). To date, there are at least seven
versions of HCCMs which are asymptotically equivalent. For
more extensive reviews of this work, see Long and Ervin (2000),
Hayes and Cai (2007), and Dudgeon (2017). Below, we highlight
the rationale behind HC0, HC1, HC2, and HC3.

Note that HC0 is also called the Huber-White estimator of6
β̂
:

HC0 = (X′X)−1X′diag[e2i ]X(X
′X)−1,

where diag[e2i ] is a N × N diagonal matrix of the squared

residuals. When N = 2, diag[e2i ] =
(

e21 0

0 e22

)

. Instead of assuming

homoscedasticity of 6ǫ , the squared residuals, e2i , are employed
as estimators of the variance of ǫi. Such estimators have come
to be known as sandwich estimators, because they follow a form
where two slices of “bread” (e.g., (X′X)−1X′ and X(X′X)−1)
envelope a middle (e.g., diag[e2i ]). The remaining versions of
HCCMs make modifications to HC0, often to the matrix in the
middle.

HC1 = N

df
HC0

incorporates a degree of freedom correction by scaling each ei by
a factor of

√

N/df .

The motivation for HC2 takes into account the effect of
observations with high leverage. Leverage values quantify the
extent to which a case’s IV values lie away from the centroid of
the other cases’ IV values. The hat matrix in the linear model
H = X(X′X)−1X′ maps the DV vector, y, to the vector of fitted or

predicted values, ŷ = Xβ̂ , where β̂ = Hy. The diagonal elements
of theN×N hat matrix,H, are leverage values, hii = xi(X

′X)−1x′i
where xi is the vector of IVs for the ith case. Higher values on
hii indicate larger extremity of xi from the centroid of X. The
variance of ei is σ

2(1 − hii), implying that e2i /(1 − hii) is a less
biased estimator of the variance of ǫi compared to e2i (see Long
and Ervin, 2000). Taken together,

HC2 = (X′X)−1X′diag[
e2i

1− hii
]X(X′X)−1.

Note that hii ≤ 1, and the weight 1
1−hii

increases the influence

of high leverage cases in the computation of HC2. For example,
when hii = 0.9, 1

1−hii
= 10, whereas when hii = 0.2, 1

1−hii
= 1.25.

As an extension to HC2 and an approximation of a jackknife
estimator of Efron (1982, cited in MacKinnon et al., 1985),

HC3 = (X′X)−1X′diag[
e2i

(1− hii)2
]X(X′X)−1.

The weight 1
1−hii

is modified to 1
(1−hii)2

, such that the effect of

leverage is further inflated in HC3 relative to HC2. For example,
when hii = 0.9, 1

(1−hii)2
= 100 whereas when hii = 0.2, 1

(1−hii)2
=

1.5625. HC4, HC4M, and HC5 are extensions of HC3 where the
weight is modified by its power value, λ: 1

(1−hii)λ
. Note that HC3

is defined by λ = 2. Among the HCCMs reviewed here, HC3 is
recommended in samples of N ≤ 250 (Long and Ervin, 2000).

3.1.1. Example 1: Daily Newspaper Reading
A small data set on newspaper reading habits of persons from
N = 14 European Union countries, reported in De Veaux et al.
(2015, p. 695), is employed to illustrate the utility of HCCMs
in the presence of non-normal residuals. These data were
collected by Eurostat, the statistical office of the European Union.
Of interest was any sex difference in adult lifelong learning.
Here, 1000 respondents from each European country provided
data, and percentages of males’ and females’ daily reading of
newspapers were analyzed. The potential sex difference was
operationalized as the (arithmetic) mean of male minus female
percentages, and a paired samples t-test is planned. The linear
model is yi = β0 + ǫi, where yi is a country’s sex difference in
percentage points, and β̂0 is the estimated mean sex difference.

Figure 1 presents a histogram of the data and residuals, which
are equivalent in an intercept-only model. The normal and kernel
distributions are overlaid by dashed and solid lines, respectively.
In general, a majority of the countries did not have large
sex differences in daily newspaper reading (≤ 5% difference),
although there was a noticeable positive skew (skewness = 1.74)
and positive excess kurtosis = 2.54. Unsurprisingly, the mean =
9.17 (solid vertical line) is pulled toward the tail in comparison
to the median = 4.70 (dashed vertical line). The positive mean
and median indicate that a larger percentage of males relative to
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FIGURE 1 | Histogram and de-trended QQ plot of residuals of N = 14 European countries’ percentage differences in daily newspaper reading for males minus

females. The solid vertical reference line in the histogram represents the mean, and the dashed vertical reference line represents the median.

females read newspapers daily. The right panel of Figure 1 is a de-
trended QQplot (Thode, 2002, p. 25) of the residuals, where the
horizontal line represents quantiles of a normal distribution and
the points represent quantiles of the kernel distribution. The de-
trended version removes potential visual bias due to orthogonal
distances between the QQpoints and the 45◦ reference line in the
usual QQplot. The distribution of residuals largely departs from
normality as the points do not lie closely to the reference line.

Table 3 presents inferential information regarding sex
differences in reading the newspaper daily. 9.17% of males
more than females reported reading the newspaper daily. This
estimated mean difference was significant for the CLT approach
as well as the four HCCMs; and there was some variability
across these results because of small N. If the median was used
in place of the mean, the sex difference in daily newspaper
reading would be smaller in magnitude. Recall that HCCMs were
developed for small samples for two reasons. First, the effect of
each case’s leverage increases with smaller N, resulting in larger
distinctions among the HCCMs. Second, with increasing N, the

sampling distribution of β̂ will approach normality with the CLT
such that alternative methods need not be employed to address
non-normal residuals, e. In the next example, where N is large,
differences in the results among the CLT and HCCM methods
are minimal.

3.1.2. Example 2 Primary School Enrollment
The World Health Organization (WHO) compiles health
statistics for its member states. As an indicator of primary school
accessibility, the net primary school enrollment percentage was
collected formales and females forN = 117 countries. These data
for 2006 are reproduced in De Veaux et al. (2015, p. 695–696). Of
interest is whether there are gender disparities in accessibility to
basic education. Similar to Example 1, the expected sex difference

is operationalized as a mean of male minus female percentages in
primary school enrollment.

Figure 2 presents a histogram and de-trended QQ plot of the
residuals and data. Themajority of countries did not show gender
disparity in primary school enrollment although the distribution
was not normal (skewness = 1.86, excess kurtosis = 4.31).
Extreme sex differences tended to be in favor of males having
more access to primary education compared to females, resulting
in the positive skew. However, a larger percentage of small
differences favored females over males such that the median = 0
was smaller than the mean = 1.03. From Table 3, there was a
significant sex difference in percentage of enrollment in primary
school education; 1.03% of males received primary education
more than that of females, and this result is significant across
the CLT and HCCM methods. Indeed, because N = 117 is
relatively large, there is limited variability among these methods
(cf., Example 1). If the median was used to operationalize sex
differences, conclusions would be qualitatively different from that
of the mean (e.g., see results for Winsorizing and trimming in
Table 3).

3.2. Bootstrap
The family of bootstrap methods (see Efron and Tibshirani, 1993
for a good review) is similar to the family of HCCMs in that
the linear model continues to be fit to the data; the data are
not altered; and non-normality in the residuals, e, are treated
as non-informative and a nuisance to be addressed. As noted
above, the bootstrap is loosely related to HCCMs in that the HC3
estimator is an approximation of the jackknife (Efron, 1982, cited
inMacKinnon et al., 1985); the jackknife is also an approximation
of the bootstrap (Efron, 1979). In contrast to HCCMs, the
bootstrap does notmake any assumptions regarding the sampling

distribution of β̂ or of the errors, ǫ. Instead, the bootstrap rests on
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TABLE 3 | Sex difference in percentages for examples 1 and 2.

Method Daily newspaper reading (N = 14) Primary school enrollment (N = 117)

β̂ S.E. t p-value 95% CIs β̂ S.E. t p-value 95% CIs

CLT 9.17 2.57 3.58 0.0034 [3.63, 14.71] 1.03 0.36 2.86 0.0050 [0.32, 1.75]

HC0 9.17 2.47 3.71 0.0026 [3.83, 14.51] 1.03 0.36 2.87 0.0048 [0.32, 1.75]

HC1 9.17 2.57 3.58 0.0034 [3.63, 14.71] 1.03 0.36 2.86 0.0050 [0.32, 1.75]

HC2 9.17 2.57 3.58 0.0034 [3.63, 14.71] 1.03 0.36 2.86 0.0050 [0.32, 1.75]

HC3 9.17 2.66 3.45 0.0043 [3.42, 14.92] 1.03 0.36 2.85 0.0052 [0.32, 1.75]

percBS 9.17 – – – [4.55, 13.80] 1.03 – – – [0.35, 1.77]

BCa 9.17 – – – [5.21, 15.02] 1.03 – – – [0.37, 1.81]

Winsorize 6.30 1.66 3.79 0.0068 [2.37, 10.23] 0.35 0.18 1.91 0.0601 [–0.015,0.72]

Trim 5.76 1.61 3.56 0.0090 [1.96, 9.59] 0.25 0.18 1.35 0.1820 [–0.12, 0.61]

S.E., standard error; CI, confidence interval; CLT, central limit theorem; HC, heteroscedastic consistent method; percBS, percentile bootstrap; BCa, bias corrected and accelerated

bootstrap. Estimates are in the direction of male percentages minus female percentages. Winsorized and trimmed means pertain to modifying about 20% of the tail distributions; 20.43%

for Example 1 and 20.51% for Example 2.

FIGURE 2 | Histogram and de-trended QQ plot of residuals of N = 117 countries’ percentage differences primary school enrollment for males minus females. The

solid vertical reference line in the histogram represents the mean, and the dashed vertical reference line represents the median.

the less restrictive assumption of the sample being representative
of the population, making it a large sample method akin to
the CLT (cf., HCCMs which are a small sample method). A
small sample, by definition, cannot be representative of the
population. With this assumption, the sampling distribution of

β̂ is empirically constructed via a computationally intensive
method as outlined below.

To bootstrap the sampling distribution of β̂ , the sample of size
N is treated as a surrogate to the population of interest. Next, B
bootstrap replicates of sizeN are drawn from the original sample,
or surrogate population, with replacement. The linear model is

then fit to each b = 1, · · · ,B replicate and β̂b is computed. This
process of sampling from the original data empirically simulates
random sampling from the population, and computing B sets of

β̂b results in an empirically constructed sampling distribution

of β̂ . According to Fox (2008, p. 590), “The population is to
the sample as the sample is to the bootstrap samples.” Typically,
B = 1000 or B = 5000 such that the sampling distribution,
especially its tails, are well-approximated.

The empirical distribution constructed by the B bootstrapped

estimates will typically be asymmetric and thus non-normal.

Figure 3 presents bootstrap sampling distributions of the
mean sex difference in reading newspapers daily (left panel)
and primary school enrollment (right panel), which are
both positively skewed. Although bootstrap p-values derived
from standard error estimates (which assume a symmetric
sampling distribution) can be computed, non-parametric
bootstrap confidence intervals based directly on such empirically
constructed sampling distributions are more often employed.
Note that there is much more observed variability (cf., σ̂ 2/N) in
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FIGURE 3 | Histograms of bootstrapped sampling distributions of the mean of sex differences in percentages. The solid vertical line represents the estimate, β̂, and

the dashed vertical lines represent lower and upper bounds to the 95% percentile bootstrap CI.

the bootstrapped means for sex differences in daily newspaper
reading compared to primary school enrollment due to
differences in sample sizes; N = 14 vs. N = 117, respectively.

The (1−α)100% percentile bootstrap is constructed where the
lower and upper bounds of the CI are defined by the (α2 )100th
and (1 − α

2 )100th percentile of this empirically constructed
distribution, respectively. For instance, when B = 1000, the lower
and upper bounds of the 95% percentile bootstrap CI are the

25th and 975th ordered bootstrapped estimates, β̂b, respectively.
Small sample improvements to the percentile bootstrap CI have
been developed (Efron, 1981, 1987), and a popular version is the
bias-corrected, accelerated (BCa) bootstrap CI. See Efron and
Tibshirani (1993, chapter 14) for technical details.

Table 3 presents percentile and BCa bootstrap CIs for
Examples 1 and 2, where B = 1000. In comparison to the CIs
obtained via the CLT and HCCM methods, the bootstrapped
CIs are asymmetric about the estimate, β̂ . Across these types
of approaches, all conclude that there is a sex difference in
the two examples. Note that the parameter of interest among
these approaches is the arithmetic mean of the non-normally
distributed data. In the next set of approaches, the parameter
of interest is no longer the arithmetic mean, but a different
parameter representing central tendency.

3.3. Trimming and Winsorizing (Robust
Regression)
Unlike the CLT, HCCM, and bootstrap approaches, trimming
and Winsorizing implicitly assume that the observed data are
contaminated by the presence of outliers, which are recognized
as extreme cases in the tails of the data distribution (e.g., see
Tukey and McLaughlin, 1963; Wilcox, 2017). Barnett and Lewis
(1998) provide an extensive treatment of outliers; and recent
work has focused on their automatic detection (e.g., see Mavridis
and Moustaki, 2008; Marmolejo-Ramos et al., 2015). Stated

differently, the use of either trimming or Winsorizing presumes
that non-normality is due to the presence of improper data, and
these erroneous data are discarded or modified. Consider the
ordered data of Example 1 on percentage difference between
the sexes in daily newspaper reading among N = 14 European
countries:

1.0 2.2 3.0 3.1 4.0 4.0 4.1 5.3 6.5 8.3 10.9 20.4 21.4 34.2.

Winsorizing involves replacing the extreme values, assumed to
be contaminants, to specified percentiles of the data; with 20%
Winsorizing, 60% of the data remains unchanged whereas the
observations below the 20th and 80th percentile will be limited
to observed values of these specific percentiles. The data from
Example 1 are transformed with 21.43% Winsorizing below,
where the data for three cases at each tail are modified, because
each case makes up 7.14% of the data:

3.1 3.1 3.1 3.1 4.0 4.0 4.1 5.3 6.5 8.3 10.9 10.9 10.9 20.9.

In a similar manner, trimming involves excluding extreme cases
from the data. Below, data fromExample 1 has undergone 21.43%
trimming, leaving 57.14% of the data:

3.1 4.0 4.0 4.1 5.3 6.5 8.3 10.9.

Means of the Winsorized or trimmed data are said to be
robust alternatives to the arithmetic mean in that these
modified means are insensitive to extreme values, which have
either been transformed or discarded, respectively. Importantly,
Winsorizing or trimming the data replaces the population
parameter associated with the original data (e.g., the arithmetic
mean) with a different parameter of location about the modified
data (e.g., the median with 50% trimming). Note that when
extreme cases are not outliers, but legitimately part of the
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population, Winsorized or trimmed means are biased estimates
of the arithmetic mean. Reflective of the bias-variance tradeoff,
Winsorizing and trimming typically yields more powerful NHSTs
and tighter CIs about the robustified estimate.

The process ofWinsorizing or trimming the data follows from
ordering the data such that extreme data points are replaced
by less extreme points or are removed. This ordering creates
dependency among the data points, violating the assumption
of independence required for OLS estimation. To address non-
independence, a family of robust location estimators called M-
estimators have been developed, where “M" stands for “maximum
likelihood type." Instead of minimizing the sum of squared
residuals under OLS,

∑N
i=1 e

2
i , a different objective function is

minimized. The derivative of a function of residuals, denoted
by ψ(e), is set to 0 in order for it to be minimized; for OLS,
ψ(e) = 2e. As an example of an M-estimator, the Huber (1964)
weights or objective function is:

ψ(e) =
{

e for |e| ≤ k

sign(e)k for |e| > k,

where k is the bending constant which demarcates the center of
the data distribution from the tails. This Huber (1964) estimator
behaves like OLS at the center of the data (i.e., |e| ≤ k), and
like the least absolute values at the tails (i.e., |e| > k); k is
determined in part by the extent of Winsorizing or trimming.
There are several other robust regression estimators associated
with Winsorizing and trimming such as the biweight or bisquare
estimator (Beaton and Tukey, 1974) and the least trimmed
squares (LTS; Rousseeuw, 1984). Notice that M-estimators are
related to HCCMs in that different weights are assigned to
cases according to their extremity (e.g., ei vs. hii) relative to
other cases in the data set. Recently, a generalization of M-
estimators was developed in the neural network literature (e.g.,
Xia and Wang, 2018). For a more detailed treatment of robust
estimators, see Wilcox (2017). Although not extensively covered
in this review, HCCMs and M-estimators are also related to
weighted least squares (WLS) and generalized least squares (GLS)
estimators. WLS and GLS are distinct from HCCMs and M-
estimators because they require specification of the functional
form of the non-normal residuals (e.g., logarithmic; see section
3.5.2 on non-linear models).

Table 3 presents estimates of the Winsorized and trimmed
means for Examples 1 and 2, as well as their inferential
information. Estimated Winsorized and trimmed mean
percentages of the sex difference in both examples, β̂ , are highly
distinct from the arithmetic means associated with the other
methods, highlighting the change in the nature of the population
parameter of interest. Additionally, the standard error estimates
were much smaller for the Winsorized and trimmed means
relative to the CLT and HCCM methods, illustrating the gain in
statistical efficiency. For the newspaper example, all methods led
to the same conclusion that a small but statistically significant
percentage of males read newspapers daily more often than
females.

For the second example, different conclusions are reached
when the arithmetic mean vs. the Winsorized or trimmed means

are employed to operationalize sex differences in accessibility
to primary school enrollment. A significant sex difference in
favor of males relative to females is concluded when the CLT,
HCCM, and bootstrap methods are applied to the non-normal
data. Conversely, under Winsorizing and trimming, there is
insufficient evidence to conclude a sex difference; the t-tests
are non-significant and the 95% CIs include the value β0 =
0. Recall that Winsorizing and trimming assume that data at
the tails of the distribution are contaminants. Examining the
data, countries with large sex differences in favor of males are
Pakistan (16%), Central African Republic (15%), Benin (14%),
Niger (13%), Mali (13%), Guinea (11%), Burkina Faso (10%), and
Djibouti (8%); countries with sex differences in favor of females
are Malawi (−6%), Gambia (−5%), Namibia (−5%), Mauritania
(−4%), Zambia (−4%), Dominica (−4%), and Armenia (−4%).
These data are unlikely to be erroneous to justify the undisputed
use of Winsorizing or trimming. Instead, the non-normality
and heterogeneity in the data could be informative and reflect
unknown but important clusters of countries with distinct
characteristics. Such population heterogeneity can be modeled
by mixture regression (McLachlan and Peel, 2004) or quantile
regression (Koenker and Bassett, 1978; Waldmann, 2018).

3.4. Data Transformations
The presence of non-normal residuals, e, suggest three
scenarios: the errors, ǫ, are non-normally distributed; the
functional relationship between X and y is non-linear; or both.
Because transformations have the potential to address these
sources of misspecification while remaining within the linear
modeling framework and continuing with OLS estimation,
it is unsurprising that transformations is the most often
recommended approach in graduate textbooks (see Table 1).
A major consequence of using transformations, however, is a
change in the scale of the variables (i.e., IVs, DVs, or both), which
can often obfuscate interpretation.

Transformations were historically developed to (a) address
assumptions of a statistical model, and (b) to aid interpretation
(Tukey, 1957). With respect to the linear model, different types
of transformations were developed to address different sources
of non-normality observed in e. Such non-normality can be
treated as a nuisance or be informative and modeled. For
instance, (Bartlett, 1947) developed a class of transformations
to stabilize the residual variance in ANOVA models. Another
example is Mosteller and Tukey’s (1977) bulging rule, which
recommends certain types of transformations from their family
of transformations called the ladder of power to linearize the
bivariate relationship between an IV and DV (e.g., see Fox, 2008,
chapter 4).

Our brief review of transformations is organized according
to whether they are better suited for one of two distinct
statistical modeling cultures: prediction vs. inference (see
Breiman, 2001 for an overview). Statistical prediction uses
the linear model to forecast future outcomes (e.g., market
and weather predictions). Conversely, statistical inference
places attention on estimating population parameters (e.g.,
treatment effect or percentage reduction in attempted suicides
with a 10 point decrease in depression scores). Our review
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stems from the inferential perspective, reflecting the statistical
culture of the reviewed textbooks save for Harrell (2015).
In general, algorithmic or non-parametric transformations
are consistent with statistical predictions, which treat non-
normality as a nuisance, whereas parametric transformations
are consistent with statistical inference, which treat non-
normality as informative.1 Reverse transformations are pertinent
to interpretations made in both prediction and inference.

3.4.1. Algorithmic Transformations
Algorithmic transformations are determined from optimizing a
function according to certain criteria (e.g., maximize R2). Some
examples are the Box and Cox (1964) family of transformations
(see also Vélez et al., 2015), the alternating conditional
expectation (ACE)method of Breiman and Friedman (1985), and
Tibshirani’s (1988) additive and variance stabilization (AVAS)
approach. These transformations treat non-normality in e as a
nuisance to be transformed away. Box-Cox transformations have
been recommended as a method to address non-normality in
linear regression (e.g., see Cohen et al., 2003; Osborne, 2010), and
we clarify below that this transformation is more appropriate in
the context of prediction.

Consider the well-known Box-Cox family of power
transformations, which makes use of maximum likelihood
estimation (MLE) to determine an optimal transformation.
Suppose the linear model is modified to include a transformation
parameter γ such that Equation (1) becomes

y
(γ )
i = β0 + β1x1i + · · · + βKxKi + ǫi, (2)

where

y(γ ) =
{

yγ−1
γ

for γ 6= 0

loge(y) for γ = 0.

Equation (2) is optimized such that estimates of the parameters
of the model, (γ ,β), are determined by MLE under the
constraint that the transformed DV, y(γ ), in Equation (2) follows
a normal distribution. From Equation (1), results from OLS
and MLE are identical; and maximizing the likelihood for
Equation (1) is equivalent to maximizing R2 (Pek et al., 2016).
The transformation determined by γ̂ is said to normalize the
residuals, e. With normalized residuals, the assumption regarding
the normality of ǫ is likely to be met. It follows then that results
based on the transformed DV will be statistically more efficient
relative to the original DV, be associated with more powerful
NHSTs, and have tighter CIs and prediction intervals. We
consider the Box-Cox approach an algorithmic transformation
because the optimal estimated transformation parameter, γ̂ ,
frequently obtains parameter estimates in an inaccessible scale
(see section 3.4.3 on reverse transformations).

The ACE (Breiman and Friedman, 1985) and AVAS
(Tibshirani, 1988) methods are related to the Box-Cox

1The terminology of non-parametric transformations is adopted from Harrell

(2015, p. 376), and the newly coined phrase “parametric transformations" follows

in juxtaposition.

transformation in that the linear model from Equations (1)
and (2) is generalized to

g(yi) = f1(x1i)+ f2(x2i)+ · · · + fK(xKi)+ ǫi, (3)

where g(·) and fk(·), for k = 1, · · · ,K, are functions of the
random variables associated with the observed data. Optimal
transformations under ACE and AVAS are determined from the
maximization of R2 associated with Equation (3). In general,
ACE is more flexible than AVAS in terms of restrictions to
the transformations afforded by g(·) and the K fk(·) functions.
The ACE and AVAS are considered powerful fitting algorithms
(e.g., see Harrell, 2015, p. 377) for prediction problems as they
do not have statistical inferential measures. These algorithmic
transformations are related to generalized additive mixture
models (Baayen et al., 2017) and generalized additive models for
location, scale, and shape (GAMLSS; Stasinopoulos et al., 2018).

3.4.2. Parametric Transformations
Parametric transformations are conducted to improve the
interpretation of results such that the transformation via g(yi)
obtains a more meaningful scale and structure of the data. Here,
non-normality in e is informative and explicitly modeled via
a chosen transformation. For instance, the natural logarithmic
scale is used in studies of sound in decibels, the Richter
scale for measuring intensity of earthquakes follows a base-
10 logarithmic scale, and speed is the reciprocal of time. We
highlight the example of logarithmic transformations because
such a transformation links an additive model to a multiplicative
model (e.g., see Gelman and Hill, 2007, p. 59). Examples on other
parametric transformations are presented in Pek et al. (2017b).

Recall the linear model in Equation (1). Suppose that the DV
is transformed such that the linear model becomes

log(yi) = β0 + β1x1i + · · · + βKxKi + ǫi. (4)

Exponentiating both sides of Equation (4), in a reverse
transformation, yields

yi = eβ0+β1x1i+···+βKxKi+ǫi

= β ′0β
′x1i
1 · β ′xKiK ǫ′i , (5)

where β ′0 = eβ0 , β ′
k

= eβk for k = 1, · · · ,K, and
ǫ′i = eǫi . By taking the logarithm of the DV, the IVs
enter the model multiplicatively in Equation (5) when the DV
is expressed in its original scale (cf., Equation 1 where the
IVs enter the model additively). Additionally, the errors, ǫ′i ,
enter the model multiplicatively instead of additively. Given
a logarithmic transformation, when ǫ is normally distributed,
ǫ′ will be non-normally distributed by definition. Taken
together, parametric transformations such as the logarithmic
transformation will change the scale of the original DV,
as well as the functional form relating X to the original
DV. Example 3 below illustrates how to interpret findings
based on a multiplicative model stemming from a logarithmic
transformation. Note that the loge transformation is a special case
in the Box-Cox family of transformations, but is characteristically
distinct from algorithmic transformations in that it improves the
interpretation of results.
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3.4.3. Reverse Transformations
In our review of textbooks, reverse transformations were
sometimes recommended (15%) to aid in the interpretation of
parameter estimates from a linear model fit to transformed data.
For instance, given that the DV underwent a natural logarithmic
transformation (i.e., Equation 4, with base e), a parameter
estimate of β̂1 = 0.05 is the expected conditional increase in
loge(y) due to a one unit increase in x1. By reverse transforming

β̂1 to obtain β̂ ′1 = e0.05 ≈ 1.05, a one unit increase in x1 is
associated with a 5% increase in the original DV; a two unit
increase in x1 is associated with a 10% increase in the original
DV. The estimated effect of 1.05, after reverse transformation,
is not additive but multiplicative due to the link the logarithmic
transformation has between additive and multiplicative models.
Although not reported, applying a logarithmic transformation to
data from Examples 1 and 2 will yield a geometric mean estimate
after applying a reverse transformation. A more extensive
illustration of the logarithmic transformation is presented in
Example 3.

We raise caution against mechanistically applying reverse
transformations to interpret parameter estimates. Reverse
transformations may not necessarily aid in interpretation.
Consider a Box-Cox transformation where γ = 0.5 such that

y(0.5) =
√
y−1

0.5 = 2
√
y − 2, and this transformed DV is regressed

onto an IV. Note that y cannot take on negative values. The linear
model in Equation (2) becomes

2
√
yi − 2 = β0 + β1x1i + ǫi.

Reverse transforming this equation obtains

yi = [1+ β0 + 0.25β20 ]+ [β1 + 0.5β0β1]x1i

+ [0.25β21 ]x
2
1i + [1+ 0.5β0 + 0.5β1x1i + 0.25ǫi]ǫi

= β ′0 + β ′1x1i + β ′2x21i + ǫ′i .

The Box-Cox transformation with γ = 0.5 results in an additive
model with a quadratic relationship between the IV and DV.
Clearly, the parameters in the transformed (i.e., β0 and β1) and
original scale (which were reverse transformed; i.e., β ′0, β

′
1 and

β ′2) are difficult to interpret. Complicating interpretation further,
the error in the original scale, ǫ′, is a complex function of the
normally distributed error, ǫ, the IV, x1, and the parameters of
the model, β . It is ill-advised to reverse transform parameter
estimates and their inferential statistics (i.e., standard errors and
CIs; e.g., see Bland and Altman, 1996) without consideration
of how transformations can change the functional relationship
between y and X as well as the structure of the errors, ǫ′.

Reverse transformations to aid in the interpretation of
predicted values, ŷ, have also been examined. Consider the Box-
Cox transformation example above, where a predicted DV value
is determined by ŷ = [β̂ ′0 + β̂ ′1x1 + β̂ ′1x

2
1] at some chosen

x1 value. Although more efficient, predicted values based on
reverse transformations are known to be biased and inconsistent
relative to their commensurate counterparts derived without
transformations. Methods which can be generalized across all
types of transformations, such as the smearing estimate (Duan,

1983), have been developed to address reverse transformation
bias. Reverse transformation methods tied to a parametric
distribution in the transformed scale, such as the third-order
asymptotic method (Pek et al., 2017a) and the Coxmethod (Zhou
and Gao, 1997), remain an active area of research.

3.4.4. Example 3: Income and Occupational Prestige
This example illustrates how the reviewed methods above are
applied to a more complex linear model with continuous IVs
(cf. Examples 1 and 2). In general, the CLT, HCCMs, bootstrap,
and transformation methods can be readily applied to linear
models with multiple categorical or continuous IVs. Winsorizing
and trimming were developed within the context of mean
comparisons and are special cases in robust regression. In
general, robust regression employs M-estimators, often termed
iterated re-weighted least squares (IRWS), where Huber (1964)
weights and biweights (Beaton and Tukey, 1974) are special cases.
The accompanying Supplemental Material provides SAS and R
code showing how these methods are implemented in Example 3.

We present an example on 1971 Census of Canada data
focusing on occupational prestige reported in Fox and Weisberg
(2011) and Fox (2015). The data are of N = 102 types
of occupations (blue collar; white collar; and professional,
managerial, and technical), the average education of occupational
incumbents in years, the average income of incumbents in 1971
dollars, the percentage of incumbents within the occupation who
are women, and the Pineo-Porter prestige score for occupation.
We fit a simple model focusing on the conditional relationship
of percentage of women (x1) and prestige (x2) on income (y);
education was excluded from the model because of its high
correlation with prestige, r = 0.85. The linear model is

yi = β0 + β1x1i + β2x2i + ǫi,

where the IVs have been mean-centered such that the intercept
(β0) is the expected income for occupations with mean levels of
prestige (46.8, range = [14.8, 87.2]) and percentage of women
incumbents (29.0%). Table 4 presents results of OLS regression
(i.e., CLT). The model accounted for 64% of the variance in
income, and incumbents of occupations at the mean of prestige
and percentage of women are expected to earn $6798 on average.
A 1% increase in women incumbents within the occupation is
associated with a decrease of $48 in income, holding prestige
constant. And, a 1 point increase in Pineo-Porter prestige scores
is associated with a $166 increase in income, holding percentage
of women constant.

The leftmost panel in Figure 4 presents the residual, e, by
predicted, ŷ, plot for the MLR model fit to original data. The
residuals are not homoscedastic or normally distributed. A
normal distribution is evident when points in such a plot form an
ellipse. The larger spread of residuals at higher levels of predicted
income in the plot of original data suggests heteroscedasticity.
Additionally, the U-shaped spline overlaying the points suggests
unmodeled non-linearity. Thus, alternative methods to OLS
regression may be more appropriate for these data.

Table 4 presents results associated with alternative methods.
Interpretations of the parameter estimates are identical across the
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TABLE 4 | Percentage of women incumbents and prestige on income in N = 102 Canadian occupations.

Method Intercept % Women Prestige

β̂0 S.E. 95% CI β̂1 S.E. 95% CI β̂2 S.E. 95% CI R2

CLT 6797.9 254.79 [6292.3, 7303.5] –48.4 8.1 [–64.5, –32.3] 165.9 15.0 [136.1, 195.6] 0.64

HC0 6797.9 251.02 [6299.8, 7296.0] –48.4 5.7 [–59.8, –37.0] 165.9 22.3 [121.7, 210.1] 0.64

HC1 6797.9 254.79 [6292.3, 7303.5] –48.4 5.8 [–60.0, –36.8] 165.9 22.6 [121.0, 210.7] 0.64

HC2 6797.9 256.05 [6289.8, 7306.0] –48.4 5.9 [–60.0, –36.7] 165.9 22.8 [120.6, 211.2] 0.64

HC3 6797.9 261.22 [6279.6, 7316.2] –48.4 6.0 [–60.3, –36.5] 165.9 23.4 [119.4, 212.4] 0.64

percBS 6797.9 – [6331.0, 7331.0] –48.4 – [–61.4, 37.3] 165.9 – [123.0, 211.1] 0.64

Bca 6797.9 – [6387.0, 7408.0] –48.4 – [–65.3, 38.8] 165.9 – [129.8, 221.3] 0.64

Huber Weights 6517.5 131.34 [6260.0, 6774.9] –42.8 4.2 [–51.0, –34.6] 134.1 7.7 [118.9, 149.2] 0.59

Biweight 6389.7 120.88 [6152.7, 6626.6] –41.4 3.9 [–49.0, –33.8] 122.9 7.1 [109.0, 136.8] 0.59

Box-Cox (γ̂ = 0.25)† 31.23 0.25 [30.74, 31.73] –0.07 0.01 [–0.09, –0.05] 0.21 0.01 [0.18, 0.24] 0.76

loge 8.66 0.03 [8.60, 8.72] –0.01 0.001 [–0.01, –0.01] 0.02 0.002 [0.02, 0.03] 0.74

reverse loge‡ 5770.5 – – 0.99 – – 1.02 – –

All estimated parameters are statistically significant at the 5% level. S.E., standard error; CI, confidence interval; CLT, central limit theorem; HC, heteroscedastic consistent method;

percBS, percentile bootstrap; BCa, bias corrected and accelerated bootstrap. Results based on iterated re-weighted least squares (IRWLS) are an extension of Winsorizing and trimming

in linear regression models, where Huber (1964) weights and the biweight (Beaton and Tukey, 1974) are special cases. †S.E.s and CIs are liberal because they have not been corrected

for estimating γ . ‡We caution against reverse transforming S.E.s and CIs because they are biased and statistically inconsistent, and do not present them here.

CLT, HCCM, and bootstrap methods because the nature of the
data remains unchanged resulting in unchanged parameters. All
parameter estimates are significant at p < 0.001, and the results
between these seven approaches differ superficially in terms of
their standard error estimates and 95% CIs. Taken together, this
group of methods answer the same research question regarding
the conditional effects of women incumbents within and prestige
scores for an occupation on income. Because sample size (N =
102) is not small, the observed differences among results derived
from the CLT, HCCM, or bootstrap approaches are largely
ignorable.

Methods following the tradition ofWinsorizing and trimming
yield different results from the CLT, HCCM, and bootstrap
approaches because robust instead of arithmetic means are
estimated. Recall that robust approaches are justified when
extreme data points can be confidently regarded as outliers,
which are removed or modified to limit data contamination.
The linear model estimated with the M-estimators (e.g., Huber
weights and biweights) account for a smaller amount of
variance; R2 = 0.59 vs. R2 = 0.64. Additionally, the
robust parameter estimates are smaller in magnitude due to
the downweighting of extreme cases. As expected, the standard
error estimates and 95% CIs for these robust estimates are
also more efficient relative to the CLT, HCCM, and bootstrap
methods. The validity of M-estimated parameters rests on
confidence placed in the occurrence of data contamination which
is manifest in outliers. The data were collected and maintained
by the Census of Canada which is unlikely to have coding
errors (Barnett and Lewis, 1998); however, the non-normality
in the residuals may be indicative of contamination by an
unknown non-target population giving rise to the observed
heterogeneity.

Two transformations were applied to the data: the algorithmic
Box-Cox transformation, and the parametric natural logarithmic

transformation. Residual, e, by predicted, ŷ, plots for these
transformed data are presented in Figure 4. The transformations
somewhat ameliorated the observed heteroscedasticity and non-
linearity in the original data. The spread of the residuals toward
higher levels of transformed income is less extreme relative
to the original data. Additionally, the splines associated with
the transformed data no longer suggest as strong a non-linear
relationship as recovered from the original data. Comparing
the central to the rightmost plot in Figure 4, the Box-Cox
transformation linearized the data slightly more effectively
compared to the natural log transformation. This observation
is expected because the Box-Cox approach was developed
to estimate values of γ via MLE which best linearizes the
relationship between y(γ ) and X while normalizing e.

Table 4 also presents results from the Box-Cox
transformation, the natural logarithmic transformation,
and the reverse transformation of the natural logarithmic
transformation. Reverse transformations for the Box-Cox
approach did not aid in interpreting parameter estimates and
are not reported. Compared to the other methods, these data
transformation methods accounted for the most variance in
the outcome. The Box-Cox approach had the largest R2 = 0.76
because γ̂ was determined by maximizing R2, and was associated
with more powerful tests relative to the other methods. However,
the cost of this gain in efficiency is uninterpretable parameter
estimates. Algorithmic transformations, which are extremely
powerful tools for prediction, are not recommended for
inference.

In contrast, reverse transforming parameter estimates
obtained from the natural logarithmic transformation yielded
intuitively appealing results. On average, occupations with mean
levels of women incumbents and mean prestige ratings had an
income of $5770. There was a negative conditional effect of the
presence of women within an occupation on income. A 1%
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FIGURE 4 | Residual by predicted plots for N = 102 Canadian occupations in 1971 where income, Box-Cox transformed income, and log-transformed income are

regressed onto centered values of percentage of women incumbents and prestige scores. Spline curves are presented as solid lines overlaying the points.

increase in female incumbents within an occupation is associated
with a 1% decrease in income, holding prestige constant. For
example, given an average income of $5770, an increase of 1%
of women in the occupation would predict a decrease of income
of $58 to 0.99 × 5770 = $5712, holding prestige constant. In
contrast, prestige had a positive conditional effect on income;
a 1 point increase in Pineo-Porter prestige scores is associated
with a conditional 2% increase in the occupation’s income.
It is important to note that although reverse transformations
of the parameter estimates are unbiased and sensible, reverse
transformations of standard errors and CIs exhibit reverse
transformation bias (e.g., see Pek et al., 2017a).

3.5. Other Approaches
To this point, we have emphasized and illustrated how non-
normality in OLS regression residuals can be taken into account
by multiple approaches which remain within the linear modeling
framework. Our review of undergraduate and graduate textbooks
suggest other approaches which depart from the linear model
(see Table 1). These approaches can be typically organized into
rank-based non-parametric methods and non-linear models.

3.5.1. Rank-based Non-parametric Methods
Rank-based methods analyze ranks derived from quantitative
data. As such, the distribution of ranks no longer follow a
parametric distribution (e.g., normality) but is obtained through
permutation. Examples of rank-based non-parametric methods
are the Wilcoxon rank-sum test (cf., two sample t-test), the
Kruskal-Wallis test (cf., one-way ANOVA), theWilcoxon signed-
rank test (cf., paired sample t-test), and Spearman’s correlation
for ranked data (cf., Pearson’s correlation). By transforming
continuous data to ranks, the test of mean differences or linear
relationships is replaced by tests of distributional differences
and monotonic relationships, respectively. Interested readers are
referred to the classic textbook by Siegel and Castellan (1988).

3.5.2. Non-linear Models
There are many types of non-linear models which are unified
by their focus in modeling non-normal residuals, e, observed

from OLS regression. Non-normal errors can be modeled by
specifying a non-linear relationship between y and X, specifying
a non-normal distribution for ǫ, or both. For instance, non-linear
regression analysis (Gallant, 1987) allows the functional form
relating X to y to be non-linear. An example of a non-linear
regression equation is

yi = β0 +
1

β1x1i + β2
+ ǫi,

where ǫ is an unobserved random error. Such a non-linear
function can account for non-linearity in the residuals obtained
from OLS regression. Alternatively, the form of the errors can
be specified to be non-normal in non-linear models, while the
functional relationship between X and y remains linear. For
instance, the error term in Equation (1) can be specified to
follow a Cauchy distribution with a non-centrality parameter.
Nonlinear regression models often employ WLS and GLS
estimators, or two-stage least squares.

Another well-known class of non-linear models is the
generalized linear model (McCullagh and Nelder, 1989). Here
non-normal parametric distributions are specified with a link
function which results in a non-linear functional form as
well as non-normal errors (e.g., poisson distribution for count
data). Related to the generalized linear model is the GAMLSS
(Stasinopoulos et al., 2018), which we referred to under the
section on algorithmic transformation because it makes use of
smoothing (i.e., non-parametric) techniques within a regression
framework.

4. SUMMARY AND DISCUSSION

The linear model, and its special cases, tends to be the
starting point of data analysis in the behavioral sciences.
Often, researchers’ foundational training in methodology does
not extend beyond the linear model, inadvertently creating a
pedagogical gap because of the ubiquity of observing non-
normal residuals, e, in practice. Non-normality in e suggests
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potential violation of the model’s assumptions about ǫ, which can
result in inaccurate results (i.e., biased estimates and inaccurate
inference). To answer the motivating questions, our review of
undergraduate and graduate textbooks indicates that up to eight
distinct approaches have been suggested (see Table 1), but in-
depth coverage of these approaches was severely lacking. The
reviewed textbooks are written from the frequentist perspective
of probability, but Bayesian analogs to modeling non-normality
are gaining traction (e.g., see Rubio and Genton, 2016).

We organized the identified methods into a new taxonomy
according to three characteristics pertaining to whether methods
continue within the linear modeling framework, whether the
data are modified, and whether non-normality is considered
a nuisance or informative (see Table 2). Focusing on methods
pertaining to the linear model, we reviewed the motivations
behind these approaches and illustrated that these methods
can be grouped into three different sets of approaches which
yield distinct results. In general, without changing the data
while remaining within the linear modeling framework involves

changing the estimator of the sampling distribution of β̂ .
Changing the data results in changing the parameters of the
linear model (e.g., arithmetic vs. geometric mean). Finally,
the consideration of non-normality in e as a nuisance or as
informative, from a theoretical perspective, would promote some
methods over others. We forward that these considerations
are pertinent to choosing a method to take into account non-
normality, where a reasoned argument to justify their use is made
(Abelson, 1995; cf., adjudicating the application ofmethods based
on statistical significance).

In the first set of approaches, the CLT, HCCM, and
bootstrap regard non-normality as a nuisance and circumvent the
assumption of ǫ ∼ MVN (0, σ 2IN) with statistical theory (e.g.,
the CLT) or changing the estimator so as to relax assumptions
about the form of the errors, ǫ (e.g., HCCM and bootstrap).
When sample size N is large (e.g., Examples 2 and 3), the limited
variability between results derived within this set of methods
suggest that the linear model is aptly specified. Divergence across
results from the CLT, HCCM, and bootstrap approaches could
indicate sampling variability (e.g., Example 1) or that themodel is
misspecified. King and Roberts (2014) propose that HCCMs are
useful for detectingmodel misspecification. In general, this group
of methods assumes that all cases are valid and non-normality in
e arises from misspecifying the distribution of ǫ.

In the second set of robust approaches (e.g., Winsorizing
and trimming), non-normality due to outliers is regarded as
indicative of data contamination. Such data contamination is
addressed by modifying or discarding extreme data points. In
contrast to the first set of approaches, non-normality in e points
to invalid data of cases, i, instead ofmodelmisspecification.Much
information about the nature of the phenomenon under study,
and the characteristics of valid data, is required to confidently
identify and justify removing or recoding outliers. For this
reason, we caution against the common practice of setting up
strict data cleaning rules for trimming or Winsorizing data
prior to their collection and exploration (e.g., Tabachnick and
Fidell, 2012), and erroneously employing OLS estimation on
the modified data. Here, the parameters of the linear model
become robust analogs of the parameters estimated under CLT,

HCCM, and the bootstrap. M-estimators are used to address
dependency resulting from changing the data based on their rank
order. Robust approaches imply that the data come frommultiple
populations: the target population in combination with other
nuisance population(s).

Instead of employing robust approaches, mixture regression
(e.g., see McLachlan and Peel, 2004) and quantile regression
(Koenker and Bassett, 1978; Waldmann, 2018) are alternative
methods which were developed to directly model population
heterogeneity. In brief, mixture regression and quantile
regression are considered semi-parametric or non-parametric
methods, in contrast to the parametric method of MLR. In MLR,
a single distribution (i.e., normal) is fit to the data. In mixture
regression, a weighted sum of distributions (e.g., a mixture of
several normal distributions) is fit to data; each distribution is
typically interpreted as representing an unknown group, and
the combination of several distributions create the observed
heterogeneity. Alternatively, quantile regression involves fitting
a model based on the quantiles of the observed data distribution
instead of the quantiles of a parametric distribution (e.g.,
normal); different quantiles are often taken to represent different
groups within the population.

The third and final set of methods involve data
transformations. Algorithmic transformations are extremely
powerful tools for statistical prediction which treat non-
normal residuals as a nuisance (e.g., see ACE by Breiman and
Friedman, 1985 or AVAS by Tibshirani, 1988). Conversely,
parametric transformations (e.g., log(y)) treat non-normality
of e as informative; a well-chosen parametric transformation
can effectively address non-normality in e by changing the
functional form relating the original DV to the IVs, as well as
the structure of the errors, ǫ′. Data transformations implicitly
assume that the linear model is misspecified in relation to valid
data. Additionally, reverse transformations are pertinent to
interpreting parameter estimates and predicted values in the
original scale of the data. Users should be aware of reverse
transformation bias in inferential devices (i.e., standard error
estimates and CIs; Pek et al., 2017a) and predicted values (Duan,
1983), which continue to be an active area of research. Because
of the apparent simplicity of data transformations, this method
was most often recommended in graduate textbooks (89%, see
Table 1). Unfortunately, the complexities of uninterpretable
scales and reverse transformation bias lacked emphasis
in the reviewed textbooks, potentially encouraging their
mispplication.

Data analysis is akin to conducting detective work (Tukey,
1969). Often, the linear model does not account for all the
characteristics in the data, resulting in the ubiquity of observing
non-normally distributed residuals, e. Many methods have been
developed to address different sources of misfit between data
and model. These methods either assume error in the model
or error in the data. Many different models and approaches
can successfully disentangle the signal from the noise inherent
in data. Choosing the most appropriate approach depends
on statistical properties and, more importantly, theoretical
assumptions about the data, the hypothesized functional
relationship between y and X, and assumptions about the
structure of ǫ. To attain mastery of these alternative approaches,
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which can address non-normal residuals from a linear model,
requires a commitment to delve beyond what we have briefly
reviewed here. We anticipate that our review, taxonomy, and
examples provide a starting point for researchers intent on
extending their knowledge in approaches developed to address
non-normality from the perspective of the linear model.
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