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A. lumbricoides infection affects up to 1/3 of the world population (approximately 1.4 billion people worldwide). It has been
estimated that 1.5 billion cases of infection globally and 65,000 deaths occur due to A. lumbricoides. Generally, allied health
classifies parasite egg type by using on microscopy-based methods that are laborious, are limited by low sensitivity, and require
high expertise. However, misclassification may occur due to their heterogeneous experience. For their reason, computer
technology is considered to aid humans. With the benefit of speed and ability of computer technology, image recognition is
adopted to recognize images much more quickly and precisely than human beings. This research proposes deep learning for A.
lumbricoides’s egg image recognition to be used as a prototype tool for parasite egg detection in medical diagnosis. The
challenge is to recognize 3 types of eggs of A. lumbricoides with the optimal architecture of deep learning. The results showed
that the classification accuracy of the parasite eggs is up to 93.33%. This great effectiveness of the proposed model could help
reduce the time-consuming image classification of parasite egg.

1. Introduction

Intestinal parasites are among the main public health prob-
lems around the world especially in tropical and subtropical
countries [1]. Ascaris lumbricoides is a nematode parasite
that causes the common tropical infection ascariasis in
humans [2]. This parasite causes harmfully infection in
human digestive tract. The studies have shown that the par-
asite survive for 1 to 2 years in human body [3]. The female
worms produce about 200,000 eggs. There are three forms
of eggs: fertile, decorticate, and infertile. Fertile eggs are oval
in shape, measuring 40×60μm. The egg is termed decorticate
if the external albuminous layer is absent. Infertile eggs are
larger, measuring 60×90μm and more elongated in shape,
have a thinner shell, and are poorly organized internally,
being a mass of variably sized granules. Nowadays, advance
in machine learning is able to recognize and classify images
precisely, which can be used to assist doctors in diagnosing
parasitic imaging. Nkamgang et al. [4] detect and automati-
cally detect intestinal parasites by neuro-fuzzy system.

Research by Poostchi et al. [5] explores the use of machine
learning that can improve performance in the field of human
parasite physician. In addition to the aforementioned
machine learning technology, there is also a technology
called convolutional neural network (CNN) deep learning,
which is the most effective and popular for visual recognition
in present [6, 7]. An example of clinical application using
CNNs is Zhicheng et al.’ study [8] which offers deep learning
for the classification of breast cancer images, which give more
efficient image recognition. Zou et al. [9] adopt CNN deep
learning to classify mammographic breast cancer diagnosis.
Tiwari et al.’s research [10] applied CNNs for classification
then compared against Naïve Bayes (NB) and Support Vec-
tor Machine (SVM). The results showed that CNNs are more
accurate than both NB and Support Vector Machine (SVM).
From the research works, CNN deep learning is used to
improve the recognition and image classification accuracy
of three A. lumbricoides types. The goal is to create a reli-
able model that can help clinicians accurately and quickly
visualize parasite.
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2. Materials and Methods

2.1. Convolution Neural Networks. Convolution Neural Net-
work (CNN) deep learning is an extraction of multilayered
visual features, to build a neural network for increasing the
traditional neural network capability [7, 11]. CNN learning
architecture creates complex learning process because of the
large number of extracted features. Thus, the processing
must be performed parallel. Supporting resources must be
shared between the central processing units (CPUs) and the
graphics processing units (GPUs). Extraction of the featured
images will be adjusted with the simultaneously. Therefore,
after each round of learning, the characteristic filters will be
adjusted to suit the job. Each attribute extraction generates
a feature map containing fields connected to the neuron in
the previous layer. Sometimes, the pooling layer is inserted
between the convolution layers to reduce the spatial size,
reducing the number of parameters and calculations in the
network. In addition, the learning weight must be adjusted
with an activation function.

Figure 1(a) shows an example of a convolution layer,
starting with a 4 × 4 import image to calculate the features
of the image with a 2 × 2 filter. The calculations can be per-
formed according to the equation (1).

Ckð Þmn= Wk ∗ Fð Þmn + bk, ð1Þ

where k is the location of the neuron, F is the filter for the fea-
ture map,Wk is the image location to be extracted, the dom-
inant feature b is the bias, and ðCkÞmn is the extraction result.
Once a feature map is created, want to simplify the computa-

tion can add a functional layer, called maxpooling, which
selects the agent that provides maximum information, as in
the example equation. For example, filters are Sobel filters:
generally used to highlight edges; Gaussian filters: generally
used to remove noise; Emboss filters: generally used to
accentuate brightness differences. Figure 1(b) shows an
example of the calculation of the rectified linear activation
function (ReLu).

2.2. Artificial Neural Network. Artificial neural network
(ANN) is derived from a biological network of neurons [12,
13]. In the ANN model, a collection of nodes termed as neu-
rons constitute a layer that can be used for different tasks,
such as prediction, classification, and pattern recognition.
One of the main advantages of ANN is the opportunity to
retrieve hidden information that allows solving complex
problems [5]. ANN has three main layers that are intercon-
nected. The first layer consists of input neurons. Those
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Figure 1: Creating the (a) convolution layer is the function of the convolution layer and pooling, which contains the import image and filter
feature map obtained by finding the relationship between the images imported to the kernel; then, reducing the size by pooling using a (b)
2 × 2 filter is an example of the performance of the ReLu activation function. This function is inserted in the convolution process to send
the learning value back as far as possible.
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Figure 2: A typical convolutional neural network architecture.
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neurons send data onto the second layer are called the hidden
layer, which in turn sends the output neurons to the third
layer. The input units receive various forms and structures
of information based on an internal weighting system, and
the neural network attempts to learn about the information
presented to produce one output.

2.3. CNN Deep Learning Architecture. CNN deep learning
shares two main functions: extraction with convolution
(Figure 1) and neural network learning. It is a neural network
with several hidden layers. The basic architecture of CNNs
consists of layers. Convolutional and maxpooling [14] finally
build a neural network for image recognition with a fully
connected layer.

CNN is a multilayer perceptron neural network which is
thought to allow computers to learn many steps in a parallel
manner. Figure 2 consists of a feature map layer, and each
feature map represents a particular feature extracted at the
locations of the associated input [15]. The more learning,
the deeper the computer will be able to predict the incoming
data more accurately. The last layer is fully connected layer
that is connected to all neurons in the previous layer. It can
be denoted as equation (2).

yk = 〠
p

Wkpxp + bk

 !
, ð2Þ

where xp is the p input neuron, yk is the k output neuron,Wkp

denotes the weight connecting xp with yk, and bk denotes the
bias term of yk.

In general, the CNN connection architecture is divided
into two layers: the extract feature (convolution layer) and
the learn with the neural network (fully connected layer),
but to extract the feature, besides the filter, the function must
be added to achieve the feature and learning. The speed of
images using the activate function, downsampling with max-

pooling, and reducing the number of nodes with dropout can
be described as follows.

Overfitting: the problem with overfitting a model is that it
is a scam, because it may measure the accuracy of the learn-
ing model, and it is very effective, but when using a model for
predictive unseen data, it predicts that it is less accurate.

Rectified linear unit (ReLu): this activation function and
its variants show superior performance in many cases and
are the most popular activation function in deep learning
[16]. Therefore, it trains several times faster than their equiv-
alents with other activation functions.

Maxpooling: the maxpooling also downsampling for the
spatial dimension of the input [15, 17] maxpooling is a pool-
ing operation that selects the maximum element from the
region of the feature map covered by the filter. Thus, the
output after the maxpooling layer would be a feature map
containing the most prominent features of the previous
feature map.

Dropout: the dropout is a regularization method that
stochastically sets to zero the activations of hidden units for
each training case at training time it prevents overfitting
[18]. The neurons which are dropped in this way do not
contribute to the forward pass and do not participate in
back-propagation [19].

2.4. Dataset. The datasets are freshly prepared for the A. lum-
bricoides-infected stool samples by using a gold standard
formalin ethyl acetate concentration technique [20]. The
datasets in our methodology consist of two phases as
described by Figure 3 and using A. lumbricoides eggs from
the Department of Parasitology, Faculty of Medicine Khon
Kaen University, Thailand. The dataset is separate into train-
ing and testing set, and both training and testing set consist of
three A. lumbricoides eggs, namely, (1) infertile egg, (2) fertile
egg, and (3) decorticate egg.

Figure 4 shows the images of the three types of A. lumbri-
coides egg: (a) and (b) are infertile egg type that has not been
fertilized, (c) and (d) are fertile egg type that has been mated,
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Figure 3: The proposed deep learning for parasite recognition.
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and (e) and (f) are decorticate egg type which is a parasitic
egg similar to both types mentioned previously. For our
study, the training dataset contains 200 images in each type;
thus, total training images are 200 × 3 = 600.

2.5. Experiment. This experiment is divided into two phases:
firstly, finding suitable number of convolution layer; sec-

ondly, the model from first step is optimized by perform
parameter adjustment. The overall system is shown in
Figure 3.

Figure 3 shows the experimental method of the research,
divided into 2 phases and divided the images into 2 groups:
training group and test group. The training data is sent to
the first convolution layer of a CNN learns to recognize

(a) (b)

(c) (d)

(e) (f)

Figure 4: The three types of A. lumbricoides eggs.
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images with high accuracy. Then, increase the number of
layers from 2 to 10 layers, which in this phase will not have
stimulation, reduction, and dropout functions, so only con-
volution and fully connected layers will be performed (see
Figure 5).

Figure 6 shows how to convolute the image with a filter
which in this experiment has 32 filters, 3 × 3 kernel size,
and bias = 0. Then, calculate according to equation (1), for
example, five masking perform by ð4 × 1Þ + ð9 × 0Þ + ð2 ×
ð−1ÞÞ + ð5 × 0Þ + ð6 × 0Þ + ð2 × 0Þ + ð2 × ð−1ÞÞ + ð4 × 0Þ + ð5
× 1Þ + 0. Phase 2 uses the first three highest accuracy

layers to optimize the architecture with the addition of
stimulus, reduction, and dropout functions, and the archi-
tecture adjustment is shown in Table 1, and the results are
shown in the figure. The results of classification of test set
images are shown in Table 2.

3. Results and Discussion

3.1. Results. After the training step, CNNs will create a model
that produces results with long-time processing and low
accuracy as shown in Figure 6; then, the authors’ tuning
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model by adding conditions with maxpooling Figure 6 shows
classification results in which the x-axis and y-axis represent
learning step and classification accuracy, respectively. The
results state that setting the convolution layer as one, two,
and three is clearly outperform than the others. The
accuracy is significantly dropped from four to ten layers
(Excessive setting of the convolution layer causes misclassi-
fication problem. Consequently, dominant features lost its
characteristic when transfer to other layers). Therefore, the
top three accuracy settings are chosen in next phase. The
next phase experiment is performed by adding the tuning
steps. The additional steps consist of ReLu, maxpooling,
and dropout, respectively. . Then, top three accuracy models
from the first phase are fed into second phase to adjust
ReLu activation maxpooling and dropout values, which
can be rewritten as shown in Table 1. To measure the image
classification accuracy, the researcher uses a confusion
matrix and finds precision, recall, and accuracy, as shown
in equations (3), (4), and (5).

Precision = TP
TP + FPð Þ , ð3Þ

Recall =
TP

TP + FNð Þ , ð4Þ

acc =
TP + TN

TP + TN + FP + FNð Þ , ð5Þ

where true positive (TP) is predicting yes, and the
answer is yes (Hit). True negative (TN) is predicting no,
and the answer is really no (correct rejection). False positive
(FP) is predicting yes, but the answer is no (false alarm).
False negative (FN) is a prediction of no, but the answer is
yes (Miss). acc is the number of times the prediction is
divided by the total number of prediction. Recall is the com-

pleteness of the ratio. It is the ratio of correct prediction
based on total number of valid data. Precision is the ratio
of correct prediction based on the amount of data retrieved.

Input() is a 3-channel 128 × 128 input image (R, G, B).
Conv() is convolution. ReLu() is the use of the activate func-
tion ReLu. Maxpool() is downsampling, and drop() is the
reduce number of nodes. The tuning results are shown in
Figure 7.

Figure 7 presented the time and accuracy of the tuning
model. The step will notice that in each architecture, the
accuracy results exceed more than 90% since the twentieth
step.

In Table 2, the result shows visual prediction by choosing
the unknown image of parasite eggs that enhances the num-
ber of 45 images.

3.2. Discussion. In this experiment, the first phase performs
straightforwardly to search for a suitable amount of convolu-
tion layer, and the results are shown in Figure 6. For the sec-
ond phase, the top three accuracies of convolution layers are
selected to perform further experiments. The second phase
experiment performs by adding a fine-tuning step in the
designed CNNs, and the experimental results are shown in
Figure 7. The first convolution layer duty is capturing the
low-level features such as edges or colour if sample image
characteristic is obviously different, and the valuable features
are clearly extracted in the first convolution. The authors
trained CNNs with a few layers and then increase it slightly
to obtain more accuracy until no more improvement. The
reason is that some features of one image may become fea-
tures of another. Suppose train a model for detecting infertile
type if all features are detected and add more layers, and it
can start detecting everything in the image that is considered
to be part of the infertile type. Therefore, it may sometimes
classify the image of another type with infertile (see
Figure 8). Therefore, adding excessive layers causes the

Table 1: The proposed CNN architecture.

Number of layer Architecture

1 layer Input 128, 128, 3ð Þ→ Conv 3, 32ð Þ→ Re LuðÞ→maxpool 2, 2ð Þ→ drop 0:5ð Þ→ fullyðÞ

2 layers
Input 128, 128, 3ð Þ→ Conv 3, 32ð Þ→ Re LuðÞ→maxpool 2, 2ð Þ→ drop 0:5ð Þ→ Conv 3, 10ð Þ→

Re LuðÞ→maxpool 2, 2ð Þ→ drop 0:5ð Þ→ fullyðÞ

3 layers

Input 128, 128, 3ð Þ→ Conv 3, 32ð Þ→ ReLuðÞ→maxpool 2, 2ð Þ→ drop 0:5ð Þ→ Conv 3, 10ð Þ→
Re LuðÞ→maxpool 2, 2ð Þ→ drop 0:5ð Þ→ Conv 3, 10ð Þ→ ReLuðÞ→maxpool 2, 2ð Þ→

drop 0:5ð Þ→ fullyðÞ

Table 2: Classification result of parasite egg type.

Infertile Fertile Decorticate Precision (%) acc (%)

Infertile 15 0 0 100

Fertile 1 14 0 93.3

Decorticate 0 2 13 86.6

Recall (%) 93.7 87.5 92.8

93.33
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misclassification problem significantly. The features may lose
its characteristic during transfer among layers.

Even though each image of datasets surrounds with arte-
facts, those artefacts did not increase uniqueness. The unique
characteristics of A. lumbricoides egg (fertile and infertile
eggs) under microscope are identified by the round to oval
shapes, size (40 × 60μm for fertile egg and 40 × 90μm for
infertile egg), and thick egg shell with typical chitinous layer
(thick in fertile egg and quite thin for infertile egg), and the
outer most layer revealed albuminous coat. So, the feature
of dirt/artifacts has no chance to fit all of identified characters
as described above.

4. Conclusions

In this experiment, the authors find the suitable number of
convolution layers for all 3 parasitic eggs. First, this exper-
iment stops at three layers because beyond there was no
more improvement in the classify accuracy. The second
phase is choosing three mentioned layers to perform a fur-

ther experiment by tuning the CNNs with ReLu maxpool
and dropout, respectively, to find the model that provides
the highest accuracy. Focusing on the classification perfor-
mance for classification parasite egg type, we choose the
classification accuracy as objective evaluation criteria and
compared it with outcomes mentioned in other papers
which are also based on the CNN architecture. The devel-
oped model is useful for medical informatics, image
recognition. The limitation of the research is the manual
tuning of parameters. In future work, the researchers will
eliminate the limitations by automating optimization of
the further.

Data Availability

The datasets are belonging to parasite laboratory in Srinagar-
ind Hospital which is located in Khon Kean University,
Thailand. The datasets are confident due to the university
policy, so we cannot share as a public.
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