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Abstract: Cadmium (Cd) is one of the most important heavy metal toxicants, used throughout the
world at the industrial level. It affects humans through environmental and occupational exposure
and animals through the environment. The most severe effects of oral exposure to Cd on the male
reproductive system, particularly spermatogenesis, have not been discussed. In this study, we
observed the damage to the testes and heritable DNA caused by oral exposure to Cd. Adult male
Sprague–Dawley rats were divided into four groups: a control group and three groups treated with
5, 10, and 15 mg Cd/kg/day for 17 days by oral gavage. Our results revealed that Cd significantly
decreases weight gain in 10 and 15 mg/kg groups, whereas the 5 mg/kg groups showed no difference
in weight gain. The histopathology showed adverse structural effects on the rat testis by significantly
reducing the thickness of the tunica albuginea, the diameter of the tubular lumen, and the interstitial
space among seminiferous tubules and increasing the height of the epithelium and the diameter of
the seminiferous tubules in Cd treated groups. Comet assay in epididymal sperms demonstrated a
significant difference in the lengths of the head and comet in all the 3 Cd treated groups, indicating
damage in heritable DNA, although variations in daily sperm production were not significant. Only
a slight decrease in sperm count was reported in Cd-treated groups as compared to the control group,
whereas the tail length, percentage of DNA in head, and tail showed no significant difference in
control and all the experimental groups. Overall, our findings indicate that Cd toxicity must be
controlled using natural sources, such as herbal medicine or bioremediation, with non-edible plants,
because it could considerably affect heritable DNA and induce damage to the reproductive system.
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1. Introduction

Demand for different products has increased as a result of the massive growth of the
human population, and different industries have been established to meet these demands;
unfortunately, these industries have brought about increased mining and industrial process-
ing activities, resulting in environmental pollution [1,2]. Several life-threatening pollutants
are found in the soil, water, and air [3]. Among these pollutants, Cadmium (Cd) is consid-
ered one of the most lethal heavy metal toxicants because of its hazardous properties, for
example, severe toxicity, global availability, transferability, and persistence [4]. According
to the Agency for Toxic Substances and Disease Registry (ATSDR), Cd is the sixth most
hazardous chemical for living organisms [5]. The World Health Organization reported
that, along with natural activities (e.g., volcanic eruption, river transport, weathering and
erosion), the concentration of Cd in the environment increases with human activities, such
as combustion of fossil fuel, mining, smelting, and refining of non-ferrous metals, smoking
of tobacco, production of phosphate fertilizers, incineration of municipal wastes containing
Cd batteries and plastics, and recycling of Cd-plated scrap [6–8]. Jarup and Akesson
(2009) reported that increased mining and industrial activities and the use of Cd-containing
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fertilizers result in the contamination of soil and absorption of large amounts of Cd by
plants grown for human and animal consumption [9]. In most parts of the world, the diet
has been reported as the chief source of environmental Cd exposure in non-smokers [9–11].

The concentration of Cd in the diet varies significantly. Common contributors of Cd
in humans are fiber-rich diets, such as vegetables, shellfish, and cereals; in some areas, rice
is reported to be a common source of Cd [12,13]. Another major cause of Cd exposure is
tobacco smoking. A cigarette usually contains approximately 1–2 µg of Cd, depending on
the brand; approximately 10% of this Cd is inhaled, and an estimated 50% of inhaled Cd is
absorbed by the lungs [14,15]. The average Cd consumption from the diet usually varies
from 8 µg to 25 µg per day [9,16–23]. This consumption may be even higher in some parts
of the world (e.g., Japan) [9].

Studies have measured the damage caused by Cd to the body by using various
routes of administration because the distribution and absorption of different elements in
food are affected by the administration route [9,24]. The quantity of Cd absorbed by the
body is higher when the metal is administered intraperitoneally (i.e., i.p. injection) than
when it is administered orally, and through inhalation of cigarette smoke or occupational
exposure to fumes containing high concentrations of Cd (ATSDR 2008) [23,25,26]. In daily
life, exposure to Cd commonly occurs through food sources; therefore, knowledge of the
damage caused by Cd, when it is absorbed in the intestine, is important. Moreover, the
effect of Cd exposure on heritable DNA has rarely been discussed. The present study
aimed to observe the microscopic damage brought about by Cd on the testis and heritable
DNA of Sprague–Dawley (SD) rats.

2. Materials and Methods
2.1. Animals

Adult male SD rats (age, 70–85 days) were obtained from the Animal Facility of
College of Animal Sciences, Jilin University, Changchun, China, and kept in plastic cages
with a stainless steel top at a controlled temperature of 24 ± 2 ◦C and 50–60% humidity
for 1 week to acclimatize to the lab environment. All the rats were maintained at a
12 h/12 h light/dark cycle and fed with standard laboratory food. Tap water was made
available ad libitum. The animal handling, treatment, and sacrifice protocols were approved
by the College of Animal Sciences, Jilin University China (Permit Number SY201909012).

2.2. Experimental Design

Twenty-four adult male SD rats were divided into four groups of six animals each.
The first group served as the control group and was given 1.5 mL of saline via a feeding
tube. The remaining three groups were treated with 5, 10, and 15 mg Cd/kg/day in the
form of cadmium Chloride (CdCl2) (Tianjin Guangfu Technology Development Co., Ltd;
Tianjin, China) solution with a feeding tube. In brief, a stock solution of 0.1 M CdCl2 was
prepared in double-distilled water and then a required quantity of Cd from this stock
solution was mixed with saline in accordance with the weight of the animals to obtain a
total solution volume of 1.5 mL for each animal.

The three doses of Cd were selected based on the results of previous studies. According
to ATSDR, the lethal dose of Cd with a 50% kill rate (LD50) is 100–300 mg Cd/kg [27–31].
The current doses (i.e., 5, 10, and 15 mg Cd/kg/day) were selected because the smallest
possible lethal oral dose of Cd is 15.3 mg/kg/day. All our doses were under that range,
and these doses did not kill the animals examined in previous studies [32,33].

2.3. Experimental Duration (Animal Trails)

All of the treatments in our experiment were based on data from the ATSDR, which
divides Cd exposure into three categories on the basis of health effects: acute (i.e., exposure
for 2 weeks or less), intermediate (i.e., exposure for 15 days to 1 year), and chronic (i.e.,
exposure for 365 days or more) [34]. Cilenk (2016) and his team studied cadmium toxicity
by using an i.p. injection for 17 days [34]. In daily life, Cd exposure usually occurs through
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the diet; thus, all the doses in the current experiment were administered orally ((i.e., oral
gavage) for 17 days, including weekends. On day 18, roughly 24 h after administration
of the last dosage, the animals were anesthetized with 750 mg/kg of i.p. injection of
2,2,2-tribromoethanol solution and then sacrificed according to the guidelines of Jilin
University (https://sydw.jlu.edu.cn/info/1009/2196.htm (accessed on 4 May 2021); http:
//202.198.25.15/uhtbin/cgisirsi/x/0/0/5?searchdata1=548824{ckey}; (accessed on 4 May
2021); https://www.lac.pku.edu.cn/docs/20200227111544292237.pdf (accessed on 4 May
2021)). The testes and epididymis were dissected out. The left testis and epididymis were
fixed in 10% formaldehyde for histological processing, while the right testis and epididymis
were stored at −80 ◦C for evaluation of daily sperm production (DSP) and comet assay.

2.4. The Relative Weight of Testes

During the animal trials, the weight of animals was checked after every 4 days to
update the Cd doses. After dissection of animals, the relative weight of testis was calculated
by dividing testis weight (mg) by animal weight (g).

Relative weight of testis (mg/g)) = testis weight (mg)/animal weight (g)

whereas the total weight gain/loss was calculated by subtracting the final weight from the
initial weight.

Weight gain/loss (g) = final weight (g) − initial weight (g)

2.5. Histology

The testes and epididymis were fixed in 10% formaldehyde and embedded in paraffin
wax for slides preparation. In brief, 5 µm-thick sections were cut from the paraffin blocks
using a microtome. These sections were affixed on glass sides, on a slide warmer, and
deparaffinized prior to staining with hematoxylin and eosin (H&E) stain. The slides were
examined under an Olympus microscope (Model IX2-ILL100) equipped with a micro-
photographic system.

2.6. Image J Software Application

During histological analysis of the testis, five parameters (i.e., interstitial space, thick-
ness of tunica albuginea, diameter of the seminiferous tubules, diameter of the tubular
lumen, and height of the epithelium) were measured. In the histological analysis of the
epididymis, the area and diameter of the lumen and the height of the epithelium were
measured. All the measurements were obtained using Image J software. The standard
scale (Supplementary Figure S1) used for image J was taken with the same magnification
as the remaining pictures.

2.7. Daily Sperm Production

Testicular tissues stored at −80 ◦C were defrosted at room temperature for 2–5 min
prior to homogenization. Spermatids that were resilient to homogenization were calculated
according to the protocol of Robb et al. [35]. The testes were weighed, and tunica albuginea
was removed. Approximately 100 mg of testis parenchyma was homogenized in 2 mL of
saline and diluted, according to Jahan et al. [36]. A small portion (5.5 µL) of the sample was
placed in Neubauer chambers (hemocytometer), and late spermatids were counted under a
microscope at 40× magnification. DSP was calculated according to the following formula.

Y = (x/16)× 100 × 5 × 5.5 × 1000

where Y is the total number of spermatids, x is the number of spermatids counted on
hemocytometer, 16 is the total number of squares observed, 100 is the total number of
squares, 5 is the dilution factor, 5.5 µL is the sample volume loaded into the hemocytometer,
and 1000 is the conversion factor from microliters to milliliters.

https://sydw.jlu.edu.cn/info/1009/2196.htm
http://202.198.25.15/uhtbin/cgisirsi/x/0/0/5?searchdata1=548824{ckey}
http://202.198.25.15/uhtbin/cgisirsi/x/0/0/5?searchdata1=548824{ckey}
https://www.lac.pku.edu.cn/docs/20200227111544292237.pdf
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2.8. Comet Assay

Damage to heritable DNA was determined using comet assay [37], with some mod-
ifications. Slides were prepared by placing 100 µL of 1% regular melting point agarose
and covered by a large coverslip. The slides were then placed in a refrigerator for 30 min
to solidify the agarose. After 30 min, the slides were placed at a slide warmer at 37 ◦C
and the coverslips were carefully removed. Next, 20 µL of a suspension of sperm from the
cauda epididymis and 65 µL of low-melting-point agarose were mixed in Eppendorf using
a micropipette. The mixture was placed on the agarose slides, and a coverslip was used to
spread it. The slides were placed in a wooden slide box to avoid exposure to direct light
and the resultant DNA damage, and the agarose slides were solidified in the refrigerator.
After solidification, the coverslips were removed and the slides were submerged in staining
jars containing freshly prepared cold lysing solution (100 mM EDTA disodium salt, 10 mM
Tris, 2.5 M NaCl, pH 10, with 1% Triton X-100 added just before use). The slides were
soaked in this solution overnight, and the staining jars were covered with aluminum foil to
avoid direct exposure to light and DNA damage. A gel electrophoresis tank (horizontal)
was filled with electrophoresis solution (300 mM NaOH + 1 mM EDTA, pH 12.5), and
12 slides were placed in it side by side in two rows, with the agarose end facing the positive
terminal. The slides were left in the tank for some time, and the DNA fragments were
separated by electrophoresis for 10 min at 25 V and 300 mA. The alkaline detergent was
washed after electrophoresis with 0.4 M Tris solution to avoid interactions with the stain.

Exactly 100–200 mL of 20 mg/mL acridine orange solution was overlaid on the slides
by using a coverslip for comet scoring. The slides were observed under a fluorescent
microscope, and comets were analyzed using Casplab_1.2.3b2.

2.9. Statistical Analysis

One-way analysis of variance followed by Tukey’s test was applied to compare the
experimental data of different groups by using Graphpad Prism 5 software. All results are
presented as mean ± SEM, and the significance level was set to * p < 0.05, ** p < 0.01.

3. Results

In the current experiment, significant weight loss was observed in Cd-treated groups
(Figure 1). The weight of animals in the control group was increased by 28 g, while the
weight in the 15 mg Cd/kg treatment group decreased by the same amount (Table 1,
Figure 1). The total weight gain in the 5 mg Cd/kg treatment group was similar to that in
the control group. The weight of the testes and epididymis showed no variations among
the control and Cd-treated groups (Table 1). However, the relative mass of the testes was
significantly higher in the 15 mg Cd/kg treatment group compared to that in the control
group (p < 0.05) and mg Cd/kg treatment groups (p < 0.01) (Table 1).

Table 1. Mean and SEM of body weights, testes weight and epididymis weights. Daily sperm production per 100 mg of the
testis, and the relative weight of testis.

Groups (n = 4) Control (6 Animals) 5 mg/kg (6 Animals) 10 mg/kg (6 Animals) 15 mg/kg (6 Animals)

DSP (×106/100 mg) 14.53 ± 1.17 12.07 ± 12.84 11.51 ± 0.17 13.05 ± 0.7
Body weight

(grams)
Initial 238.25 ± 6.46 254 ± 4.97 252.5 ± 14.26 287.5 ± 14.26
Final 266.75 ± 6.69 289.75 ± 6.41 235.5 ± 9.5 253.67 ± 6.89

Weight of testis
(grams)

Right 1.47 ± 0.05 1.92 ± 0.075 1.85 ± 0.05 1.73 ± 0.03
Left 1.47 ± 0.05 1.9 ± 1.22 1.85 ± 0.15 1.76 ± 0.03

Relative weight of testis (mg/g) 1.75 ± 0.02 1.85 ± 0.19 1.68 ± 0.12 2.06 ± 0.02 a*,c**
Weight of

epididymis (g)
Right 0.63 ± 0.09 0.97 ± 0.02 0.71 ± 0.01 0.83 ± 0.32
Left 0..63 ± 0.09 0.89 ± 0.03 0.69 ± 0.011 0.70 ± 0.04

All values are expressed as mean ± SEM (a = comparison to control, c = comparison to 10 mg/kg group. Probability: * = p < 0.05 and
** = p < 0.01).
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Figure 1. Mean (with SEM) weight gain/loss during animal trials, showing about 30 g decrease in
weight of 15 mg/kg animals, whereas the same weight was gained in the control group. (Probability:
* = p < 0.05 and ** = p < 0.01)

3.1. Histology
3.1.1. Testes

Microscopic analysis of the testes showed that the control group had closely arranged
seminiferous tubules with normal spermatogenesis (Figure 2A,B). Germ cells of all stages
were observed in germinal epithelium, and the lumens of the tubules were narrow and filled
with sperm. In brief, all the tubules observed in the control group could be divided into two
categories based on the morphologic appearance, the first showing the early (initial) half of
the spermatogenic cycle (stage 1–8) and the 2nd showing the other half (stage 9–14). In
interstitial space, Leydig cells of different shapes (round, oval, and irregular) were present,
along with blood vessels surrounded by seminiferous tubules (Figure 2A,B). The diameter
of the seminiferous tubules in the Cd-treated groups showed variations from the control
group (Figure 2C,D, Table 2), indicating decreased spermatogenesis. The high-dose groups
(10 and 15 mg Cd/kg/day) showed the greatest deterioration in testicular tissues. The size
of the interstitial space (Table 2), the height of the epithelium (Figure 2), and the thickness
of the tunica albuginea (Figure 2 and Table 2) showed remarkable variations compared to
the control group (Table 2).

Table 2. Mean ± SEM of different parameters of testicular histology.

Groups Interstitial Space Thickness of the Tunica
Albuginea (µm)

Diameter of the
Seminiferous
Tubules (µm)

Height of the
Epithelium (µm)

Diameter of the Tubular
Lumen (µm)

Control 63.58 ± 4.61 36.45 ± 1.5 235.34 ± 5.95 70.98 ± 2.02 92.51 ± 3.50
5 mg/kg 60.45 ± 4.54 33.33 ± 1.53 244.04 ± 4.73 76.13 ± 2.71 95.30 ± 5.81

10 mg/kg 23.96 ± 2.67 a***, b*** 23.26 ± 0.67 a***, b*** 273.6 ± 7.17 a***, b*** 89.72 ± 3.53 a***, b** 90.59 ± 3.33
15 mg/kg 24.58 ± 2.84 a***, b*** 36.23 ± 3.2 c*** 258.14 ± 7.67 92.58 ± 3.08 a***, b** 53.02 ± 2.44 a***, b***,c***

All values are expressed as mean ± SEM (a = comparison to control, b = comparison to 5 mg/kg group, c = comparison to 10 mg/kg group.
Probability: ** = p < 0.01 and *** = p < 0.001)

The thickness of the tunica albuginea (Figure 2) in the 10 mg Cd/kg treatment group
decreased significantly (p < 0.001) compared with that in the control group. The effect of
Cd on the tunica albuginea was dose-dependent, as evidenced by the lack of a significant
difference between the control and 5 mg Cd/kg treatment groups. The exterior walls of
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the tunica albuginea in animals in the 15 mg Cd/kg treatment group were affected in a
non-continuous manner, where the wall was thicker at some points and thinner at others
(Figure 2H). Overall, the mean thickness was similar to the control. However, as can be
seen in Figure 2H, the tunica albuginea was severely affected, and the size of the wall was
significantly (p < 0.001) thicker than that in the 10 mg Cd/kg treatment group (Table 2,
Figure 2).
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Figure 2. Microphotograph of testicular tissue (seminiferous tubules). (A,B) The control group showed normal seminiferous
tubules with a lumen filled with sperm. The interstitial space revealed normal Leydig cells. (C,D) The 5 mg Cd/kg treatment
group showed a decrease in epithelial height and a marked increase in interstitial space. The (E,F) 10 mg Cd/kg and
(G,H) 15 mg Cd/kg treatment groups revealed prominent damage. In particular, the number of Leydig cells in interstitial
space are decreased and spermatogenesis in epithelium appeared to be disrupted. (LC: Leydig cells, SM; smooth muscle,
ST: spermatids, PS: primary spermatocytes, IS interstitial space, SC: Sertoli cells, LD: (lumen diameter) tubular lumen, EH:
epithelial height, TD: diameter of seminiferous tubules TA: tunica albuginea.

The average space between different seminiferous tubules (Figure 2) showed no signif-
icant (p > 0.05) difference between the 5 mg Cd/kg treatment and control groups. The inter-
stitial space significantly decreased in the 10 and 15 mg Cd/kg treatment groups (p < 0.001)
compared with that in the control and 5 mg Cd/kg treatment groups (Figure 2E,G). The
number of Leydig cells in the interstitium was similar in all groups, but the interstitial space
in Cd-treated groups was remarkably reduced compared with that in the control group
(Figure 2, Table 2). The average diameter of seminiferous tubules increased with increasing
Cd concentration. In the 10 mg Cd/kg treatment group, the diameter of tubules increased
significantly (p < 0.001) compared with that in the control and 5 mg Cd/kg treatment
groups. All other groups showed increases in the diameter of seminiferous tubules, but the
differences noted were not significant (p < 0.05).

The epithelial height and tubular lumen showed interesting results. The average
height of the epithelium (both early and late phase of spermatogenesis) increased signif-
icantly (p < 0.001) in the 10 and 15 mg Cd/kg treatment groups compared with that in
the control group (Figure 2). A significant increase in epithelium height (p < 0.05) was
also noted compared with that in the 5 mg Cd/kg treatment group (Table 2), but the
process of spermatogenesis appeared to be impaired in all Cd-treated groups (Figure 2).
It was observed in the current study that the epithelium of the control group was much
denser, having cells of all stages of spermatogenesis (Figure 2A), whereas, in Cd treated
groups, the overall number of cells appear to be much lower compared to the control
group (Figure 2C,E,G). The DSP showed non-significant variation (Table 1), which could
be explained by the histological deformities observed here. The size of the tubular lumen
diameter in the 15 mg Cd/kg treatment group showed a significant difference compared
with that in the control and the two other Cd-treated groups. The spermatozoa in the
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lumen of all Cd-treated groups were premature, thus demonstrating the marked impact of
Cd on spermatogenesis.

3.1.2. Epididymis

Histological analysis of the epididymis showed that the 2D area of the tubular lumen
significantly increased with increasing Cd dose. In the 5 mg Cd/kg treatment group, the
2D area of the lumen slightly increased, but this increase was not significant. However, a
significant increase in the area of the tubular lumen of the 10 mg Cd/kg and 15 mg Cd/kg
treatment groups in comparison with the control and 5 mg Cd/kg treatment groups was
observed. The diameter of the lumen significantly increased in all Cd-treated groups, but
the increase in the 10 mg Cd/kg treatment group was the highest. The epithelium showed
no remarkable difference among all groups (Figure 3).
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3.2. Daily Sperm Production

The mean value of DSP in the Cd-treated groups slightly decreased compared with
that in the control group (Table 1). Among the groups assessed, the 10 mg Cd/kg treatment
group revealed the lowest amount of sperm produced. However, overall, no significant
difference in the amount of sperm produced was found among the groups.

3.3. Comet Assay

Damage to heritable DNA was determined by comet assay. The results of the Cd-
treated and control groups are presented in Table 3, and relevant microphotographs are
shown in Figure 4. The comets produced in different groups varied. The numbers of comets
observed in each group are not shown in this paper because some of the comets may have
been washed away by prolonged soaking in the buffer. Overall, the number of comets
observed in the control group was lower compared with that found in the Cd-treated
groups. DNA damage was estimated by considering different parameters (i.e., comet
length, head length, tail length, % DNA in head, % DNA in tail, and tail moment).

Table 3. Mean ± SEM of DNA damage in control and Cd treated adult rats after 17 days of treatment.

Parameter Control 5 mg/kg 10 mg/kg 15 mg/kg

Head Length (µm) 231.86 ± 34.47 122.23 ± 9.38 *** 156.93± 15.73 * 131.0 ± 11.97 **
Tail Length (µm) 7.29 ± 1.70 11.08 ± 1.55 9.8 ± 1.96 9.59 ± 1.15

Comet Length (µm) 239.14 ± 34.32 133.30 ± 8.85 ** 166.8 ± 15.11 * 166.06 ± 13.57 *
% DNA in Head 97.93 ± 0.95 96.58 ± 0.62 96.58 ± 0.62 95.23 ± 0.62
% DNA in Tail 2.07 ± 0.95 3.42 ± 0.62 3.32 ± 0.90 4.76 ± 0.62
Tail Moment 0.39 ± 0.15 0.48 ± 0.15 0.53 ± 0.25 0.53 ± 0.12

(Probability: * = p < 0.05, ** = p < 0.01, *** = p < 0.001, * = significant difference compared to the control).
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The head and comet lengths showed significant increases. The length of the head
in the 5 mg Cd/kg treatment group was significantly (p < 0.001) shorter than that in the
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control group, whereas, in 10 mg/kg, it was p < 0.05 and 15 mg/kg p < 0.01 (Table 3). The
percentage of DNA in the tail was lower in the control group than in the treatment groups,
but the difference observed was not significant (p < 0.05). The lengths of the comet and
head were comparable among all Cd-treated groups (p < 0.01 for the 5 mg Cd/kg treatment
group and p < 0.05 for the 10 and 15 mg Cd/kg treatment groups when compared with the
control) (Table 3, Figure 4).

4. Discussion

A major concern related to the increase in the global population is heavy metal toxicity.
Cd exposure occurs through water, food, and air. In previous literature, the average Cd
absorbed from food in some parts of the world was approximately 15.5 µg/day, and the av-
erage Cd contents in the blood and urine are 0.74 µg/L and 0.34 µg/g, respectively [1,38,39].
The results of previous molecular cell biological experiments indicate that Cd has more than
one complex effect on different cells and pathways, especially the pituitary-hypothalamus
sex organ pathway [1,40,41]. Cd disturbs cell proliferation, differentiation, cell cycle progres-
sion, and DNA replication and repair; the apoptotic pathways were also impaired [1,42–44].
In the present study, we observed the microscopic damage caused by oral administration of
Cd on the reproductive system and the process of spermatogenesis in male SD rats.

A 28 g increase in the weight of the control group was noted (Figure 1, Table 2). Rats
in the high-dose Cd treatment groups (10 and 15 mg Cd/kg) lost approximately 30 g
of weight (Table 2, Figure 1). Rats in the low-dose Cd treatment group (5 mg Cd/kg)
showed a weight gain similar to that in the control group. Hence, besides initiating
reproductive toxicity, Cd affects the weight of animals. This finding contradicts some of
the data reported in the literature [44,45]. According to Sagba et al. [46], Cd has a negative
effect on weight gain. In our findings, the effect of Cd on weight gain was not significant,
and these findings are in accordance with references having weight loss, for example.
Leach et al. and Santose et al. [46–48]. However, when we compared the difference in
weight gain, the result became interesting due to a significant variation in the control and
Cd-treated groups.

In the current study, major Cd-induced damage was investigated in the reproductive
system of rats. No variations in the weight of the testes or epididymis were noted. Earlier
studies reported contrasting results on the weight of reproductive organs in animals
exposed to Cd [48–50]. According to some research groups, Cd ions exert marked effects
on the weight of reproductive organs, as well as the bodyweight of the animals; specifically,
the weight of the reproductive organs significantly decreased following Cd exposure. Some
research groups reported no change in accessory glands [51,52], and our findings appear
to agree with these groups, i.e., the weight of the animals decreased but no significant
difference in the weight of the testes and epididymis was noted. One of the major factors
in weight gain could be the route of administration. In experimental studies, the path
of administration affects the delivery and absorption of Cd [9,24]. According to Ryan,
Wilhelm, Ysart, and their respective teams, the absorption of Cd is much higher when the
route of administration is i.p. injection, compared to intestinal absorption or occupation
and cigarette smoke inhalation [23,25,26]. In the current experiment, the animals were
exposed to Cd through oral gavage, and Cd absorbed by the intestine had minimal effect
on the weight of accessory organs.

Disparities in morphology are directly related to physiological problems [53] and
decreased DSP; these disparities result in issues related to spermatogenesis, which is
fulfilled in the epithelium of seminiferous tubules [54–56]. We performed histopathology
of the testes to determine morphological damage in these organs. We observed several
deformities in the testicular seminiferous tubules of Cd-treated groups, consistent with the
findings of previous research groups [57–60]. According to one research group [61], pro-
inflammatory cytokines stimulate the inflammatory process, such as vascular congestion,
interstitial mononuclear cell infiltrations, tissue degeneration, and necrosis. Figure 2 reveals
the presence of blood cells in a cluster, as well as damage to the epithelium, thus indicating
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the onset of necrosis. Increases in the diameter of the seminiferous tubules and length of
the epithelium (Table 2) were also observed, thus indicating the beginning of inflammation.
Despite the variations in histopathology noted in this work, the daily sperm produced
was not in accordance with that reported in previous studies. In the current study, we
observed a non-significant decrease in DSP. However, morphological changes are directly
related to physiological changes [53]. Cd-induced oxidative stress has been reported to
be the chief source of decreases in sperm count [62]. Some researchers speculate that
genome instability and DNA damage may sometimes result from Cd toxicity, resulting
in malignancy [10,40,63,64]. Correction of inaccurate base pairs, deletion of unrequired
base pairs, and repair of damaged pairs are usually blocked by Cd via the recognition of
damaged DNA and attachment of proteins to affected sites [10,40,65,66]. Our results are
in accordance with those studies. In the present study, the comet and head length were
remarkably extended, and a higher percentage of DNA in the tail of comets was found in
the Cd-treated groups, which points out the breaks in heritable DNA.

5. Conclusions

Observation of various parameters led us to conclude that higher concentrations of
Cd in food and water could result in reproductive deformities, along with other damages
to the reproductive and body physiology.
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