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Abstract
Introduction: Gender and sex hormones influence brain function, but their effects on 
functional network organization within the brain are not yet understood.
Methods: We investigated the influence of gender, prenatal sex hormones (estimated 
by the 2D:4D digit ratio), and the menstrual cycle on the intrinsic functional network 
organization of the brain (as measured by 3T resting-state functional MRI (rs-fMRI)) 
using right-handed, age-matched university students (100 males and 100 females). 
The mean (±SD) age was 20.9 ± 1.5 (range: 18–24) years and 20.8 ± 1.3 (range: 18–24) 
years for males and females, respectively. Using two parameters derived from the 
normalized alpha centrality analysis (one for local and another for global connectivity 
strength), we created mean functional connectivity strength maps.
Results: There was a significant difference between the male mean map and female 
mean map in the distributions of network properties in almost all cortical regions and 
the basal ganglia but not in the medial parietal, limbic, and temporal regions and the 
thalamus. A comparison between the mean map for the low 2D:4D digit ratio group 
(indicative of high exposure to testosterone during the prenatal period) and that for 
the high 2D:4D digit ratio group revealed a significant difference in the network prop-
erties of the medial parietal region for males and in the temporal region for females. 
The menstrual cycle affected network organization in the brain, which varied with the 
2D:4D digit ratio. Most of these findings were reproduced with our other datasets 
created with different preprocessing steps.
Conclusions: The results suggest that differences in gender, prenatal sex hormone 
exposure, and the menstrual cycle are useful for understanding the normal brain and 
investigating the mechanisms underlying the variable prevalence and symptoms of 
neurological and psychiatric diseases.

K E Y W O R D S

2D:4D digit ratio, fMRI, menstrual cycle, normalized alpha centrality, prenatal sex hormones

www.wileyonlinelibrary.com/journal/brb3
http://orcid.org/0000-0003-4264-4894
http://creativecommons.org/licenses/by/4.0/
mailto:kaneoke@wakayama-med.ac.jp


2 of 15  |     DONISHI et al.

1  | INTRODUCTION

Sex hormones influence brain development (Berenbaum & Beltz, 
2011; McCarthy, Pickett, VanRyzin, & Kight, 2015; Savic, Frisen, 
Manzouri, Nordenstrom, & Linden Hirschberg, 2017; Van Hemmen, 
Saris et al., 2016), activity, and function (Chen, Decety, Huang, 
Chen, & Cheng, 2016; Crewther, Cook, Kilduff, & Manning, 2015; 
Goldstein, Jerram, Abbs, Whitfield-Gabrieli, & Makris, 2010; 
Petersen, Kilpatrick, Goharzad, & Cahill, 2014; Sundstrom Poromaa & 
Gingnell, 2014; Thimm, Weis, Hausmann, & Sturm, 2014; Toffoletto, 
Lanzenberger, Gingnell, Sundstrom-Poromaa, & Comasco, 2014; 
Van Hemmen, Veltman et al., 2016; Weis, Hausmann, Stoffers, & 
Sturm, 2011; Weis et al., 2008; Zhu, Kelly, Curry, Lal, & Joseph, 
2015). Elucidating the mechanisms underlying this influences is vital 
because many neurological and psychiatric diseases exhibit gender-
dependent variability in both their prevalence and symptoms (Bao & 
Swaab, 2010; Cahill, 2006; McCarthy, Arnold, Ball, Blaustein, & De 
Vries, 2012; Zagni, Simoni, & Colombo, 2016). Moreover, menstrual 
cycle affects neurological and psychiatric symptoms in females, 
including the incidence of epileptic seizures and depressive states 
(Backstrom et al., 2003).

Although gender differences in brain structure (Ruigrok et al., 
2014), structural connectivity (Ingalhalikar et al., 2014), and functional 
connectivity (Scheinost et al., 2015) have been previously reported, 
the extent of these differences (such as Cohen’s d) is often too small to 
distinguish male and female distributions (Joel et al., 2015), and some 
results are inconsistent. One possibility is that the effects of gender on 
the functional connectivity of the brain are subtler than the effects of 
other factors, such as interindividual variability due to age, educational 
level, handedness, menstrual cycle, diurnal variance, and mental state 
during the measurement. Another possibility is that the functional net-
work organization of the female brain is essentially the same as that of 
the male brain, but there is a shift outside of the normal distribution 
for females due to the variable effects of sex hormones throughout 
the menstrual cycle. Furthermore, rs-fMRI data processing and pa-
rameters used in previous studies could be associated with different 
sensitivities.

In this study, we investigated the effects of gender on the func-
tional network organization of the brain using data from age-matched, 
right-handed, university students. If there were any statistically signif-
icant differences between males and females, we then investigated 
the effects of prenatal sex hormones on the functional network or-
ganization for both the male and female groups. The magnitude of 
prenatal sex hormone exposure was estimated using the right-hand 
2D:4D digit ratio (Honekopp & Watson, 2010; Manning, Bundred, 
Newton, & Flanagan, 2003; Manning, Kilduff, Cook, Crewther, & Fink, 
2014; Zheng & Cohn, 2011). We also investigated the effects of the 
menstrual cycle on the functional network organization of the female 
brain.

To this end, we used data-driven, voxel-wise, whole-brain func-
tional network analysis using normalized alpha centrality (nAC) (Ghosh 
& Lerman, 2011). This method is useful for detecting regional network 

properties with high spatial resolution without the a priori determi-
nation of nodes and networks to measure functional connectivity. 
Furthermore, both local and global connectivity (GC) strengths de-
termined by this method can be directly compared in a meaningful 
way, which will have greater sensitivity to detect subtle differences 
in network organizations than single parameters, such as degree or 
eigenvector centrality (Buckner et al., 2009; Lohmann et al., 2010) and 
GC (Cole, Pathak, & Schneider, 2010; Ueyama et al., 2013; Yang et al., 
2014).

In this study, we hypothesized that two groups categorized by 
gender, the 2D:4D digit ratio, or the menstrual cycle would con-
stitute distinct populations, resulting in significant differences in 
mean brain organizations. First, we created the mean brain network 
property map for each group. At each gray-matter voxel, we calcu-
lated the mean values of local and global network parameters and 
classified its node property (global hub, global node, local hub, or 
local node) based on these values. To compare the two mean im-
ages, we calculated the number of nodes with each node property 
in each brain region and investigated differences in its distribution. 
We identified 14 brain regions using automated anatomical label-
ing (AAL) (Tzourio-Mazoyer et al., 2002). Significant differences be-
tween these two mean maps indicated that the functional networks 
of male brains constitute a population different from that of females. 
Similarly, we investigated the effects of prenatal sex hormones, and 
the menstrual cycle, by dividing the group into two subgroups by the 
2D:4D digit ratios (low and high digit ratio groups) and by menstrual 
phases (follicular and luteal phase groups). Finally, we investigated 
the effects of rs-fMRI data preprocessing on our brain network or-
ganization maps.

2  | MATERIALS AND METHODS

2.1 | Participants

This study was approved by the Ethics Committee of Wakayama 
Medical University, and all participants provided written informed 
consent. We recruited 200 right-handed Japanese student volunteers 
who ranged in age from 18 to 24 years (100 males and 100 females) 
from the university in Wakayama City; the authors do not belong to 
this university. The participants were recruited by posters that de-
scribed objective of this study and advertised the recruitment of par-
ticipants. Thus, the participants independently decided to take part in 
the study and received 6,000 yen (approximately 50 US dollars) as a 
reward.

The Edinburgh Handedness Inventory score (Oldfield, 1971) was 
used to determine the handedness of our participants; all scores 
were ≥70. The mean age and other demographic data are shown 
in Table 1. The health status of each participant was checked using 
questionnaires. No participants were taking medications, including 
oral contraceptives, or had a history of severe head injuries. Female 
participants were asked to report the date of their last menstrual pe-
riod in order to estimate their menstrual phase (follicular or luteal) 
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at the time of MRI acquisition. We classified females as being in the 
follicular phase if they were between day 1 and 14 and in the luteal 
phase if they were between days 15 and 28. Data for seven par-
ticipants who stated their last menstrual period occurred more than 
28 days ago were not used for the analysis of menstrual phase ef-
fects because it was difficult to estimate the menstrual cycle date on 
the experiment day.

2.2 | Digit ratio measurement

To measure each participant’s digit length, we scanned an image of the 
right hand using a portable color scanner (CanoScan Lide 210, Canon 
Inc., Tokyo, Japan) with a spatial resolution of 4,800 × 4,800 dpi. 
The second (2D) and fourth digit (4D) lengths were measured from 
the proximal finger crease to the distal tip of the finger using a digi-
tal Vernier caliper to the nearest 0.01 mm, as described in a previ-
ous study (Kaneoke, Donishi, Iwahara, & Shimokawa, 2017; Manning, 
Scutt, Wilson, & Lewis-Jones, 1998). In this study, we investigated 
the right-hand digit ratio based on the previous studies; these stud-
ies showed that prenatal sex hormones affect the right-hand digit 
ratio more than the left-hand digit ratio (Honekopp & Watson, 2010; 
Manning et al., 1998, 2014). To investigate the effect of the digit ratio 
on brain network properties, we divided our male and female groups 
into two subgroups (low and high digit ratio groups) based on the me-
dian values for each group. The number of participants and mean ages 
are shown in Table 2.

2.3 | MRI data acquisition

All the participants underwent MRI acquisition on a weekday afternoon 
(mean ± SD = 4 p.m. ± 26 min, ranging from 1 p.m. to 5 p.m.); timing 
was important because of the diurnal fluctuation in the brain activ-
ity (Hodkinson et al., 2014). A 3 Tesla MRI (PHILIPS, the Netherlands) 
with a 32-channel head coil (SENSE-Head-32CH) was used to acquire 
structural and resting-state functional images of the brain. T1-weighted 
structural images were obtained with the following parameters: 
TR = 6.9 ms, TE = 3.3 ms, FOV = 256 mm, matrix scan = 256, slice 
thickness = 1.0 mm, and flip angle = 10°. Functional images were col-
lected using a gradient-echo echo-planar pulse sequence sensitive to 
BOLD contrast (Ogawa, Lee, Kay, & Tank, 1990) with the following pa-
rameters: TR = 3,000 ms, TE = 30 ms, FOV = 192 mm, matrix scan = 64, 
slice thickness = 3.0 mm, and flip angle = 80°. Three runs, which each 
comprised 107 volumes, were performed on each participant. In total, 
data were acquired for approximately 15 min during a resting state for 
each participant, as this duration was deemed the most appropriate to 
obtain reliable data (Birn et al., 2013). The participants were then asked 
to stay awake with their eyes closed during image acquisition.

Soon after acquisition, the participants were asked to describe 
what they were thinking about during image acquisition using the 
resting-state questionnaire (ReSQ) developed by Tzourio-Mazoyer 
et al. (Delamillieure et al., 2010). We then checked for gender differ-
ences in interoception data to investigate the effect of mental activity 
on gender differences in regional brain network property patterns.

Male, N = 100 Female, N = 100 p value

Age [year] 20.92 ± 1.47 20.77 ± 1.29 .45*

Edinburgh Handedness 
score

91.17 ± 8.35 94.62 ± 7.12 .0011**

GM volume (ml) 806 ± 52 730 ± 46 1.04 × 10−21*

GM ratios to TIV 0.518 ± 0.022 0.533 ± 0.021 1.64 × 10−6*

Digit ratio 0.938 ± 0.026 0.951 ± 0.030 .0018*

Mean Power’s FD 0.127 ± 0.043 0.127 ± 0.045 .992*

Menstrual cycle [day] 6.36 ± 5.34 (FOL, N = 53) 
21.38 ± 3.64 (LUT, N = 40) 
39.14 ± 10.01 (unknown, N = 7)

*t test or **Mann–Whitney U test for gender differences. FOL, follicular phase; LUT, luteal phase; TIV, 
total intracranial volume.

TABLE  1 Demographic data

TABLE  2 Subgroups based on digit ratios

Digit ratio
Male, range 
age (N)

Female, range 
age (N)

Female menstrual phase

FOL LUT p value*

Low 0.865–0.937 
20.7 ± 1.6 (47)

0.858–0.951 
21.0 ± 1.4 (49)

0.858–0.950 
20.9 ± 1.3 (27)

0.875–0.949 
21.2 ± 1.5 (18)

.52

High 0.938–1.007 
21.1 ± 1.3 (53)

0.951–1.016 
20.5 ± 1.2 (51)

0.953–1.016 
20.7 ± 1.2 (26)

0.951–1.016 
20.4 ± 1.2 (22)

.47

p value** .13 .057 .50 .078

*t test for age between FOL and LUT. **t test for age between LOW and HIGH. FOL, follicular phase; LUT, luteal phase.
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2.4 | MRI data preprocessing

An outline of the work flow is shown in Figure 1. Functional data 
were preprocessed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm) 
and in-house software developed with MATLAB (MathWorks, 
Natick, MA, USA). The first five volumes of each fMRI acquisition run 
were discarded to allow for T1-equilibration effects, thus leaving 102 
consecutive volumes. Slice timing was adjusted to the topmost slice 

(acquired last): First, the number of time-course data points (n = 102) 
for each voxel signal was increased to 68 (number of slices) using 
spline interpolation. Then, 101 data points at the same timing as the 
last slice for each image volume were chosen for each voxel. Rigid 
body translation and rotation were performed in SPM8 to correct 
for head motion, followed by spatial normalization by 12-parameter 
affine transformation according to the International Consortium for 
Brain Mapping Echo-Planar Imaging template. A session showing 
either a translation of ≥2 mm or a rotation of ≥0.02 radian was ex-
cluded from further analysis. A summary of the excluded sessions is 
shown in Table S1.

Images were then resampled to 2-mm isotropic voxels and spa-
tially smoothed using an 8 mm full width at half-maximum Gaussian 
kernel. To exclude nuisance signals unrelated to brain activity, we 
used CompCor (Behzadi, Restom, Liau, & Liu, 2007), six head motion 
time-course parameters regression (Power, Schlaggar, & Petersen, 
2015), and global signal regression (the mean time course of the func-
tional brain image voxels) (Power, Plitt, Laumann, & Martin, 2016). 
Preprocessing, including CompCor, head motion regression, and global 
signal regression, is called “preprocessing 1” in this study. Temporal 
filtering (bandpass ranging from 0.01 to 0.1 Hz) was applied to remove 
constant offset and linear trends over each run. Structural images 
were normalized and resampled using the same method as fMRI data 
preprocessing and then segmented into probability maps of gray mat-
ter using SPM8. The magnitude of head motion was calculated using 
Power’s framewise displacement (FD) (Power et al., 2015), and gender 
differences were assessed.

We also created another set of the functional data that had under-
gone preprocessing without head motion and global signal regression, 
which we call “preprocessing 2” in this text. Table 3 shows the data-
base sets used in this study. The results for these datasets are shown 
in Supporting Information.

2.5 | Selection of gray-matter voxels in the 
functional images

The gray-matter mask image (2-mm cubic voxel) was created as fol-
lows. First, a gray-matter structural image at zero threshold was used 
to create a binary gray-matter image. All the voxels in the image out-
side of the regions defined by (AAL) (Tzourio-Mazoyer et al., 2002) 
were excluded to remove nonbrain tissues such as the venous sinuses. 
Because the gray-matter image discriminated by SPM8 lacks most of 
the basal ganglia (BG) and thalamus (TH) voxels, we added the voxels 

F IGURE  1 Work flow of the study. Three rs-fMRI runs (107 
consecutive image volumes) were acquired. For each session, we 
performed preprocessing, including slice-timing correction, head 
motion correction, denoising, temporal filtering, image normalization, 
and gray-matter segmentation. For preprocessing 1, denoising 
included CompCor and the regression of six head motion parameters 
and global signal. Denoising for preprocessing 2 included CompCor. 
Then, the functional connectivity strength of each pair of gray-matter 
voxels was calculated and transformed to Z values for each run (Z1, 
Z2, and Z3). These 3 values were averaged (Z = (Z1 + Z2 + Z3)/3). An 
adjacent matrix was then determined using the Z matrix with three 
different thresholds (1.96, 2.58, or 3.28) to calculate normalized 
alpha centrality (nAC0 and nAC1) at each gray-matter voxel. Global 
connectivity (GC) was the difference between the two values (nAC1–
nAC0)

Preprocess Z threshold nAC0 nAC1 GC

1 2.58 0.0169 ± 0.0060 0.0169 ± 0.0086 0.0000 ± 0.0031

1 1.96 0.0169 ± 0.0046 0.0169 ± 0.0071 0.0000 ± 0.0030

1 3.28 0.0169 ± 0.0074 0.0169 ± 0.0118 0.0000 ± 0.0059

2 2.58 0.0169 ± 0.0052 0.0169 ± 0.0068 0.0000 ± 0.0021

Preprocessing 1 included CompCor, head motion regression, and global signal regression. Preprocessing 
2 included CompCor. The Z threshold was used to create an adjacency matrix. The values of nAC0, 
nAC1, and GC are shown as the mean ± SD of all the participant data.

TABLE  3 Database and mean network 
parameters used in this study

http://www.fil.ion.ucl.ac.uk/spm
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within these structures as defined by AAL. Second, for each partici-
pant, all gray-matter binary images were averaged to produce a prob-
ability map, and the voxels with a probability < 90% were removed. 
This gray-matter mask image was then used to extract gray-matter 
voxels from the functional images for each participant. The extracted 
functional images were then down-sampled to 6-mm cubic voxels. 
Finally, voxels with nonzero signals for all participants were included, 
which resulted in 5,916 voxels of gray-matter functional images for all 
participants. Each voxel was treated as a node of the brain functional 
network.

2.6 | Gray-matter volume measurement

We measured gray-matter volume for each participant using T1-
weighted MRI to check the effect of the value on the network proper-
ties. Voxel-based morphometry analysis in SPM was used to measure 
gray matter and total intracranial volume (TIV) according to a previous 
study (Chen, Sachdev, Wen, & Anstey, 2007).

2.7 | Network property analysis

Functional connectivity between two gray-matter voxels was calcu-
lated by Pearson’s correlation coefficient (r) using the time-course 
data for the two voxels in the functional images. The value of r was 
then converted to a Z value after the effective sample size correc-
tion using the autocorrelation coefficient values for the two voxels 
(Kaneoke et al., 2012). Voxel-wise mean Z values across sessions were 
used to produce three adjacency matrixes with 1 for an edge or con-
nection and 0 for no connection for each participant with a threshold 
of Z = 1.96 (p = .05), Z = 2.58 (p = .01), and Z = 3.28 (p = .001).

We used nAC, which was recently proposed by Ghosh and Lerman 
(Ghosh & Lerman, 2011), to identify local and global network proper-
ties by varying the attenuation parameter (α). We calculated nAC with 
two values, α = 0 and 1/λ1 (λ1 = maximum eigenvalue of the adjacency 
matrix), which are called nAC0 and nAC1, respectively, in this study. 
nAC0 is related to the degree centrality (Bullmore & Sporns, 2009) and 
reflects local (directly connected) network properties. In contrast, 
nAC1 is related to the eigenvector centrality (Lohmann et al., 2010), and 
the value reflects the relationship between the node and the entire 
network structure.

Note that we did not set the same total number of edges for each 
participant, although this is necessary to assess network structures, 
such as clustering, path length, and the small world index (Fornito, 
Zalesky, & Breakspear, 2013). Instead, in this study, we considered 
the number of edges in each brain as representative as the partic-
ipant’s individuality. The number of edges for each participant was 
counted, and we checked for any differences when the two groups 
were compared, such as between males and females. Furthermore, 
we investigated the effects of edge numbers on the network proper-
ties at each node. For each participant, we measured the mean nAC0 
and nAC1 values at each brain region (see below) and investigated the 
relationship between these values and the number of edges for males 
and females.

2.8 | Estimation of brain network properties at 
each node

One of the best advantages of using the nAC in the evaluation of brain 
functional connectivity is that the values of nAC0 (which stands for 
local connectivity strength) and nAC1 (which stands for eigenvector 
centrality) at each node can be directly compared (Ghosh & Lerman, 
2011). Thus, we measured the difference between these two values 
(nAC1–nAC0) at each node and referred to the results as GC. High 
values for nAC0 indicate that the node is locally important in that the 
node directly connects with many nodes in a local community. The 
value of nAC1 indicates the magnitude of connectivity within a whole 
network. Thus, positive GC means that the node is more globally im-
portant than locally important (in its local community). Using GC and 
nAC0, we classified each node into four different types (global hub, 
global node, local hub, and local node; Figure 2) based on the distribu-
tion of the two values in both males and females: A node was classified 
as a “hub” when the value of nAC0 was higher than the mean + SD; 
otherwise, it was classified as a “node.” Furthermore, the node and 
hub were classified by the value of GC as “global” (when its GC was 
higher than the mean + SD) or “local” (when its GC was lower than 
the mean + SD). Note that the mean + SD of GC was a positive value 
because the mean value was 0.0 (see Results). For example, a node 
was classified as a “global hub” when its nAC0 was higher than the 
mean + SD and GC was also higher than the mean + SD of the distribu-
tion, indicating that the node was both locally and globally important. 

F IGURE  2 Classification of brain network nodes. Each node 
was classified into four types based on the values of nAC0 and GC 
(nAC1–nAC0). The x-axis shows the distribution of GC and the mean 
value (0.0) with a white line, and 1 SD value (0.003) with a black line. 
The y-axis shows the distribution of nAC0 and the mean value (0.017) 
with a white line and 1 SD value (0.023) with a black line
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By contrast, a “global node” does not often directly connect to other 
nodes but connects with globally important nodes.

2.9 | Statistical analysis

To assess the statistical significance of gender differences, we first 
measured the mean network properties at each node for males and 
females. Based on the mean values of nAC0 and nAC1 for males and 
females at each node, these nodes were classified into four types as 
described above (see Figure 2). Then, we measured the percentage of 
each type of node among the tonal nodes at each region of the gray 
matter. The gray matter was classified into the following regions based 
on the AAL: ventral frontal (FRv), medial frontal (FRm), lateral frontal 
(FRl), sensorimotor (SM), cingulate (CIN), lateral parietal (PAl), medial 
parietal (PAm), insula (INS), limbic (LIM), temporal (TE), occipital (OC), 
cerebellar (CER), BG, and TH. The classification details are shown in 
Table S1. We then used a chi-square test to assess the statistical sig-
nificance of the difference in the distribution of each node type in 14 
regions between males and females. Because we evaluated four node 
property distributions, p values were corrected for multiple compari-
sons with Bonferroni’s method. A statistically significant difference 
in the distribution (the percentage of each node properties in each 
region) suggests that the male brain data were extracted from a popu-
lation that was different from the population of female brain data. 
Furthermore, we performed a permutation test to validate the differ-
ence in node property proportions in each region between males and 
females. First, 200 participants’ data were randomly divided into two 
groups (100 participants in each group), and the mean nAC0 and nAC1 
values were calculated for each node to determine the node property 
for each node. The proportion of node types in each region was then 
measured, and the difference between the two groups was calculated. 
This procedure was repeated 10,000 times, and the number of trials 
(n) showing a difference exceeding the original data (the proportion 
of the node type in a region for males minus that for females) was 
counted to determine the “permutation p value” (n/10,000).

Similarly, we investigated the effect of the digit ratio and men-
strual phase on the distribution of the node types.

3  | RESULTS

The mean age and head motion parameter (mean Power’s FD) were 
not significantly different between males and females (Table 1). 

Although all of the participants were right-handed (Edinburgh hand-
edness score >70), the female score was significantly larger than that 
for males (p < .05, Mann–Whitney U test). The mean digit ratio for 
males (0.938 ± 0.026) was significantly lower than that for females 
(0.951 ± 0.030) (Table 1). Gray-matter volume was significantly larger 
for males than for females, but the ratio to TIV was larger for females 
than for males, consistent with a previous study (Chen et al., 2007; 
Gur et al., 1999).

Table 2 shows the mean digit ratios for the subgroups divided by 
the mean digit ratios and menstrual phase. Mental activity during MRI 
acquisition was not significantly different between the two groups 
(p > .05, chi-square test; Figure S1). The excluded sessions were not 
significantly different between the two groups (Table S2). The results 
for the different thresholds for adjacency matrix and preprocessing 2 
are shown in Supporting Information.

The mean (±SD) values for nAC0, nAC1, and GC from each dataset 
are shown in Table 3. We first describe the results for preprocessing 1 
and the threshold of Z = 2.58 for an adjacency matrix (see Materials and 
Methods) and then the results for the other datasets in the Supporting 
Information. The mean nAC0 value was 0.0169 ± 0.006, and the mean 
GC value was 0.00 ± 0.0031 for this dataset. Table 4 shows the mean 
number of edges for the male and female groups and their subgroups. 
The mean number of edges for females (10.2 × 105 ± 2.38 × 105) 
was significantly larger than that for males (9.52 × 105 ± 2.18 × 105) 
(p = .042, t test).

3.1 | Gender differences in the distribution of the 
network properties

Figure 3a shows the distribution of the three node types for males and 
females. Global nodes were mainly distributed in the frontal and TE 
areas for males and in the OC and CER areas for females. The percent-
age of each node type in the 14 regions is shown in Figure 3b. A chi-
square test revealed that the distributions of the four node types for 
males were significantly different from those for females (p < .00001, 
chi-square test). Moreover, the permutation test revealed that the per-
centages of global hubs and global nodes in the three frontal regions, 
CIN, PAl, INS, and BG for males were significantly larger than those 
for females (p < .05, permutation test). By contrast, the percentages of 
global hubs and global nodes in the OC and CER regions for females 
were significantly larger than those for males (p < .05, permutation test).

Because the mean handedness score for males was significantly 
lower than that for females (Table 1), we checked the network property 

TABLE  4 Number of edges

Male 
mean ± SD × 105 (N) p

Female 
mean ± SD ×105 (N) p

FOL 
mean ± SD ×105 (N)

LUT 
mean ± SD × 105 (N) p

ALL 9.52 ± 2.18 (100) 10.2 ± 2.38 (100) .042a 9.94 ± 2.33 (53) 10.4 ± 2.11 (40) .341b

High 2D:4D 9.42 ± 2.22 (53)

.624c

10.4 ± 2.53 (51)

.343c

10.3 ± 2.53 (26) 10.3 ± 1.88 (22) .967b

Low 2D:4D 9.64 ± 2.16 (47) 9.95 ± 2.21 (49) 9.62 ± 2.12 (27) 10.5 ± 2.41 (18) .204b

p values by t test abetween males and females, bbetween follicular phase and luteal phase females, cbetween high and low digit groups. FOL, follicular phase; 
LUT, luteal phase.
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difference between males and females using data from participants 
whose handedness scores were 100 (38 males and 57 females). Figure 
S2 shows that the distribution differences of the network properties 
in each region were remarkably similar to those for the data from all 
participants (Figure 3b), especially for global hubs and global nodes. 
A permutation test revealed that the percentages of global hubs and 
global nodes in the PAl region for males were significantly larger than 
those for females (p < .01 and p < .05, respectively). By contrast, the 
percentages of global hubs in the OC and CER regions for females 
were significantly larger than those for males (p < .001 and p < .01, 
respectively).

The relationship between the gray-matter volume/ratio and net-
work properties (nAC0 and nAC1) for each participant in each region 
is shown in Figure S3 and S4. There was no significant relationship 
between these values in all regions (p > .05, Pearson’s methods). The 
relationship between the number of edges and network properties 
for each subject at each region is shown in Table 5 and Figure S5. 
This relationship varied with both region and gender; in the FRm 
region, the number of edges was negatively related to the mean 
nAC0 and nAC1 for females but not for males. Furthermore, in the 
INS region, we detected a positive relationship for females but not 
for males.

F IGURE  3 Distribution of three node types in male and female brains. (a) For each male and female group, we calculated the mean nAC0 and 
nAC1 values for each node to determine the node type using the data for an adjacency matrix with a threshold of Z = 2.58 and using data from 
preprocessing 1. For the male brain, global hubs (magenta voxels) and global nodes (yellow voxels) were distributed in the frontal, cingulate, and 
parietal areas. By contrast, these hubs were more dominant in the occipital and cerebellar regions in the female brain. Cyan voxels: local hubs. 
Local nodes are not shown. (b) The percentages of global hubs, global nodes, local hubs, and local nodes in the total voxels in each region for 
male and female groups are shown with separate graphs. A chi-square test revealed that the all four node type distributions were significantly 
different between males and females (p values corrected with Bonferroni’s method are shown in each graph). A permutation test showed 
significant differences in the percentage of node types across the different regions as shown by asterisks: *p < .05; **p < .01; ***p < .001. Closed 
columns: male; open columns: females. FRv, ventral frontal; FRm, medial frontal; FRl, lateral frontal; SM, sensorimotor; CIN, cingulate; PAl, lateral 
parietal; PAm, medial parietal; INS, insular; LIM, limbic; TE, temporal; OC, occipital; CER, cerebellar; BG, basal ganglia; TH, thalamus
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3.2 | Effect of the digit ratio on the 
distribution of the network properties

The male and female groups were further divided into two subgroups 
based on their digit ratios (Table 2). For males, the distributions of 
node types were significantly different between the two subgroups 
in terms of global hubs and global nodes (chi-square test, p = .016 and 
.017, respectively; Figure 4a). A permutation test revealed that the 
percentage of global hubs in the PAm region of the low digit ratio 
group was significantly higher than that in the high digit ratio group 
(p = .032, permutation test).

For females, the distributions of node types were significantly 
different between the two subgroups in terms of global hubs and 
global nodes (chi-square test, p = .005 and 2.81 × 10−4, respectively; 
Figure 4b). A permutation test revealed that the percentage of global 
nodes in the TE region for low digit ratio group was significantly higher 
than that for the high digit ratio group (p = .047, permutation test).

To investigate the effect of the digit ratio on the differences in 
network properties caused by the menstrual cycle, we first compared 
node type distributions between the follicular and luteal phases. 
When the effect of menstrual phase was assessed by a permutation 
test using data from 93 females, we did not find any significant differ-
ence, although a chi-square test revealed that the global hub distri-
butions were affected the by the menstrual phases (Figure 5a). Next, 
we assessed the effects of menstrual phase using two further sub-
groups (one for low digit ratios and another for high digit ratios). For 
the low digit ratio group, menstrual phase affected the distribution 
of global hubs, global nodes, and local nodes (Figure 5b). A permu-
tation test revealed that the percentage of global hubs in the FRm 
region for the follicular phase group was significantly higher than that 

for the luteal phase group (p = .016, permutation test). By contrast, 
the percentage of global hubs in the SM region for the luteal phase 
group was significantly higher than that for the follicular phase group 
(p = .049, permutation test). For the high digit ratio group, menstrual 
phase significantly affected the distribution of the four node types 
(Figure 5c). A permutation test revealed that the percentages of global 
nodes in the SM, INS, and BG regions for the follicular phase group 
were significantly higher than those for the luteal phase group (p < .05, 
permutation test).

4  | DISCUSSION

Gender (male and female), the 2D:4D digit ratio (low and high digit 
ratios), and menstrual phase (follicular and luteal phases) all showed 
statistically significant differences in the distribution of brain network 
properties across several brain regions, even though there were some 
differences in our results due to the preprocessing of rs-fMRI data.

4.1 | Effects of gender on the brain networks

Most brain regions, including the subcortical regions such as the 
BG and the CER, showed gender differences in the distribution of 
network properties except the PAm, SM, and LIM regions, and the 
TM. On average, males had a higher percentage of global hubs and 
global nodes in the frontal, CIN, and PAl regions; by contrast, females 
showed higher percentages of these nodes in the OC and CER re-
gions than did males (Figure 3). Similar results were obtained for the 
other datasets with different threshold Z values that were used to cre-
ate an adjacency matrix (Figure S6) and with different preprocessing 

nAC0 nAC1

Male Female Male Female

FRv – – – –

FRm – −0.336 (6.38 × 10−4) −0.232 (0.0200)

FRl – – – –

SM – – – +0.282 (4.50 × 10−3)

CIN – – – –

PAl −0.359 (0.00024) −0.444 (3.62 × 10−6) – −0.235 (0.0185)

PAm −0.318 (0.00126) −0.219 (0.0283) – –

INS – +0.467 (9.65 × 10−7) – +0.354 (3.08 × 10−4)

LIM +0.394 (5.08 × 10−5) +0.475 (6.04 × 10−7) +0.450 (2.60 × 10−6) +0.547 (3.94 × 10−9)

TE – – – –

OC – – – –

CER +0.311 (0.00162) +0.199 (0.0468) +0.203 (0.0428) –

BG +0.465 (1.12 × 10−6) +0.544 (4.90 × 10−9) +0.260 (9.11 × 10−3) +0.408 (2.51 × 10−5)

TH +0.565 (9.37 × 10−10) +0.514 (4.47 × 10−8) +0.427 (9.65 × 10−6) +0.560 (1.33 × 10−9)

Values are presented as Pearson’s correlation coefficients between the number of edges and mean 
nAC0/nAC1 in each region for each participant with uncorrected p values in parentheses. Values are 
omitted when p ≧ .05. See the Figure 3 legend for region abbreviations.

TABLE  5 Correlation between the 
number of edges and network properties in 
each region
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strategies to reduce nuisance noise (Figure S7). Consequently, these 
results suggest that brain network properties in males constitute a dis-
tinct population compared with those in females. These results may 
agree with a previous analysis of functional connectivity that showed 
a higher number of connections between modules in males than in fe-
males (Satterthwaite et al., 2015), because we found a higher number 
of global hubs in males than in females (see Figure 3a). That is, be-
cause global hubs are by definition expected to have a larger number 
of connections with other communities than with local nodes.

Global signal regression increased the detectability of gender dif-
ferences in the network properties of our data. When global signal 
regression and head motion regression were omitted during the pre-
processing stage, a permutation test detected significant differences 
in the percentages of node types in the nine regions (Figure S7). The 
number of regions increased to 32 regions (Figure 3) with the global 
signal and head motion regressions (preprocessing 1). We considered 
that at least for our data, global signal (and head motion) regression 

increased sensitivity to distinguish gender differences in the network 
properties, because nonsignificant differences with a similar tendency 
were found for most regions using data from preprocessing 2 (no 
global signal and head motion regressions; Figure S7): Percentage of 
global hubs and global nodes in the frontal and lateral parietal regions 
for males are larger than those for females. By contrast, female domi-
nance of the global hubs and global nodes in the OC and CER regions 
were found only for the data from preprocessing 1. When data from 
preprocessing 2 were used, almost all nodes in these regions were 
identified as local nodes (Figure S7).

Previous whole-brain functional connectivity studies in a rela-
tively large number of participants revealed various differences in 
terms of network organizations between males and females (Allen 
et al., 2011; Biswal et al., 2010; Filippi et al., 2013; Jung et al., 2015; 
Satterthwaite et al., 2015; Scheinost et al., 2015; Tomasi & Volkow, 
2012; Zhang et al., 2016), although some studies did not (Bluhm et al., 
2008; Weissman-Fogel, Moayedi, Taylor, Pope, & Davis, 2010). These 

F IGURE  4 Effects of the digit ratio on brain network properties. The percentage of each node types in each region for males (top) and for 
females (bottom) is shown as in Figure 3. Chi-square test results are shown by p values (corrected with Bonferroni’s method) in each graph. The 
results from a permutation test are also shown by an asterisk (*p < .05). Closed columns: low digit ratio group; open columns: high digit ratio 
group
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F IGURE  5 Effects of menstrual phase on network properties. The percentage of each node type in each region is shown as in Figure 3.  
(a) The results for the data for 47 follicular phase and 46 luteal phase females. (b) The results for the low digit ratio group. (c) The results for 
the high digit ratio group. Chi-square test results are shown by a p value (corrected with Bonferroni’s method) in each graph. Permutation test 
results are shown by asterisks (*p < .05; **p < .01). Closed columns: follicular phase group; open columns: luteal phase group. FOL, follicular 
phase; LUT, luteal phase
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findings suggest the existence of gender differences in the functional 
network organization of the brain but also indicate that these differ-
ences are very subtle and difficult to distinguish. As shown in Figure 
S5, the distributions overlap too much to support a dimorphic view of 
gender-related differences in brain function (Joel et al., 2015). These 
inconsistent differences (brain regions and functional connectivity 
strength) between males and females could also be due to the func-
tional connectivity parameters being measured and the preprocessing 
methods utilized. Thus, it is difficult to compare our present results 
with those of previous studies because we evaluated both local (nAC0) 
and global (nAC1) functional connectivity strength at each node for 
the first time. However, our present study showed the distinct dif-
ferences in the population of the network properties of the brain 
between males and females even after matching for age, educational 
level, handedness, MRI acquisition time and MRI equipment.

Gray-matter volume does not appear to affect our network prop-
erty analysis because there was no significant relationship between 
the gray-matter volume/ratio and network properties (Figures S3 and 
S4). The mean number of edges for females was significantly larger 
than that for males (Table 4), which is consistent with a previous struc-
tural connectivity study (Szalkai, Varga, & Grolmusz, 2015). However, 
this finding cannot account for the difference in the brain network 
properties between males and females for the following reasons: First, 
the number of edges was not simply related to network properties; 
the relationship varied among regions and with gender (Table 5 and 
Figure S5). Second, our results for other datasets (preprocessing 1 and 
threshold Z = 1.96, and preprocessing 2 and threshold Z = 2.58) also 
showed similar gender differences in network properties, even though 
the mean number of edges did not differ between males and females 
(Figure S6a and S7).

Most likely, functional brain network changes with the menstrual 
cycle in females cannot account for the distinct differences between 
males and females. Although we found significant difference in the 
distributions of global hubs between the follicular and luteal phases 
(p = .043 corrected for multiple comparison with Bonferroni’s method, 
chi-square test; Figure 5), the significance level was marginal, and the 
permutation test did not find any significant differences in the per-
centage of global hubs between the two phases, suggesting that the 
effects of the menstrual cycle were not be so large as the effects of 
gender differences.

Interestingly, mental activity during MRI acquisition did not dif-
fer between males and females, despite the different brain network 
properties. Mental activity at rest is likely related to a default network 
(Buckner, Andrews-Hanna, & Schacter, 2008; Kucyi & Davis, 2014; 
Mason et al., 2007) and its interaction with other networks (Doucet 
et al., 2012). Moreover, gender differences in the default network 
have been reported (Biswal et al., 2010; Jung et al., 2015). Our results 
also suggest a default network difference between males and females 
because we found differences in the percentages of global hubs within 
the cardinal regions for the default network such as the FRm and PAl 
regions (Figure 3a). One possibility is that the ReSQ could not detect 
gender differences because of the simple classification of its contents. 
Another possibility is that the gender differences in brain network 

properties developed in a manner that achieves similar behavioral and 
cognitive outcomes by compensating for the effects of sex hormone 
levels, which may lead to the undesirable dimorphic gender differ-
ences as proposed by De Vries (De Vries, 2004).

4.2 | Effects of the digit ratio on the brain 
network properties

The 2D:4D digit ratio is related to prenatal sex hormone levels 
(Manning et al., 2003, 2014). For the first time, our present study re-
vealed that the digit ratio differentially affects the brain networks of 
adult males and females. In particular, the percentage of global hubs 
in the PAm region for the low digit ratio group of males was signifi-
cantly higher than that for the high digit ratio group. By contrast, the 
percentage of global nodes for the female low digit ratio group in the 
TE region was significantly higher than that for the high digit ratio 
group. The PAm region includes the posterior cingulate cortex (PCC) 
and precuneus, which is the core of the default network (Greicius, 
Krasnow, Reiss, & Menon, 2003) and is related to various cognitive 
tasks (Utevsky, Smith, & Huettel, 2014). A recent study showed that 
the connectivity (degree centrality) of the PCC in the resting state is 
related to the speed of task performance (Lin et al., 2016). The task 
performance of financial traders is inversely related to the digit ratio 
(Coates, Gurnell, & Rustichini, 2009). Thus, our finding that the low 
digit ratio group had higher percentage of global hubs in the PAm re-
gion than did the high digit ratio group may indicate the neural cor-
relate of task performance of financial traders. However, these results 
varied among different preprocessing strategies (see Figures 4 and 
S8). These differences might be due to the noise that could not be 
removed in preprocessing 2 as seen for the other results.

4.3 | Effects of menstrual phase on the brain 
network properties

In females, the menstrual cycle influences brain activity (Sundstrom 
Poromaa & Gingnell, 2014; Thimm et al., 2014; Weis et al., 2008; 
Zhu et al., 2015) and is suggested to influence brain functional con-
nectivity (Arelin et al., 2015; Weis et al., 2011) via levels of sex hor-
mones such as progesterone and estrogen. The reason why several 
studies did not show any difference in resting-state functional con-
nectivity across menstrual phases (De Bondt et al., 2015; Hjelmervik, 
Hausmann, Osnes, Westerhausen, & Specht, 2014; Syan et al., 2017) 
could be due to an insufficient number of participants to reveal subtle 
changes in the brain functional connectivity.

The effects of the menstrual cycle on the brain network proper-
ties might be different between the low and high digit ratio groups, 
because a permutation test more often revealed differences in brain 
regions (five regions) in the low digit ratio groups than in the high digit 
ratio group (three regions) for the global hubs and global nodes in a 
different manner (Figure 5). The results may be related to the previous 
our study that showed women with a higher right 2D:4D ratio had 
lower premenstrual symptom severity (Kaneoke et al., 2017). Similar 
results were observed for the data with preprocessing 2 (Figure S9). 
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Furthermore, a recent study showed that the effects of testosterone 
administration on female brain functional connectivity vary with digit 
ratios (Chen et al., 2016), which suggests that the prenatal sex hor-
mone exposure affects female brain functional changes with sex hor-
mones in adulthood.

4.4 | Limitations

Here, we note several limitations of the results in this study. We used 
the 2D:4D digit ratio for the estimation of prenatal sex hormones expo-
sure. Although the prenatal sex hormones causally affect the 2D:4D ratio 
in animal experiments (Zheng & Cohn, 2011), and substantial evidence 
supports the relationship between prenatal sex hormones levels and the 
2D:4D ratio (Manning et al., 2014), the 2D:4D ratio is also affected by 
several other factors, such as genetic influences and environmental fac-
tors (Hiraishi, Sasaki, Shikishima, & Ando, 2012). Further, the effects of 
the 2D:4D ratio on the brain network were investigated by the groups 
classified by the median 2D:4D ratio, which depends on the population 
studied and does not provide information regarding the amount of pre-
natal sex hormones. Thus, the results could potentially vary to some ex-
tent based on the population studied.

Second, it should be noted that we estimated the menstrual 
phase by the last menstrual date; we did not measure the levels of 
sex hormones at the time of the experiment. Estrogen levels markedly 
changes in the follicular phase, and the functional connectivity in spe-
cific regions changes with estrogen levels (Engman, Linnman, Van Dijk, 
& Milad, 2016; Lisofsky et al., 2015). Thus, the effects of menstrual 
phase on brain network properties must be more precisely evaluated 
with sex hormone levels in future studies.

Third, according to our recent study, females with a lower digit 
ratio of the right hand tend to have greater premenstrual symptoms 
(Kaneoke et al., 2017). Thus, our low digit ratio group may have more 
participants with premenstrual syndrome and premenstrual dysphoric 
disorder than the high digit ratio group, which could affect the results 
(Comasco & Sundstrom-Poromaa, 2015). Mental states for both male 
and female participants were not evaluated to examine the effects of 
psychiatric disorders on the functional connectivity. However, it is un-
likely that students in a depressive state would come to an unfamiliar 
institute to participate in an experiment.

5  | CONCLUSION

In conclusion, this study showed that the distribution of brain net-
work properties, as determined by nAC, was different between males 
and females, even though some results varied due to differences in 
rs-fMRI data processing. The 2D:4D digit ratio differentially affected 
the brain network property distributions of both males and females. 
In females, menstrual phase affected the brain network property dis-
tribution, which varied with the 2D:4D digit ratio. These results sug-
gest that the functional brain network properties vary with gender, 
prenatal sex hormone exposure, and the menstrual cycle. These fac-
tors might be important for elucidating the fundamental mechanisms 

underlying how gender differences occur in brain disorders and how 
sex hormones affect their prevalence and symptoms.
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