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Abstract
Introduction:	Gender	and	sex	hormones	influence	brain	function,	but	their	effects	on	
functional network organization within the brain are not yet understood.
Methods:	We	investigated	the	influence	of	gender,	prenatal	sex	hormones	(estimated	
by	the	2D:4D	digit	ratio),	and	the	menstrual	cycle	on	the	intrinsic	functional	network	
organization	of	the	brain	(as	measured	by	3T	resting-	state	functional	MRI	(rs-	fMRI))	
using	 right-	handed,	 age-	matched	university	 students	 (100	males	 and	100	 females).	
The	mean	(±SD)	age	was	20.9	±	1.5	(range:	18–24)	years	and	20.8	±	1.3	(range:	18–24)	
years	 for	males	 and	 females,	 respectively.	Using	 two	 parameters	 derived	 from	 the	
normalized	alpha	centrality	analysis	(one	for	local	and	another	for	global	connectivity	
strength),	we	created	mean	functional	connectivity	strength	maps.
Results: There was a significant difference between the male mean map and female 
mean map in the distributions of network properties in almost all cortical regions and 
the	basal	ganglia	but	not	in	the	medial	parietal,	limbic,	and	temporal	regions	and	the	
thalamus.	A	comparison	between	the	mean	map	for	the	low	2D:4D	digit	ratio	group	
(indicative	of	high	exposure	to	testosterone	during	the	prenatal	period)	and	that	for	
the	high	2D:4D	digit	ratio	group	revealed	a	significant	difference	in	the	network	prop-
erties of the medial parietal region for males and in the temporal region for females. 
The	menstrual	cycle	affected	network	organization	in	the	brain,	which	varied	with	the	
2D:4D	digit	 ratio.	Most	of	 these	 findings	were	 reproduced	with	our	other	datasets	
created with different preprocessing steps.
Conclusions:	 The	 results	 suggest	 that	 differences	 in	 gender,	 prenatal	 sex	 hormone	
exposure,	and	the	menstrual	cycle	are	useful	for	understanding	the	normal	brain	and	
investigating the mechanisms underlying the variable prevalence and symptoms of 
neurological and psychiatric diseases.

K E Y W O R D S

2D:4D	digit	ratio,	fMRI,	menstrual	cycle,	normalized	alpha	centrality,	prenatal	sex	hormones

www.wileyonlinelibrary.com/journal/brb3
http://orcid.org/0000-0003-4264-4894
http://creativecommons.org/licenses/by/4.0/
mailto:kaneoke@wakayama-med.ac.jp


2 of 15  |     DONISHI et al.

1  | INTRODUCTION

Sex	 hormones	 influence	 brain	 development	 (Berenbaum	 &	 Beltz,	
2011;	 McCarthy,	 Pickett,	 VanRyzin,	 &	 Kight,	 2015;	 Savic,	 Frisen,	
Manzouri,	Nordenstrom,	&	Linden	Hirschberg,	2017;	Van	Hemmen,	
Saris	 et	al.,	 2016),	 activity,	 and	 function	 (Chen,	 Decety,	 Huang,	
Chen,	&	Cheng,	2016;	Crewther,	Cook,	Kilduff,	&	Manning,	2015;	
Goldstein,	 Jerram,	 Abbs,	 Whitfield-	Gabrieli,	 &	 Makris,	 2010;	
Petersen,	Kilpatrick,	Goharzad,	&	Cahill,	2014;	Sundstrom	Poromaa	&	
Gingnell,	2014;	Thimm,	Weis,	Hausmann,	&	Sturm,	2014;	Toffoletto,	
Lanzenberger,	 Gingnell,	 Sundstrom-	Poromaa,	 &	 Comasco,	 2014;	
Van	 Hemmen,	 Veltman	 et	al.,	 2016;	Weis,	 Hausmann,	 Stoffers,	 &	
Sturm,	 2011;	 Weis	 et	al.,	 2008;	 Zhu,	 Kelly,	 Curry,	 Lal,	 &	 Joseph,	
2015).	Elucidating	the	mechanisms	underlying	this	influences	is	vital	
because many neurological and psychiatric diseases exhibit gender- 
dependent	variability	in	both	their	prevalence	and	symptoms	(Bao	&	
Swaab,	2010;	Cahill,	2006;	McCarthy,	Arnold,	Ball,	Blaustein,	&	De	
Vries,	2012;	Zagni,	Simoni,	&	Colombo,	2016).	Moreover,	menstrual	
cycle	 affects	 neurological	 and	 psychiatric	 symptoms	 in	 females,	
including the incidence of epileptic seizures and depressive states 
(Backstrom	et	al.,	2003).

Although	 gender	 differences	 in	 brain	 structure	 (Ruigrok	 et	al.,	
2014),	structural	connectivity	(Ingalhalikar	et	al.,	2014),	and	functional	
connectivity	 (Scheinost	 et	al.,	 2015)	 have	 been	 previously	 reported,	
the	extent	of	these	differences	(such	as	Cohen’s	d)	is	often	too	small	to	
distinguish	male	and	female	distributions	(Joel	et	al.,	2015),	and	some	
results are inconsistent. One possibility is that the effects of gender on 
the functional connectivity of the brain are subtler than the effects of 
other	factors,	such	as	interindividual	variability	due	to	age,	educational	
level,	handedness,	menstrual	cycle,	diurnal	variance,	and	mental	state	
during	the	measurement.	Another	possibility	is	that	the	functional	net-
work organization of the female brain is essentially the same as that of 
the	male	brain,	but	there	is	a	shift	outside	of	the	normal	distribution	
for females due to the variable effects of sex hormones throughout 
the	menstrual	 cycle.	 Furthermore,	 rs-	fMRI	 data	 processing	 and	 pa-
rameters used in previous studies could be associated with different 
sensitivities.

In	this	study,	we	 investigated	the	effects	of	gender	on	the	func-
tional	network	organization	of	the	brain	using	data	from	age-	matched,	
right-	handed,	university	students.	If	there	were	any	statistically	signif-
icant	 differences	 between	males	 and	 females,	we	 then	 investigated	
the effects of prenatal sex hormones on the functional network or-
ganization for both the male and female groups. The magnitude of 
prenatal sex hormone exposure was estimated using the right- hand 
2D:4D	 digit	 ratio	 (Honekopp	 &	Watson,	 2010;	 Manning,	 Bundred,	
Newton,	&	Flanagan,	2003;	Manning,	Kilduff,	Cook,	Crewther,	&	Fink,	
2014;	Zheng	&	Cohn,	2011).	We	also	investigated	the	effects	of	the	
menstrual cycle on the functional network organization of the female 
brain.

To	 this	 end,	we	 used	 data-	driven,	 voxel-	wise,	whole-	brain	 func-
tional	network	analysis	using	normalized	alpha	centrality	(nAC)	(Ghosh	
&	Lerman,	2011).	This	method	is	useful	for	detecting	regional	network	

properties with high spatial resolution without the a priori determi-
nation of nodes and networks to measure functional connectivity. 
Furthermore,	 both	 local	 and	 global	 connectivity	 (GC)	 strengths	 de-
termined by this method can be directly compared in a meaningful 
way,	which	will	 have	greater	 sensitivity	 to	detect	 subtle	differences	
in	 network	organizations	 than	 single	 parameters,	 such	 as	 degree	or	
eigenvector	centrality	(Buckner	et	al.,	2009;	Lohmann	et	al.,	2010)	and	
GC	(Cole,	Pathak,	&	Schneider,	2010;	Ueyama	et	al.,	2013;	Yang	et	al.,	
2014).

In	 this	 study,	we	hypothesized	 that	 two	groups	categorized	by	
gender,	 the	 2D:4D	 digit	 ratio,	 or	 the	 menstrual	 cycle	would	 con-
stitute	 distinct	 populations,	 resulting	 in	 significant	 differences	 in	
mean	brain	organizations.	First,	we	created	the	mean	brain	network	
property	map	for	each	group.	At	each	gray-	matter	voxel,	we	calcu-
lated the mean values of local and global network parameters and 
classified	 its	 node	 property	 (global	 hub,	 global	 node,	 local	 hub,	 or	
local	 node)	 based	 on	 these	values.	To	 compare	 the	 two	mean	 im-
ages,	we	calculated	the	number	of	nodes	with	each	node	property	
in each brain region and investigated differences in its distribution. 
We	 identified	 14	 brain	 regions	 using	 automated	 anatomical	 label-
ing	(AAL)	(Tzourio-	Mazoyer	et	al.,	2002).	Significant	differences	be-
tween these two mean maps indicated that the functional networks 
of male brains constitute a population different from that of females. 
Similarly,	we	investigated	the	effects	of	prenatal	sex	hormones,	and	
the	menstrual	cycle,	by	dividing	the	group	into	two	subgroups	by	the	
2D:4D	digit	ratios	(low	and	high	digit	ratio	groups)	and	by	menstrual	
phases	 (follicular	and	 luteal	phase	groups).	Finally,	we	 investigated	
the effects of rs- fMRI data preprocessing on our brain network or-
ganization maps.

2  | MATERIALS AND METHODS

2.1 | Participants

This study was approved by the Ethics Committee of Wakayama 
Medical	 University,	 and	 all	 participants	 provided	 written	 informed	
consent.	We	recruited	200	right-	handed	Japanese	student	volunteers	
who	ranged	in	age	from	18	to	24	years	(100	males	and	100	females)	
from the university in Wakayama City; the authors do not belong to 
this university. The participants were recruited by posters that de-
scribed objective of this study and advertised the recruitment of par-
ticipants.	Thus,	the	participants	independently	decided	to	take	part	in	
the	study	and	received	6,000	yen	(approximately	50	US	dollars)	as	a	
reward.

The	Edinburgh	Handedness	Inventory	score	(Oldfield,	1971)	was	
used to determine the handedness of our participants; all scores 
were	 ≥70.	 The	 mean	 age	 and	 other	 demographic	 data	 are	 shown	
in Table 1. The health status of each participant was checked using 
questionnaires.	No	 participants	were	 taking	medications,	 including	
oral	contraceptives,	or	had	a	history	of	severe	head	injuries.	Female	
participants were asked to report the date of their last menstrual pe-
riod	 in	order	 to	estimate	 their	menstrual	phase	 (follicular	or	 luteal)	
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at the time of MRI acquisition. We classified females as being in the 
follicular	phase	if	they	were	between	day	1	and	14	and	in	the	luteal	
phase	 if	 they	were	 between	 days	 15	 and	 28.	 Data	 for	 seven	 par-
ticipants who stated their last menstrual period occurred more than 
28 days ago were not used for the analysis of menstrual phase ef-
fects because it was difficult to estimate the menstrual cycle date on 
the experiment day.

2.2 | Digit ratio measurement

To	measure	each	participant’s	digit	length,	we	scanned	an	image	of	the	
right	hand	using	a	portable	color	scanner	(CanoScan	Lide	210,	Canon	
Inc.,	 Tokyo,	 Japan)	 with	 a	 spatial	 resolution	 of	 4,800	×	4,800	dpi.	
The	second	 (2D)	and	 fourth	digit	 (4D)	 lengths	were	measured	 from	
the proximal finger crease to the distal tip of the finger using a digi-
tal	Vernier	 caliper	 to	 the	nearest	 0.01	mm,	 as	 described	 in	 a	 previ-
ous	study	(Kaneoke,	Donishi,	Iwahara,	&	Shimokawa,	2017;	Manning,	
Scutt,	Wilson,	 &	 Lewis-	Jones,	 1998).	 In	 this	 study,	we	 investigated	
the right- hand digit ratio based on the previous studies; these stud-
ies showed that prenatal sex hormones affect the right- hand digit 
ratio	more	than	the	left-	hand	digit	ratio	(Honekopp	&	Watson,	2010;	
Manning	et	al.,	1998,	2014).	To	investigate	the	effect	of	the	digit	ratio	
on	brain	network	properties,	we	divided	our	male	and	female	groups	
into	two	subgroups	(low	and	high	digit	ratio	groups)	based	on	the	me-
dian values for each group. The number of participants and mean ages 
are shown in Table 2.

2.3 | MRI data acquisition

All	the	participants	underwent	MRI	acquisition	on	a	weekday	afternoon	
(mean	±	SD =	4	p.m.	±	26	min,	 ranging	 from	 1	p.m.	 to	 5	p.m.);	 timing	
was important because of the diurnal fluctuation in the brain activ-
ity	(Hodkinson	et	al.,	2014).	A	3	Tesla	MRI	(PHILIPS,	the	Netherlands)	
with	a	32-	channel	head	coil	(SENSE-	Head-	32CH)	was	used	to	acquire	
structural and resting- state functional images of the brain. T1- weighted 
structural images were obtained with the following parameters: 
TR	=	6.9	ms,	 TE	=	3.3	ms,	 FOV	=	256	mm,	 matrix	 scan	=	256,	 slice	
thickness	=	1.0	mm,	and	 flip	angle	=	10°.	Functional	 images	were	col-
lected using a gradient- echo echo- planar pulse sequence sensitive to 
BOLD	contrast	(Ogawa,	Lee,	Kay,	&	Tank,	1990)	with	the	following	pa-
rameters:	TR	=	3,000	ms,	TE	=	30	ms,	FOV	=	192	mm,	matrix	scan	=	64,	
slice	thickness	=	3.0	mm,	and	flip	angle	=	80°.	Three	runs,	which	each	
comprised	107	volumes,	were	performed	on	each	participant.	In	total,	
data	were	acquired	for	approximately	15	min	during	a	resting	state	for	
each	participant,	as	this	duration	was	deemed	the	most	appropriate	to	
obtain	reliable	data	(Birn	et	al.,	2013).	The	participants	were	then	asked	
to stay awake with their eyes closed during image acquisition.

Soon	 after	 acquisition,	 the	 participants	 were	 asked	 to	 describe	
what they were thinking about during image acquisition using the 
resting-	state	 questionnaire	 (ReSQ)	 developed	 by	 Tzourio-	Mazoyer	
et	al.	(Delamillieure	et	al.,	2010).	We	then	checked	for	gender	differ-
ences in interoception data to investigate the effect of mental activity 
on gender differences in regional brain network property patterns.

Male, N = 100 Female, N = 100 p value

Age	[year] 20.92	±	1.47 20.77	±	1.29 .45*

Edinburgh	Handedness	
score

91.17	±	8.35 94.62	±	7.12 .0011**

GM	volume	(ml) 806	±	52 730	±	46 1.04	×	10−21*

GM	ratios	to	TIV 0.518	±	0.022 0.533	±	0.021 1.64	×	10−6*

Digit ratio 0.938	±	0.026 0.951	±	0.030 .0018*

Mean	Power’s	FD 0.127	±	0.043 0.127	±	0.045 .992*

Menstrual	cycle	[day] 6.36	±	5.34	(FOL,	N	=	53) 
21.38	±	3.64	(LUT,	N	=	40) 
39.14	±	10.01	(unknown,	N	=	7)

*t	test	or	**Mann–Whitney	U	test	for	gender	differences.	FOL,	follicular	phase;	LUT,	luteal	phase;	TIV,	
total intracranial volume.

TABLE  1 Demographic data

TABLE  2 Subgroups based on digit ratios

Digit ratio
Male, range 
age (N)

Female, range 
age (N)

Female menstrual phase

FOL LUT p value*

Low 0.865–0.937 
20.7	±	1.6	(47)

0.858–0.951 
21.0	±	1.4	(49)

0.858–0.950 
20.9	±	1.3	(27)

0.875–0.949 
21.2	±	1.5	(18)

.52

High 0.938–1.007 
21.1	±	1.3	(53)

0.951–1.016 
20.5	±	1.2	(51)

0.953–1.016 
20.7	±	1.2	(26)

0.951–1.016 
20.4	±	1.2	(22)

.47

p	value** .13 .057 .50 .078

*t	test	for	age	between	FOL	and	LUT.	**t	test	for	age	between	LOW	and	HIGH.	FOL,	follicular	phase;	LUT,	luteal	phase.
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2.4 | MRI data preprocessing

An	 outline	 of	 the	work	 flow	 is	 shown	 in	 Figure	1.	 Functional	 data	
were	 preprocessed	 using	 SPM8	 (http://www.fil.ion.ucl.ac.uk/spm)	
and	 in-	house	 software	 developed	 with	 MATLAB	 (MathWorks,	
Natick,	MA,	USA).	The	first	five	volumes	of	each	fMRI	acquisition	run	
were	discarded	to	allow	for	T1-	equilibration	effects,	thus	leaving	102	
consecutive volumes. Slice timing was adjusted to the topmost slice 

(acquired	last):	First,	the	number	of	time-	course	data	points	(n	=	102)	
for	 each	 voxel	 signal	was	 increased	 to	 68	 (number	 of	 slices)	 using	
spline	interpolation.	Then,	101	data	points	at	the	same	timing	as	the	
last slice for each image volume were chosen for each voxel. Rigid 
body translation and rotation were performed in SPM8 to correct 
for	head	motion,	followed	by	spatial	normalization	by	12-	parameter	
affine transformation according to the International Consortium for 
Brain	 Mapping	 Echo-	Planar	 Imaging	 template.	A	 session	 showing	
either	a	translation	of	≥2	mm	or	a	rotation	of	≥0.02	radian	was	ex-
cluded	from	further	analysis.	A	summary	of	the	excluded	sessions	is	
shown in Table S1.

Images were then resampled to 2- mm isotropic voxels and spa-
tially smoothed using an 8 mm full width at half- maximum Gaussian 
kernel. To exclude nuisance	 signals	 unrelated	 to	 brain	 activity,	 we	
used	CompCor	(Behzadi,	Restom,	Liau,	&	Liu,	2007),	six	head	motion	
time-	course	 parameters	 regression	 (Power,	 Schlaggar,	 &	 Petersen,	
2015),	and	global	signal	regression	(the	mean	time	course	of	the	func-
tional	 brain	 image	 voxels)	 (Power,	 Plitt,	 Laumann,	 &	Martin,	 2016).	
Preprocessing,	including	CompCor,	head	motion	regression,	and	global	
signal	 regression,	 is	 called	 “preprocessing	1”	 in	 this	 study.	Temporal	
filtering	(bandpass	ranging	from	0.01	to	0.1	Hz)	was	applied	to	remove	
constant offset and linear trends over each run. Structural images 
were normalized and resampled using the same method as fMRI data 
preprocessing and then segmented into probability maps of gray mat-
ter using SPM8. The magnitude of head motion was calculated using 
Power’s	framewise	displacement	(FD)	(Power	et	al.,	2015),	and	gender	
differences were assessed.

We also created another set of the functional data that had under-
gone	preprocessing	without	head	motion	and	global	signal	regression,	
which	we	call	“preprocessing	2”	in	this	text.	Table	3	shows	the	data-
base sets used in this study. The results for these datasets are shown 
in Supporting Information.

2.5 | Selection of gray- matter voxels in the 
functional images

The	gray-	matter	mask	image	(2-	mm	cubic	voxel)	was	created	as	fol-
lows.	First,	a	gray-	matter	structural	image	at	zero	threshold	was	used	
to	create	a	binary	gray-	matter	image.	All	the	voxels	in	the	image	out-
side	of	 the	 regions	defined	by	 (AAL)	 (Tzourio-	Mazoyer	 et	al.,	 2002)	
were excluded to remove nonbrain tissues such as the venous sinuses. 
Because	the	gray-	matter	image	discriminated	by	SPM8	lacks	most	of	
the	basal	ganglia	(BG)	and	thalamus	(TH)	voxels,	we	added	the	voxels	

F IGURE  1 Work	flow	of	the	study.	Three	rs-	fMRI	runs	(107	
consecutive	image	volumes)	were	acquired.	For	each	session,	we	
performed	preprocessing,	including	slice-	timing	correction,	head	
motion	correction,	denoising,	temporal	filtering,	image	normalization,	
and	gray-	matter	segmentation.	For	preprocessing	1,	denoising	
included CompCor and the regression of six head motion parameters 
and global signal. Denoising for preprocessing 2 included CompCor. 
Then,	the	functional	connectivity	strength	of	each	pair	of	gray-	matter	
voxels was calculated and transformed to Z	values	for	each	run	(Z1,	
Z2,	and	Z3).	These	3	values	were	averaged	(Z	=	(Z1 + Z2 + Z3)/3).	An	
adjacent matrix was then determined using the Z matrix with three 
different	thresholds	(1.96,	2.58,	or	3.28)	to	calculate	normalized	
alpha	centrality	(nAC0	and	nAC1)	at	each	gray-	matter	voxel.	Global	
connectivity	(GC)	was	the	difference	between	the	two	values	(nAC1–
nAC0)

Preprocess Z threshold nAC0 nAC1 GC

1 2.58 0.0169	±	0.0060 0.0169	±	0.0086 0.0000	±	0.0031

1 1.96 0.0169	±	0.0046 0.0169	±	0.0071 0.0000	±	0.0030

1 3.28 0.0169	±	0.0074 0.0169	±	0.0118 0.0000	±	0.0059

2 2.58 0.0169	±	0.0052 0.0169	±	0.0068 0.0000	±	0.0021

Preprocessing	1	included	CompCor,	head	motion	regression,	and	global	signal	regression.	Preprocessing	
2 included CompCor. The Z	 threshold	was	used	to	create	an	adjacency	matrix.	The	values	of	nAC0,	
nAC1,	and	GC	are	shown	as	the	mean	±	SD of all the participant data.

TABLE  3 Database and mean network 
parameters used in this study

http://www.fil.ion.ucl.ac.uk/spm
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within	these	structures	as	defined	by	AAL.	Second,	for	each	partici-
pant,	all	gray-	matter	binary	images	were	averaged	to	produce	a	prob-
ability	map,	and	the	voxels	with	a	probability	<	90%	were	removed.	
This gray- matter mask image was then used to extract gray- matter 
voxels from the functional images for each participant. The extracted 
functional	 images	were	 then	 down-	sampled	 to	 6-	mm	 cubic	 voxels.	
Finally,	voxels	with	nonzero	signals	for	all	participants	were	included,	
which	resulted	in	5,916	voxels	of	gray-	matter	functional	images	for	all	
participants. Each voxel was treated as a node of the brain functional 
network.

2.6 | Gray- matter volume measurement

We measured gray- matter volume for each participant using T1- 
weighted MRI to check the effect of the value on the network proper-
ties.	Voxel-	based	morphometry	analysis	in	SPM	was	used	to	measure	
gray	matter	and	total	intracranial	volume	(TIV)	according	to	a	previous	
study	(Chen,	Sachdev,	Wen,	&	Anstey,	2007).

2.7 | Network property analysis

Functional	connectivity	between	two	gray-	matter	voxels	was	calcu-
lated	 by	 Pearson’s	 correlation	 coefficient	 (r)	 using	 the	 time-	course	
data for the two voxels in the functional images. The value of r was 
then converted to a Z value after the effective sample size correc-
tion using the autocorrelation coefficient values for the two voxels 
(Kaneoke	et	al.,	2012).	Voxel-	wise	mean	Z values across sessions were 
used to produce three adjacency matrixes with 1 for an edge or con-
nection and 0 for no connection for each participant with a threshold 
of Z	=	1.96	(p	=	.05),	Z	=	2.58	(p	=	.01),	and	Z	=	3.28	(p	=	.001).

We	used	nAC,	which	was	recently	proposed	by	Ghosh	and	Lerman	
(Ghosh	&	Lerman,	2011),	to	identify	local	and	global	network	proper-
ties	by	varying	the	attenuation	parameter	(α).	We	calculated	nAC	with	
two	values,	α = 0 and 1/λ1	(λ1 = maximum eigenvalue of the adjacency 
matrix),	which	are	called	nAC0	 and	nAC1,	 respectively,	 in	 this	 study.	
nAC0 is related to the degree centrality	(Bullmore	&	Sporns,	2009)	and	
reflects	 local	 (directly	 connected)	 network	 properties.	 In	 contrast,	
nAC1 is related to the eigenvector centrality	(Lohmann	et	al.,	2010),	and	
the value reflects the relationship between the node and the entire 
network structure.

Note	that	we	did	not	set	the	same	total	number	of	edges for each 
participant,	although	this	 is	necessary	to	assess	network	structures,	
such	 as	 clustering,	 path	 length,	 and	 the	 small	world	 index	 (Fornito,	
Zalesky,	&	Breakspear,	 2013).	 Instead,	 in	 this	 study,	we	 considered	
the number of edges in each brain as representative as the partic-
ipant’s	 individuality.	The	 number	 of	 edges	 for	 each	 participant	was	
counted,	and	we	checked	 for	any	differences	when	 the	 two	groups	
were	 compared,	 such	 as	 between	males	 and	 females.	 Furthermore,	
we investigated the effects of edge numbers on the network proper-
ties	at	each	node.	For	each	participant,	we	measured	the	mean	nAC0 
and	nAC1	values	at	each	brain	region	(see	below)	and	investigated	the	
relationship between these values and the number of edges for males 
and females.

2.8 | Estimation of brain network properties at 
each node

One	of	the	best	advantages	of	using	the	nAC	in	the	evaluation	of	brain	
functional	connectivity	 is	 that	 the	values	of	nAC0	 (which	stands	 for	
local	connectivity	strength)	and	nAC1	 (which	stands	 for	eigenvector	
centrality)	at	each	node	can	be	directly	compared	(Ghosh	&	Lerman,	
2011).	Thus,	we	measured	the	difference	between	these	two	values	
(nAC1–nAC0)	 at	 each	 node	 and	 referred	 to	 the	 results	 as	GC.	High	
values	for	nAC0 indicate that the node is locally important in that the 
node directly connects with many nodes in a local community. The 
value	of	nAC1 indicates the magnitude of connectivity within a whole 
network.	Thus,	positive	GC	means	that	the	node	is	more	globally	im-
portant	than	locally	important	(in	its	local	community).	Using	GC	and	
nAC0,	we	classified	each	node	 into	 four	different	 types	 (global	hub,	
global	node,	local	hub,	and	local	node;	Figure	2)	based	on	the	distribu-
tion	of	the	two	values	in	both	males	and	females:	A	node	was	classified	
as	a	“hub”	when	the	value	of	nAC0 was higher than the mean + SD; 
otherwise,	 it	was	classified	as	a	 “node.”	Furthermore,	 the	node	and	
hub	were	classified	by	the	value	of	GC	as	“global”	(when	its	GC	was	
higher than the mean + SD)	 or	 “local”	 (when	 its	GC	was	 lower	 than	
the mean + SD).	Note	that	the	mean	+	SD of GC was a positive value 
because	the	mean	value	was	0.0	 (see	Results).	For	example,	a	node	
was	classified	as	a	 “global	hub”	when	 its	nAC0 was higher than the 
mean + SD and GC was also higher than the mean + SD of the distribu-
tion,	indicating	that	the	node	was	both	locally	and	globally	important.	

F IGURE  2 Classification of brain network nodes. Each node 
was	classified	into	four	types	based	on	the	values	of	nAC0 and GC 
(nAC1–nAC0).	The	x- axis shows the distribution of GC and the mean 
value	(0.0)	with	a	white	line,	and	1	SD	value	(0.003)	with	a	black	line.	
The y-	axis	shows	the	distribution	of	nAC0	and	the	mean	value	(0.017)	
with a white line and 1 SD	value	(0.023)	with	a	black	line
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By	contrast,	a	“global	node”	does	not	often	directly	connect	to	other	
nodes but connects with globally important nodes.

2.9 | Statistical analysis

To	 assess	 the	 statistical	 significance	of	 gender	 differences,	we	 first	
measured the mean network properties at each node for males and 
females.	Based	on	the	mean	values	of	nAC0	and	nAC1 for males and 
females	at	each	node,	these	nodes	were	classified	into	four	types	as	
described	above	(see	Figure	2).	Then,	we	measured	the	percentage	of	
each type of node among the tonal nodes at each region of the gray 
matter. The gray matter was classified into the following regions based 
on	the	AAL:	ventral	frontal	(FRv),	medial	frontal	(FRm),	lateral	frontal	
(FRl),	sensorimotor	(SM),	cingulate	(CIN),	lateral	parietal	(PAl),	medial	
parietal	(PAm),	insula	(INS),	limbic	(LIM),	temporal	(TE),	occipital	(OC),	
cerebellar	(CER),	BG,	and	TH.	The	classification	details	are	shown	in	
Table S1. We then used a chi- square test to assess the statistical sig-
nificance	of	the	difference	in	the	distribution	of	each	node	type	in	14	
regions	between	males	and	females.	Because	we	evaluated	four	node	
property	distributions,	p values were corrected for multiple compari-
sons	with	 Bonferroni’s	method.	 A	 statistically	 significant	 difference	
in	 the	distribution	 (the	percentage	of	 each	node	properties	 in	 each	
region)	suggests	that	the	male	brain	data	were	extracted	from	a	popu-
lation that was different from the population of female brain data. 
Furthermore,	we	performed	a	permutation	test	to	validate	the	differ-
ence in node property proportions in each region between males and 
females.	First,	200	participants’	data	were	randomly	divided	into	two	
groups	(100	participants	in	each	group),	and	the	mean	nAC0	and	nAC1 
values were calculated for each node to determine the node property 
for each node. The proportion of node types in each region was then 
measured,	and	the	difference	between	the	two	groups	was	calculated.	
This	procedure	was	repeated	10,000	times,	and	the	number	of	trials	
(n)	showing	a	difference	exceeding	the	original	data	 (the	proportion	
of	 the	node	 type	 in	a	 region	 for	males	minus	 that	 for	 females)	was	
counted	to	determine	the	“permutation	p	value”	(n/10,000).

Similarly,	we	 investigated	 the	 effect	 of	 the	 digit	 ratio	 and	men-
strual phase on the distribution of the node types.

3  | RESULTS

The	mean	age	and	head	motion	parameter	(mean	Power’s	FD)	were	
not	 significantly	 different	 between	 males	 and	 females	 (Table	1).	

Although	all	of	the	participants	were	right-	handed	(Edinburgh	hand-
edness	score	>70),	the	female	score	was	significantly	larger	than	that	
for	males	 (p	<	.05,	Mann–Whitney	U	 test).	 The	mean	digit	 ratio	 for	
males	 (0.938	±	0.026)	was	 significantly	 lower	 than	 that	 for	 females	
(0.951	±	0.030)	(Table	1).	Gray-	matter	volume	was	significantly	larger	
for	males	than	for	females,	but	the	ratio	to	TIV	was	larger	for	females	
than	 for	males,	 consistent	with	a	previous	study	 (Chen	et	al.,	2007;	
Gur	et	al.,	1999).

Table 2 shows the mean digit ratios for the subgroups divided by 
the mean digit ratios and menstrual phase. Mental activity during MRI 
acquisition was not significantly different between the two groups 
(p	>	.05,	chi-	square	test;	Figure	S1).	The	excluded	sessions	were	not	
significantly	different	between	the	two	groups	(Table	S2).	The	results	
for the different thresholds for adjacency matrix and preprocessing 2 
are shown in Supporting Information.

The	mean	(±SD)	values	for	nAC0,	nAC1,	and	GC	from	each	dataset	
are shown in Table 3. We first describe the results for preprocessing 1 
and the threshold of Z	=	2.58	for	an	adjacency	matrix	(see	Materials	and	
Methods)	and	then	the	results	for	the	other	datasets	in	the	Supporting	
Information.	The	mean	nAC0	value	was	0.0169	±	0.006,	and	the	mean	
GC	value	was	0.00	±	0.0031	for	this	dataset.	Table	4	shows	the	mean	
number of edges for the male and female groups and their subgroups. 
The	 mean	 number	 of	 edges	 for	 females	 (10.2	×	105	±	2.38	×	105)	
was	significantly	 larger	than	that	for	males	(9.52	×	105	±	2.18	×	105)	
(p	=	.042,	t	test).

3.1 | Gender differences in the distribution of the 
network properties

Figure	3a	shows	the	distribution	of	the	three	node	types	for	males	and	
females. Global nodes were mainly distributed in the frontal and TE 
areas for males and in the OC and CER areas for females. The percent-
age	of	each	node	type	in	the	14	regions	is	shown	in	Figure	3b.	A	chi-	
square test revealed that the distributions of the four node types for 
males	were	significantly	different	from	those	for	females	(p	<	.00001,	
chi-	square	test).	Moreover,	the	permutation	test	revealed	that	the	per-
centages	of	global	hubs	and	global	nodes	in	the	three	frontal	regions,	
CIN,	PAl,	 INS,	 and	BG	 for	males	were	 significantly	 larger	 than	 those	
for	females	(p	<	.05,	permutation	test).	By	contrast,	the	percentages	of	
global hubs and global nodes in the OC and CER regions for females 
were	significantly	larger	than	those	for	males	(p	<	.05,	permutation	test).

Because	 the	mean	handedness	 score	 for	males	was	 significantly	
lower	than	that	for	females	(Table	1),	we	checked	the	network	property	

TABLE  4 Number	of	edges

Male 
mean ± SD × 105 (N) p

Female 
mean ± SD ×105 (N) p

FOL 
mean ± SD ×105 (N)

LUT 
mean ± SD × 105 (N) p

ALL 9.52	±	2.18	(100) 10.2	±	2.38	(100) .042a 9.94	±	2.33	(53) 10.4	±	2.11	(40) .341b

High	2D:4D 9.42	±	2.22	(53)

.624c

10.4	±	2.53	(51)

.343c

10.3	±	2.53	(26) 10.3	±	1.88	(22) .967b

Low	2D:4D 9.64	±	2.16	(47) 9.95	±	2.21	(49) 9.62	±	2.12	(27) 10.5	±	2.41	(18) .204b

p values by t test abetween	males	and	females,	bbetween	follicular	phase	and	luteal	phase	females,	cbetween	high	and	low	digit	groups.	FOL,	follicular	phase;	
LUT,	luteal	phase.
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difference between males and females using data from participants 
whose	handedness	scores	were	100	(38	males	and	57	females).	Figure	
S2 shows that the distribution differences of the network properties 
in each region were remarkably similar to those for the data from all 
participants	 (Figure	3b),	 especially	 for	global	hubs	and	global	nodes.	
A	permutation	test	revealed	that	the	percentages	of	global	hubs	and	
global	nodes	in	the	PAl	region	for	males	were	significantly	larger	than	
those	for	females	(p	<	.01	and	p	<	.05,	respectively).	By	contrast,	the	
percentages of global hubs in the OC and CER regions for females 
were	 significantly	 larger	 than	 those	 for	males	 (p	<	.001	 and	p	<	.01,	
respectively).

The relationship between the gray- matter volume/ratio and net-
work	properties	(nAC0	and	nAC1)	for	each	participant	in	each	region	
is	shown	in	Figure	S3	and	S4.	There	was	no	significant	relationship	
between	these	values	in	all	regions	(p	>	.05,	Pearson’s	methods).	The	
relationship between the number of edges and network properties 
for	each	subject	at	each	 region	 is	shown	 in	Table	5	and	Figure	S5.	
This	 relationship	 varied	with	 both	 region	 and	 gender;	 in	 the	 FRm	
region,	 the	 number	 of	 edges	 was	 negatively	 related	 to	 the	 mean	
nAC0	and	nAC1	 for	 females	but	not	 for	males.	Furthermore,	 in	 the	
INS	region,	we	detected	a	positive	relationship	for	females	but	not	
for males.

F IGURE  3 Distribution	of	three	node	types	in	male	and	female	brains.	(a)	For	each	male	and	female	group,	we	calculated	the	mean	nAC0 and 
nAC1 values for each node to determine the node type using the data for an adjacency matrix with a threshold of Z	=	2.58	and	using	data	from	
preprocessing	1.	For	the	male	brain,	global	hubs	(magenta	voxels)	and	global	nodes	(yellow	voxels)	were	distributed	in	the	frontal,	cingulate,	and	
parietal	areas.	By	contrast,	these	hubs	were	more	dominant	in	the	occipital	and	cerebellar	regions	in	the	female	brain.	Cyan	voxels:	local	hubs.	
Local	nodes	are	not	shown.	(b)	The	percentages	of	global	hubs,	global	nodes,	local	hubs,	and	local	nodes	in	the	total	voxels	in	each	region	for	
male	and	female	groups	are	shown	with	separate	graphs.	A	chi-	square	test	revealed	that	the	all	four	node	type	distributions	were	significantly	
different	between	males	and	females	(p	values	corrected	with	Bonferroni’s	method	are	shown	in	each	graph).	A	permutation	test	showed	
significant	differences	in	the	percentage	of	node	types	across	the	different	regions	as	shown	by	asterisks:	*p	<	.05;	**p	<	.01;	***p	<	.001.	Closed	
columns:	male;	open	columns:	females.	FRv,	ventral	frontal;	FRm,	medial	frontal;	FRl,	lateral	frontal;	SM,	sensorimotor;	CIN,	cingulate;	PAl,	lateral	
parietal;	PAm,	medial	parietal;	INS,	insular;	LIM,	limbic;	TE,	temporal;	OC,	occipital;	CER,	cerebellar;	BG,	basal	ganglia;	TH,	thalamus
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3.2 | Effect of the digit ratio on the 
distribution of the network properties

The male and female groups were further divided into two subgroups 
based	 on	 their	 digit	 ratios	 (Table	2).	 For	males,	 the	 distributions	 of	
node types were significantly different between the two subgroups 
in	terms	of	global	hubs	and	global	nodes	(chi-	square	test,	p	=	.016	and	
.017,	 respectively;	 Figure	4a).	 A	 permutation	 test	 revealed	 that	 the	
percentage	 of	 global	 hubs	 in	 the	PAm	 region	 of	 the	 low	digit	 ratio	
group was significantly higher than that in the high digit ratio group 
(p	=	.032,	permutation	test).

For	 females,	 the	 distributions	 of	 node	 types	 were	 significantly	
different between the two subgroups in terms of global hubs and 
global	nodes	(chi-	square	test,	p	=	.005	and	2.81	×	10−4,	respectively;	
Figure	4b).	A	permutation	test	revealed	that	the	percentage	of	global	
nodes in the TE region for low digit ratio group was significantly higher 
than	that	for	the	high	digit	ratio	group	(p	=	.047,	permutation	test).

To investigate the effect of the digit ratio on the differences in 
network	properties	caused	by	the	menstrual	cycle,	we	first	compared	
node type distributions between the follicular and luteal phases. 
When the effect of menstrual phase was assessed by a permutation 
test	using	data	from	93	females,	we	did	not	find	any	significant	differ-
ence,	although	a	chi-	square	 test	 revealed	 that	 the	global	hub	distri-
butions	were	affected	the	by	the	menstrual	phases	(Figure	5a).	Next,	
we assessed the effects of menstrual phase using two further sub-
groups	(one	for	low	digit	ratios	and	another	for	high	digit	ratios).	For	
the	 low	digit	 ratio	 group,	menstrual	 phase	 affected	 the	 distribution	
of	 global	 hubs,	 global	 nodes,	 and	 local	 nodes	 (Figure	5b).	A	 permu-
tation	 test	 revealed	 that	 the	 percentage	 of	 global	 hubs	 in	 the	 FRm	
region for the follicular phase group was significantly higher than that 

for	 the	 luteal	 phase	 group	 (p	=	.016,	 permutation	 test).	By	 contrast,	
the percentage of global hubs in the SM region for the luteal phase 
group was significantly higher than that for the follicular phase group 
(p	=	.049,	permutation	test).	For	the	high	digit	ratio	group,	menstrual	
phase significantly affected the distribution of the four node types 
(Figure	5c).	A	permutation	test	revealed	that	the	percentages	of	global	
nodes	 in	the	SM,	 INS,	and	BG	regions	for	the	follicular	phase	group	
were	significantly	higher	than	those	for	the	luteal	phase	group	(p	<	.05,	
permutation	test).

4  | DISCUSSION

Gender	 (male	and	 female),	 the	2D:4D	digit	 ratio	 (low	and	high	digit	
ratios),	and	menstrual	phase	(follicular	and	luteal	phases)	all	showed	
statistically significant differences in the distribution of brain network 
properties	across	several	brain	regions,	even	though	there	were	some	
differences in our results due to the preprocessing of rs- fMRI data.

4.1 | Effects of gender on the brain networks

Most	 brain	 regions,	 including	 the	 subcortical	 regions	 such	 as	 the	
BG	 and	 the	 CER,	 showed	 gender	 differences	 in	 the	 distribution	 of	
network	properties	 except	 the	PAm,	 SM,	 and	 LIM	 regions,	 and	 the	
TM.	On	average,	males	had	a	higher	percentage	of	global	hubs	and	
global	nodes	in	the	frontal,	CIN,	and	PAl	regions;	by	contrast,	females	
showed higher percentages of these nodes in the OC and CER re-
gions	than	did	males	(Figure	3).	Similar	results	were	obtained	for	the	
other datasets with different threshold Z values that were used to cre-
ate	an	adjacency	matrix	(Figure	S6)	and	with	different	preprocessing	

nAC0 nAC1

Male Female Male Female

FRv – – – –

FRm – −0.336	(6.38	×	10−4) −0.232	(0.0200)

FRl – – – –

SM – – – +0.282	(4.50	×	10−3)

CIN – – – –

PAl −0.359	(0.00024) −0.444	(3.62	×	10−6) – −0.235	(0.0185)

PAm −0.318	(0.00126) −0.219	(0.0283) – –

INS – +0.467	(9.65	×	10−7) – +0.354	(3.08	×	10−4)

LIM +0.394	(5.08	×	10−5) +0.475	(6.04	×	10−7) +0.450	(2.60	×	10−6) +0.547	(3.94	×	10−9)

TE – – – –

OC – – – –

CER +0.311	(0.00162) +0.199	(0.0468) +0.203	(0.0428) –

BG +0.465	(1.12	×	10−6) +0.544	(4.90	×	10−9) +0.260	(9.11	×	10−3) +0.408	(2.51	×	10−5)

TH +0.565	(9.37	×	10−10) +0.514	(4.47	×	10−8) +0.427	(9.65	×	10−6) +0.560	(1.33	×	10−9)

Values	are	presented	as	Pearson’s	correlation	coefficients	between	the	number	of	edges	and	mean	
nAC0/nAC1 in each region for each participant with uncorrected p	values	in	parentheses.	Values	are	
omitted when p ≧	.05.	See	the	Figure	3	legend	for	region	abbreviations.

TABLE  5 Correlation between the 
number of edges and network properties in 
each region
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strategies	to	reduce	nuisance	noise	(Figure	S7).	Consequently,	these	
results suggest that brain network properties in males constitute a dis-
tinct population compared with those in females. These results may 
agree with a previous analysis of functional connectivity that showed 
a higher number of connections between modules in males than in fe-
males	(Satterthwaite	et	al.,	2015),	because	we	found	a	higher	number	
of	global	hubs	 in	males	 than	 in	 females	 (see	Figure	3a).	That	 is,	be-
cause global hubs are by definition expected to have a larger number 
of connections with other communities than with local nodes.

Global signal regression increased the detectability of gender dif-
ferences in the network properties of our data. When global signal 
regression and head motion regression were omitted during the pre-
processing	stage,	a	permutation	test	detected	significant	differences	
in	the	percentages	of	node	types	in	the	nine	regions	(Figure	S7).	The	
number	of	regions	increased	to	32	regions	(Figure	3)	with	the	global	
signal	and	head	motion	regressions	(preprocessing	1).	We	considered	
that	at	 least	for	our	data,	global	signal	 (and	head	motion)	regression	

increased sensitivity to distinguish gender differences in the network 
properties,	because	nonsignificant	differences	with	a	similar	tendency	
were	 found	 for	 most	 regions	 using	 data	 from	 preprocessing	 2	 (no	
global	signal	and	head	motion	regressions;	Figure	S7):	Percentage	of	
global hubs and global nodes in the frontal and lateral parietal regions 
for	males	are	larger	than	those	for	females.	By	contrast,	female	domi-
nance of the global hubs and global nodes in the OC and CER regions 
were found only for the data from preprocessing 1. When data from 
preprocessing	 2	were	 used,	 almost	 all	 nodes	 in	 these	 regions	were	
identified	as	local	nodes	(Figure	S7).

Previous whole- brain functional connectivity studies in a rela-
tively large number of participants revealed various differences in 
terms	 of	 network	 organizations	 between	 males	 and	 females	 (Allen	
et	al.,	2011;	Biswal	et	al.,	2010;	Filippi	et	al.,	2013;	Jung	et	al.,	2015;	
Satterthwaite	 et	al.,	 2015;	 Scheinost	 et	al.,	 2015;	Tomasi	&	Volkow,	
2012;	Zhang	et	al.,	2016),	although	some	studies	did	not	(Bluhm	et	al.,	
2008;	Weissman-	Fogel,	Moayedi,	Taylor,	Pope,	&	Davis,	2010).	These	

F IGURE  4 Effects	of	the	digit	ratio	on	brain	network	properties.	The	percentage	of	each	node	types	in	each	region	for	males	(top)	and	for	
females	(bottom)	is	shown	as	in	Figure	3.	Chi-	square	test	results	are	shown	by	p	values	(corrected	with	Bonferroni’s	method)	in	each	graph.	The	
results	from	a	permutation	test	are	also	shown	by	an	asterisk	(*p	<	.05).	Closed	columns:	low	digit	ratio	group;	open	columns:	high	digit	ratio	
group
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F IGURE  5 Effects	of	menstrual	phase	on	network	properties.	The	percentage	of	each	node	type	in	each	region	is	shown	as	in	Figure	3.	 
(a)	The	results	for	the	data	for	47	follicular	phase	and	46	luteal	phase	females.	(b)	The	results	for	the	low	digit	ratio	group.	(c)	The	results	for	
the high digit ratio group. Chi- square test results are shown by a p	value	(corrected	with	Bonferroni’s	method)	in	each	graph.	Permutation	test	
results	are	shown	by	asterisks	(*p	<	.05;	**p	<	.01).	Closed	columns:	follicular	phase	group;	open	columns:	luteal	phase	group.	FOL,	follicular	
phase;	LUT,	luteal	phase
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findings suggest the existence of gender differences in the functional 
network organization of the brain but also indicate that these differ-
ences	are	very	subtle	and	difficult	to	distinguish.	As	shown	in	Figure	
S5,	the	distributions	overlap	too	much	to	support	a	dimorphic	view	of	
gender-	related	differences	in	brain	function	(Joel	et	al.,	2015).	These	
inconsistent	 differences	 (brain	 regions	 and	 functional	 connectivity	
strength)	between	males	and	females	could	also	be	due	to	the	func-
tional connectivity parameters being measured and the preprocessing 
methods	utilized.	Thus,	 it	 is	difficult	 to	 compare	our	present	 results	
with	those	of	previous	studies	because	we	evaluated	both	local	(nAC0)	
and	global	 (nAC1)	 functional	 connectivity	 strength	 at	 each	node	 for	
the	 first	 time.	However,	 our	 present	 study	 showed	 the	 distinct	 dif-
ferences in the population of the network properties of the brain 
between	males	and	females	even	after	matching	for	age,	educational	
level,	handedness,	MRI	acquisition	time	and	MRI	equipment.

Gray- matter volume does not appear to affect our network prop-
erty analysis because there was no significant relationship between 
the	gray-	matter	volume/ratio	and	network	properties	(Figures	S3	and	
S4).	The	mean	number	of	 edges	 for	 females	was	 significantly	 larger	
than	that	for	males	(Table	4),	which	is	consistent	with	a	previous	struc-
tural	connectivity	study	(Szalkai,	Varga,	&	Grolmusz,	2015).	However,	
this finding cannot account for the difference in the brain network 
properties	between	males	and	females	for	the	following	reasons:	First,	
the number of edges was not simply related to network properties; 
the	 relationship	varied	among	 regions	and	with	gender	 (Table	5	and	
Figure	S5).	Second,	our	results	for	other	datasets	(preprocessing	1	and	
threshold Z	=	1.96,	and	preprocessing	2	and	threshold	Z	=	2.58)	also	
showed	similar	gender	differences	in	network	properties,	even	though	
the mean number of edges did not differ between males and females 
(Figure	S6a	and	S7).

Most	likely,	functional	brain	network	changes	with	the	menstrual	
cycle in females cannot account for the distinct differences between 
males	 and	 females.	Although	we	 found	 significant	 difference	 in	 the	
distributions of global hubs between the follicular and luteal phases 
(p	=	.043	corrected	for	multiple	comparison	with	Bonferroni’s	method,	
chi-	square	test;	Figure	5),	the	significance	level	was	marginal,	and	the	
permutation test did not find any significant differences in the per-
centage	of	global	hubs	between	the	two	phases,	suggesting	that	the	
effects of the menstrual cycle were not be so large as the effects of 
gender differences.

Interestingly,	mental	 activity	 during	MRI	 acquisition	 did	 not	 dif-
fer	between	males	and	females,	despite	 the	different	brain	network	
properties. Mental activity at rest is likely related to a default network 
(Buckner,	Andrews-	Hanna,	 &	 Schacter,	 2008;	 Kucyi	 &	Davis,	 2014;	
Mason	et	al.,	2007)	and	 its	 interaction	with	other	networks	 (Doucet	
et	al.,	 2012).	 Moreover,	 gender	 differences	 in	 the	 default	 network	
have	been	reported	(Biswal	et	al.,	2010;	Jung	et	al.,	2015).	Our	results	
also suggest a default network difference between males and females 
because we found differences in the percentages of global hubs within 
the	cardinal	regions	for	the	default	network	such	as	the	FRm	and	PAl	
regions	(Figure	3a).	One	possibility	is	that	the	ReSQ	could	not	detect	
gender differences because of the simple classification of its contents. 
Another	 possibility	 is	 that	 the	 gender	 differences	 in	 brain	 network	

properties developed in a manner that achieves similar behavioral and 
cognitive outcomes by compensating for the effects of sex hormone 
levels,	which	 may	 lead	 to	 the	 undesirable	 dimorphic	 gender	 differ-
ences	as	proposed	by	De	Vries	(De	Vries,	2004).

4.2 | Effects of the digit ratio on the brain 
network properties

The	 2D:4D	 digit	 ratio	 is	 related	 to	 prenatal	 sex	 hormone	 levels	
(Manning	et	al.,	2003,	2014).	For	the	first	time,	our	present	study	re-
vealed that the digit ratio differentially affects the brain networks of 
adult	males	and	females.	In	particular,	the	percentage	of	global	hubs	
in	the	PAm	region	for	the	low	digit	ratio	group	of	males	was	signifi-
cantly	higher	than	that	for	the	high	digit	ratio	group.	By	contrast,	the	
percentage of global nodes for the female low digit ratio group in the 
TE region was significantly higher than that for the high digit ratio 
group.	The	PAm	region	includes	the	posterior	cingulate	cortex	(PCC)	
and	 precuneus,	which	 is	 the	 core	 of	 the	 default	 network	 (Greicius,	
Krasnow,	Reiss,	&	Menon,	2003)	and	 is	 related	to	various	cognitive	
tasks	(Utevsky,	Smith,	&	Huettel,	2014).	A	recent	study	showed	that	
the	connectivity	(degree	centrality)	of	the	PCC	in	the	resting	state	is	
related	to	the	speed	of	task	performance	(Lin	et	al.,	2016).	The	task	
performance of financial traders is inversely related to the digit ratio 
(Coates,	Gurnell,	&	Rustichini,	2009).	Thus,	our	 finding	 that	 the	 low	
digit	ratio	group	had	higher	percentage	of	global	hubs	in	the	PAm	re-
gion than did the high digit ratio group may indicate the neural cor-
relate	of	task	performance	of	financial	traders.	However,	these	results	
varied	 among	 different	 preprocessing	 strategies	 (see	 Figures	4	 and	
S8).	These	differences	might	be	due	 to	 the	noise	 that	could	not	be	
removed in preprocessing 2 as seen for the other results.

4.3 | Effects of menstrual phase on the brain 
network properties

In	 females,	 the	menstrual	cycle	 influences	brain	activity	 (Sundstrom	
Poromaa	 &	 Gingnell,	 2014;	 Thimm	 et	al.,	 2014;	 Weis	 et	al.,	 2008;	
Zhu	et	al.,	2015)	and	is	suggested	to	influence	brain	functional	con-
nectivity	(Arelin	et	al.,	2015;	Weis	et	al.,	2011)	via	levels	of	sex	hor-
mones such as progesterone and estrogen. The reason why several 
studies did not show any difference in resting- state functional con-
nectivity	across	menstrual	phases	(De	Bondt	et	al.,	2015;	Hjelmervik,	
Hausmann,	Osnes,	Westerhausen,	&	Specht,	2014;	Syan	et	al.,	2017)	
could be due to an insufficient number of participants to reveal subtle 
changes in the brain functional connectivity.

The effects of the menstrual cycle on the brain network proper-
ties	might	be	different	between	the	 low	and	high	digit	 ratio	groups,	
because a permutation test more often revealed differences in brain 
regions	(five	regions)	in	the	low	digit	ratio	groups	than	in	the	high	digit	
ratio	group	(three	regions)	for	the	global	hubs	and	global	nodes	 in	a	
different	manner	(Figure	5).	The	results	may	be	related	to	the	previous	
our	 study	 that	 showed	women	with	 a	 higher	 right	 2D:4D	 ratio	 had	
lower	premenstrual	symptom	severity	 (Kaneoke	et	al.,	2017).	Similar	
results	were	observed	for	the	data	with	preprocessing	2	(Figure	S9).	
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Furthermore,	a	recent	study	showed	that	the	effects	of	testosterone	
administration on female brain functional connectivity vary with digit 
ratios	 (Chen	et	al.,	2016),	which	 suggests	 that	 the	prenatal	 sex	hor-
mone exposure affects female brain functional changes with sex hor-
mones in adulthood.

4.4 | Limitations

Here,	we	note	several	 limitations	of	the	results	in	this	study.	We	used	
the	2D:4D	digit	ratio	for	the	estimation	of	prenatal	sex	hormones	expo-
sure.	Although	the	prenatal	sex	hormones	causally	affect	the	2D:4D	ratio	
in	animal	experiments	(Zheng	&	Cohn,	2011),	and	substantial	evidence	
supports the relationship between prenatal sex hormones levels and the 
2D:4D	ratio	(Manning	et	al.,	2014),	the	2D:4D	ratio	is	also	affected	by	
several	other	factors,	such	as	genetic	influences	and	environmental	fac-
tors	(Hiraishi,	Sasaki,	Shikishima,	&	Ando,	2012).	Further,	the	effects	of	
the	2D:4D	ratio	on	the	brain	network	were	investigated	by	the	groups	
classified	by	the	median	2D:4D	ratio,	which	depends	on	the	population	
studied and does not provide information regarding the amount of pre-
natal	sex	hormones.	Thus,	the	results	could	potentially	vary	to	some	ex-
tent based on the population studied.

Second,	 it	 should	 be	 noted	 that	 we	 estimated	 the	 menstrual	
phase by the last menstrual date; we did not measure the levels of 
sex hormones at the time of the experiment. Estrogen levels markedly 
changes	in	the	follicular	phase,	and	the	functional	connectivity	in	spe-
cific	regions	changes	with	estrogen	levels	(Engman,	Linnman,	Van	Dijk,	
&	Milad,	2016;	Lisofsky	et	al.,	2015).	Thus,	 the	effects	of	menstrual	
phase on brain network properties must be more precisely evaluated 
with sex hormone levels in future studies.

Third,	 according	 to	 our	 recent	 study,	 females	with	 a	 lower	 digit	
ratio of the right hand tend to have greater premenstrual symptoms 
(Kaneoke	et	al.,	2017).	Thus,	our	low	digit	ratio	group	may	have	more	
participants with premenstrual syndrome and premenstrual dysphoric 
disorder	than	the	high	digit	ratio	group,	which	could	affect	the	results	
(Comasco	&	Sundstrom-	Poromaa,	2015).	Mental	states	for	both	male	
and female participants were not evaluated to examine the effects of 
psychiatric	disorders	on	the	functional	connectivity.	However,	it	is	un-
likely that students in a depressive state would come to an unfamiliar 
institute to participate in an experiment.

5  | CONCLUSION

In	 conclusion,	 this	 study	 showed	 that	 the	 distribution	 of	 brain	 net-
work	properties,	as	determined	by	nAC,	was	different	between	males	
and	females,	even	though	some	results	varied	due	to	differences	 in	
rs-	fMRI	data	processing.	The	2D:4D	digit	ratio	differentially	affected	
the brain network property distributions of both males and females. 
In	females,	menstrual	phase	affected	the	brain	network	property	dis-
tribution,	which	varied	with	the	2D:4D	digit	ratio.	These	results	sug-
gest	 that	 the	 functional	brain	network	properties	vary	with	gender,	
prenatal	sex	hormone	exposure,	and	the	menstrual	cycle.	These	fac-
tors might be important for elucidating the fundamental mechanisms 

underlying how gender differences occur in brain disorders and how 
sex hormones affect their prevalence and symptoms.
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