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In a very fascinating read, John Goodsir, a Scottish surgeon, describes how he iso-
lated “vegetable organisms” from the “ejected fluid” from the stomach of his 19-year-old
patient. He named the organism Sarcina ventriculi and prescribed antibacterial creosote
drops, resulting in the elimination of symptoms [1]. This was probably the first case where
human gastrointestinal microbiota was associated with disease. Since then, many more
causative links have been established between microorganisms and infectious diseases
such as typhoid fever, tuberculosis, and plague [2–4]. The advent of omics technologies
has accelerated our understanding of the role of the gut microbiota in human physiology.
Microbes are now known to modulate vitamin biosynthesis [5], maturation of the gas-
trointestinal tract and the immune system [6], protection against pathogens [7], and the
development of non-communicable diseases such as obesity, metabolic syndrome, asthma
and cancer [8].

Natural history studies of the human gut microbiome present the new-born infant to
harbor a sparse gut microbiome [6,9], which then evolves by about 3 years of age to a 3
to 10 trillion cell community [6,10]. Healthy development of the gut microbiome within
the first 1000 days of life is believed to be important for protection against many diseases
later in life [11,12]. A diet incorporating fiber-rich or fermented foods has been shown to
modulate gut microbiota in humans, from infants to adults [11,13–15]. The fiber reaches
the large intestine and serves as a source of carbon for the microbial community, which
in turn generate metabolites, mainly short chain fatty acids (SCFAs) that nourish both the
microbiota and the host [7,16].

This Special Issue includes nine original articles and reviews that encompass the
microbiome story at different stages of life and health. Three papers focus on the role
of maternal microbiome or various foods on developing infant gut microbiome through
weaning periods. In a review on the maternal microbiome, the authors examine how the
mother’s oral, gut, and vaginal microbiota changes throughout pregnancy in parallel with
her hormonal levels [17]. The review examines maternal microbial dysbiosis mediated
mechanisms contributing to gestational diabetes and preeclampsia in the mother, and fetal
growth restriction, preterm/still birth, or infections in the infant. Once the infant is born, the
food ideally recommended is the mother’s milk, as it helps seed and feed up to 30% of the
infant gut microbiota [18–20]. In a study based out of Indonesia, the authors followed the
microbiome in 51 mother–infant dyads from birth to two years of age [21]. The dominant
microbes in the mothers’ milk were Staphylococcus and Streptococcus, while maternal feces
were dominated by Prevotella 9 and members of the Clostridium cluster IV. Feces of 3-month-
old infants were dominated by B. longum subsp. infantis and B. bifidum, that are well-known
for their capacity to metabolize the oligosaccharides in breastmilk [22,23]. As the infant
grows, it is recommended that a more complex diet, including plant-based foods, meat and
dairy, complement the breastmilk to meet the infant’s growth and development needs [11].
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Thirty-two ingredients relevant for the formulation of infant-complementary foods were
shown to differentially modulate the developing infant microbiome using an in vitro gut
model [24]. The well-validated laboratory simulation of digestion and colonic fermentation
employed in this study also offers an opportunity to examine how food blends can support
age-specific or personalized changes in the developing infant microbiome [25,26].

Three original studies in this Special Issue describe health–microbiome interactions
in three disease states. The study by Esparbès and colleagues examined the subgingival
microbiota and cytokines in adult volunteers with periodontitis [27]. This is the first study
comparing these parameters in healthy and diseased sites in the oral cavity of the same
individual. The diseased oral sites had higher relative abundances of Synergistetes and
Spirochaetes, while the healthy sites were enriched in Actinobacteria. They also identified
Desulfobulbus, Filifactor and TM7 as potential biomarkers of periodontitis, concurring with
data reviewed by Patini and colleagues [28]. The second study is a pilot clinical trial
examining microbial differences at the species level between morbidly obese and normal
weight subjects [29]. Using a commercially available qPCR-based Precision Microbiome
Profiling (PMP™) method they found significant changes in the relative abundance of 17
of the 104 species analyzed. Of note were the decreases in Akkermansia muciniphila, two
Bifidobacterium species, many butyrate producers including Faecalibacterium prausnitzii and
Ruminococcus bromii, and one methanogen Methanobacter smithii. Many of these microor-
ganisms have shown significant inverse correlations with body mass index in previous
studies [30–34]. The third study is the first of its kind to detail the microbiome changes in
adults with phenylketonuria (PKU) [35]. The key finding of this study was that, compared
to the control group, PKU positive gut microbiome was poorer in the clostridial members
Faecalibacterium, an unknown Lachnospiraceae and Romboutsia, and richer in Enterocloster
(also a Lachnospiraceae member). Further metagenomic studies will provide useful insights
to evaluate dietary strategies for PKU patients.

The role of the gut microbiota in dietary fiber metabolism to SCFAs and the consequent
physiological outcomes is well characterized [7,11,16]. Microbiota also breaks down other
diet-derived molecules such as polyphenols to generate metabolites that have a prebiotic
effect [36,37]. Kiwifruit is a source of fiber and polyphenols that have been shown to be
accessed and metabolized by gut microbiota, using an in vitro model of gastrointestinal di-
gestion and fermentation [38]. Parkar and colleagues used a similar in vitro approach again
to demonstrate that the digested green and gold-fleshed kiwifruit are rich in precursors
of dopamine and serotonin, respectively [39]. At the colonic fermentation stage, the green
and gold-fleshed kiwifruit increased L-dihydroxyphenylanine (L-DOPA, the dopamine
precursor) and γ-aminobutyric acid (GABA), respectively. The digesta and fermenta, when
incubated with gut epithelial cells, modulated genes related to gut tight junction, inflam-
mation, and circadian rhythm. This study indicates that kiwifruit is potentially a source
of physiologically relevant biogenic amines that are associated with functions such as
sleep [40]. Indeed, kiwifruit has been shown to potentiate sleep via pathways implication
serotonin and GABA [41,42]. On a similar theme, another article reviews edible mushrooms
as microbiome-modulating functional foods [43]. Mushrooms are rich sources of β-glucan
polysaccharides that have a prebiotic effect. The authors also review herbal beverages and
their polyphenols, which act both as antioxidants and as prebiotics. Both mushrooms and
herbal teas are also a source of microRNAs (miRNAs) that can interact with gut bacteria.

Lastly, this Special Issue features a review of gut microbial pathways resisting colo-
nization of the pathogen Clostridiodes difficile in the large intestine [44]. C. difficile infection
(CDI) causes severe diarrhea and colitis, with significant morbidity and fatality rates. While
antibiotics are used for CDI management, microbial pathways may potentiate coloniza-
tion resistance against C. difficile. Microbial metabolites, such as secondary bile acids,
SCFAs, antimicrobials, or competition for nutrients such as proline, that are required by the
pathogen for proteolytic fermentation, offer directions to develop new therapeutics against
this gut infection.
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Collectively, the original articles and reviews in this Special Issue present a blend
of valuable data and insights adding to the growing body of knowledge in the field of
diet–microbiome–host interactions.
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