
NDT Plus (2008) 1 [Suppl 4]: iv18–iv22
doi: 10.1093/ndtplus/sfn119
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Abstract
Objective. This study reviews the relevant publications on
the clinical effects of icodextrin in peritoneal dialysis (PD).
Design. The study provides a systematic review of the liter-
ature (MEDLINE search with icodextrin as the keyword).
Results. Icodextrin induces sustained transcapillary ultra-
filtration during long dwell periods. It also stimulates in-
creased removal of sodium by the peritoneal membrane,
reduction of extracellular water (ECW) and total body wa-
ter (TBW). Effects of icodextrin on blood pressure control
and residual renal function are discrepant. Icodextrin in-
duces a reduction in the formation of advanced glycation
end-products, while the longitudinal changes in the peri-
toneal membrane transport are less prominent.
Conclusions. Use of icodextrin in PD improves the sodium
and fluid balance. Icodextrin is potentially more biocom-
patible, when compared with the conventional glucose so-
lutions. The side effects are rare.
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Introduction

Icodextrin is an alternative to the hyperosmolar glucose
containing solutions in peritoneal dialysis (PD). Icodextrin
is an iso-osmolar dialysis solution that consists of a mixture
of high molecular weight water-soluble polymers of glu-
cose, isolated by the fractionation of hydrolyzed cornstarch
[1], which induces sustained transcapillary ultrafiltration
through colloid osmosis during dwells of >12 h. Peritoneal
ultrafiltration with icodextrin is ideal than the 1.36% and
2.27% glucose solutions, and in general, comparable with
the 3.86% glucose solution [2].

This review focuses on the clinical effects of icodextrin
on the sodium and fluid balance in PD. Furthermore, the
discrepant effects of icodextrin on blood pressure control
and residual renal function (RRF) are also discussed. The
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effects of icodextrin on the peritoneal membrane, biocom-
patibility and its side effects are also discussed.

Effects of icodextrin on extracellular and total
body water

Among the several studies on icodextrin, two randomized
controlled trials have been studied on the effects of icodex-
trin on fluid status [3–7]. The two randomized controlled
trials [3,6] showed a reduction in extracellular water (ECW)
or total body water (TBW) with the use of icodextrin. In
the study by Konings et al. [6], the left ventricular mass
decreased in the group randomized to icodextrin.

Woodrow et al. [4] inferred that the ECW and TBW de-
cline with the use of icodextrin in automated peritoneal
dialysis (APD) patients. In the cross-sectional study by
Boudville et al. [7], the APD patients on icodextrin had a
significantly lower ratio between the ECW and intracellu-
lar water, compared with patients treated with conventional
glucose solutions. Ultimately, there appears to be an overall
agreement between the studies concerned with the effects
of icodextrin on volume status. The use of icodextrin may
also reduce the dropout from PD treatment—in a recent
retrospective study from Japan, the treatment dropout rate
and even mortality were significantly reduced in patients
treated with icodextrin [8].

Effects of icodextrin and hypertonic glucose
on RRF

Despite the fact that continuous fluid removal can be
achieved with PD, chronic fluid overload is a common
problem, particularly in anuric PD patients, leading to the
high prevalence of hypertension and left ventricular hyper-
trophy in them [9,10]. One of the contributing factors to
chronic fluid overload in PD patients is the decline in the
peritoneal ultrafiltration capacity, caused by diabetiform al-
terations of the peritoneal capillaries, due to the long-term
effects of high glucose concentrations in the peritoneal cav-
ity [11]. This leads to an increased uptake of the glucose
from the PD solution into the peritoneal capillaries, and a
subsequent loss of the osmotic gradient and ultrafiltration
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capacity. To increase the peritoneal ultrafiltration, higher
glucose concentrations are prescribed, resulting in greater
exposure of the peritoneal membrane to glucose and in-
creasing peritoneal damage [9]. Predominantly, in patients
with high transport ultrafiltration failure of the peritoneal
membrane, the use of conventional glucose solutions may
result in insufficient peritoneal fluid removal, owing to the
rapid uptake of glucose through the peritoneal membrane.
In addition to the loss of peritoneal ultrafiltration capacity,
a progressive decline in RRF and a subsequent loss of urine
production have an adverse impact on the balance between
the fluid intake and removal in PD patients [3].

In the study by Gunal et al. [12], a significant decrease in
the blood pressure and cardiothoracic index was observed
when the peritoneal ultrafiltration was increased with the
use of hypertonic glucose solutions. However, in our re-
search, the RRF and urine volume declined to a highly
significant degree.

In contrast, according to both Davies et al. and Plum
et al., despite an increase in the peritoneal ultrafiltration,
no adverse effects were observed on the RRF [3,5]. Davies
et al. showed that the RRF was better preserved with the use
of icodextrin than with the standard glucose solutions [5].
As discussed earlier, it has been suggested that a relative
preservation of the intravascular volume, due to the oncotic
effect of the icodextrin metabolites, might be an important
factor concerned with the preservation of renal function,
despite the reduction in ECW [13]. Also, the results from
the NEPP study [14] did not suggest any adverse effects of
the use of icodextrin on RRF.

In contrast, the findings of Konings et al. revealed a much
higher baseline RRF and a greater decline in the RRF with
the use of icodextrin, when compared with the results of
Davies et al. and Plum et al. [3,5,6]. Probably, the patients
in Konings’ study may have been less overfilled at the base-
line [15], although a direct comparison between the fluid
status in the various studies cannot be made. However, it
is quite likely that the arterial underfilling played a role in
the decline of RRF in Konings’ study. Four patients were
found to be severely underfilled (according to the normal-
ized ECW values) [16]. When the underfilled patients after
icodextrin treatment were excluded from the analysis, the
decline in RRF did not differ much between the patients
treated with icodextrin and the control subjects (−1.0 ±
1.6 versus −0.6 ± 0.8 ml/min; P = 0.6), whereas the fall in
RRF in the underfilled patients was higher than the other
subjects (−3.2 ± 2.4 ml/min versus −1.0 ± 1.6 ml/min;
P = 0.055) [17].

Patients with a more advanced decline in RRF, as docu-
mented in the studies by Davies and Plum [3,5], may have
been more overfilled at the start of the study, and therefore,
it is less likely that the use of icodextrin would have resulted
in underfilling.

Effects of icodextrin on sodium balance
and blood pressure

The net sodium balance in PD depends on the sodium
intake, urinary sodium excretion and peritoneal sodium

removal. Peritoneal sodium removal appears to be increased
with the use of icodextrin [3], which may be due to both
the enhanced ultrafiltration and the reduction in sodium
sieving, due to the induction of ultrafiltration by colloid
osmosis during the use of icodextrin, with a lesser role for
aquaporin-mediated water transport [18].

With a strict sodium restriction and an increased use of
3.86% glucose solutions, Gunal et al. observed a reduction
in blood pressure in the overfilled continuous ambulatory
peritoneal dialysis (CAPD) patients [12]. In contrast, de-
spite an improvement in the fluid status, the use of icodex-
trin did not result in the decrease in blood pressure in the
studies by Davies et al. and Konings et al., and even ap-
peared to result in a small increase in blood pressure in
the study by Plum et al. [3,5,6]. In contrast, according
to the study by Woodrow et al., the systolic blood pres-
sure declined in the APD patients, who switched over to
icodextrin for the long dwell [4]. There are three potential
explanations for these conclusions. First, the improvement
in fluid status (mean decline in ECW, which was 1.7 L and
1.0 L, according to Konings et al. [6] and Davies et al. [5],
respectively) might have been too small to bring about a
significant improvement in the blood pressure control. In-
deed, the decline in the body weight, with the approach of
Gunal et al. [12], using hypertonic glucose solutions, was
much larger (−4 kg). Second, owing to the oncotic effect
of icodextrin metabolites that enter the systemic circulation
[19,20], the blood volume might have remained relatively
stable in icodextrin-treated patients, despite a decrease in
ECW. Third, in some of the studies, the observational pe-
riod might be too short to monitor the changes in the blood
pressure owing to the ‘lag’ phenomenon [21], although
this holds true for the long-term studies, such as those by
Konings et al. [6] and Davies et al. [5].

Moreover, dietary sodium intake was not strictly con-
trolled in all the studies. As sodium balance is dependent
on the relation between the intake and output, especially
in anuric PD patients, a reduction in sodium intake, along
with the use of icodextrin is vital to maintain the sodium
balance with less increase in the extracellular volume and
blood pressure, compared with the conventional glucose-
containing solutions [22]. The maintenance of sodium bal-
ance is also important for volume-dependent effects. In
this aspect, a reduction in the tissue renin–angiotensin–
aldosterone system activity, due to sodium restriction, could
have additional beneficial effects on the blood pressure con-
trol and cardiovascular structure. Also, the recent concept
of non-osmotic storage of sodium in the body, especially in
the skin [23], may be significant, although its relevance is
still unknown.

Effects of icodextrin on intravascular volume
and water balance

Because of the oncotic effect of icodextrin metabolites that
enter the systemic circulation [19,20], resulting in thirst,
increased fluid intake and subsequently to pseudohypona-
traemia, the blood volume might have remained relatively
stable in icodextrin-treated patients, in spite of the decrease
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in ECW. Some icodextrin metabolites might enter the sys-
temic circulation, after being degraded to oligosaccharides
(maltose, maltotriose and maltotetraose) and eventually to
glucose [19,20]. This may be supported by the fact, as re-
ported by Davies et al., that the atrial natriuretic peptide,
a surrogate marker of the intravascular fluid status, did not
decline in the icodextrin-treated patients [13], whereas it de-
creased in patients treated with standard glucose solutions.
In another study, the atrial natriuretic peptide was found to
increase after the treatment with icodextrin [24]. In con-
trast, the fact that the left ventricular mass decreased in the
study by Konings et al. [6] suggests that the intravascular
volume also declines.

Thus, the effects of icodextrin on surrogate markers of in-
travascular fluid volume remain to be elucidated. Available
indirect evidence would suggest that with a small decline
in ECW, the intravascular fluid volume remains stable or
even increases with the use of icodextrin, potentially due to
the oncotic effects of the icodextrin metabolites, whereas
with larger declines in ECW, the intravascular volume also
decreases [4,6]. Future studies, assessing changes in the
plasma volume after icodextrin prescription, are required
to confirm this hypothesis.

Effects of icodextrin on the peritoneal membrane

Icodextrin has a pH of 5.8, uses lactate as a buffer and con-
tains relatively low levels of glucose degradation products
(GDP), such as glyoxal (GO), methylglyoxal (MGO) and
3-deoxyglucosone (3-DG), compared with the 1.36% glu-
cose solutions [25]. The GDPs are reactive carbonyl com-
pounds, which may, among others, induce the production
of advanced glycation end products (AGE). Although their
relevance with PD is not completely elucidated, AGE com-
pounds may have adverse effects on the peritoneal mem-
brane and cardiovascular status [26].

Owing to the reduction in GDPs, the icodextrin may seek
to reduce AGE formation, becoming more biocompatible
than the conventional glucose-containing dialysis solutions
[25]. Indeed, Ueda et al. showed a significantly lower gener-
ation of Nε-carboxymethyllysine (CML), as compared with
the standard 1.36% glucose solutions [25]. A significant
reduction in the carbonyl stress and lower CML gener-
ation was observed during a single dwell of icodextrin,
when compared with the standard 1.36% glucose solutions
[25]. Posthuma et al. also observed lower formation of
AGE products after in vitro incubation of albumin with
icodextrin, when compared with the conventional glucose
solutions [27].

On the other hand, Konings et al. found an increase in
plasma and dialysate levels of CML after treatment with
icodextrin [28], whereas Gottloib et al. observed an in-
crease in thiobarbituric acid reactive substances (suggesting
an increase in lipid peroxidation) in the peritoneal effluent,
and dysplastic changes of mesothelial cells in rats, after
exposure to icodextrin [29]. When compared with the bi-
carbonate/lactate buffered solutions, in vivo studies after
long-term exposure to standard lactate-buffered solutions
showed greater loss in ultrafiltration capacity, increased
vascular endothelial growth factor (VEGF) expression and

vascular density, higher AGE concentrations, upregulation
of tumour growth factor β (TGF-β) expression and develop-
ment of fibrosis [30]. Effects of icodextrin on in vitro studies
are discrepant. After exposure to icodextrin, in vitro stud-
ies showed an improved phagocytic and respiratory burst
activity in polymorphonuclear cells and monocytes, when
compared with glucose-based solutions [31]. Improved pro-
liferation of mesothelial cells was observed after incubation
with icodextrin, when compared with glucose-based so-
lutions [32]. In contrast, exposure of mesothelial cells to
undiluted icodextrin showed a reduction in cell viability
and proliferation, and damage of DNA, similar to glucose-
based solutions [33]. However, the clinical significance of
these findings is still unclear.

Cancer antigen 125 (CA125) is produced in the peri-
toneal cavity by the mesothelial cells and can be detected
in dialysis effluents. In the NEPP study, levels of CA125
in a standard PD regimen (SPD; 4 dwells glucose lactate
based) were compared with a low glucose-GDP regimen
(NEPP; 1 dwell amino acids, 1 dwell icodextrin and 2 dwells
bicarbonate/lactate-buffered glucose-based solution). The
CA125 levels declined more after initiating CAPD with the
SPD regimen and remained lower than that resulting from
the treatment with NEPP, suggesting that non-glucose solu-
tions may have less detrimental effects on mesothelial cell
mass and probably on the peritoneal membrane [14]. On
the other hand, the NEPP regimen was associated with an
increase in IL-6, IL-8 and VEGF [34]. Besides, according
to a recent study by Katsutani et al., a reduction in plas-
minogen activator inhibitor-1 and tissue-type plasminogen
activator may be implicated to the fibrogenesis in human
peritoneal mesothelial cells [35].

Also, in the EAPOS study, longitudinal changes in the
peritoneal membrane function (increase in solute transport
and reduction in ultrafiltration capacity) were more pro-
nounced in anuric patients, treated with conventional glu-
cose solutions, than the icodextrin-treated patients. This
suggests a beneficial effect of the use of icodextrin in the
preservation of the peritoneal membrane [36]. Still, we be-
lieve that until now, the clinical effects of icodextrin on the
preservation of peritoneal membrane integrity are still not
completely elucidated and should be the focus for future
studies.

Side effects of icodextrin

Despite the beneficial effects of icodextrin in increased
peritoneal sodium removal, improved fluid status, lipid pro-
files and possible diabetic control [37,38], there are also a
few important clinical side effects, which deserve mention.
The side effects of icodextrin have been largely concerned
with skin rashes [39]. However, reports of severe cutaneous
hypersensitivity reactions to icodextrin remain rare and may
have different presentations. Three patients developed a
vesicular rash on their palms after starting treatment with
icodextrin, but they were able to continue their treatment
[40]. The vesicular rash resolved spontaneously. In another
case report, a woman with a generalized exfoliative der-
matitis, secondary to an allergic reaction to icodextrin, was
reported, and she had to discontinue taking icodextrin [41].
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At the moment, the overall incidences of allergic reactions
are unknown.

Primarily in the years 2001 and 2002, reports regard-
ing sterile peritonitis in patients treated with icodextrin in-
creased. This complication has been attributed to peptido-
glycan contamination of the dialysate by the gram-positive
bacteria, Alicyclobacillus acidocaldarius. Since the imple-
mentation of corrective actions, the incidence of aseptic
peritonitis due to icodextrin has declined [42].

Icodextrin is metabolized to maltose and is used once
daily to avoid systemic accumulation. The concentration
of icodextrin metabolites reaches steady-state levels within
2 weeks and remains stable throughout the duration of the
polymer use. In the long-term study, exposure to these levels
of maltose and oligosaccharides over 31/2 years represent
the longest exposure of these substances in the uraemic
patients, without any clinical or metabolic adverse effects,
providing an important evidence of safety [43]. But the
clinical effects of icodextrin are still unknown.

Icodextrin and its metabolites may, to a small degree,
be transported from the peritoneum to the systemic circu-
lation by lymphatic transport. After 6 weeks of treatment
with icodextrin, the total serum icodextrin and metabo-
lite concentration was found to be ∼5.2 mg/ml [3]. This
was observed to have implications on the blood glucose
measurement methods [44,45], based on glucose dehy-
drogenase pyrroloquinolinequinone-based methods (GDH-
PQQ), which could lead to an overestimation of blood
glucose and undetected hypoglycaemia. Recently, in a Nor-
wegian study, the serum glucose was measured simultane-
ously in the venous blood, using the laboratory reference
method (hexokinase), and compared with eight glucometers
[46]. Two assays, the Ascensia Contour (Bayer HealthCare
Diagnostic Division, New York, USA) and the Accu-Chek
(Roche Diagnostics, Indianapolis, USA), showed >60%
higher glucose values than the reference method. Both glu-
cometers were based on the GDH-PQQ method and thus
should not be used in diabetic PD patients treated with
icodextrin.

In patients using icodextrin, the serum amylase activity is
significantly lower than in those treated only with glucose-
based solutions, which may have implications on the di-
agnosis of pancreatitis. In patients treated with icodextrin
and suspected of pancreatitis, lipase should be measured to
confirm the diagnosis [47].

Conclusion

Icodextrin is an attractive alternative in PD. Improvement
in fluid status due to its sustained transcapillary ultrafiltra-
tion during the long dwell period may lead to more peri-
toneal sodium removal and maintenance of sodium balance.
Icodextrin induces less production of AGE, which has the
potential positive long-term effects on cardiovascular status
and peritoneal membrane function. Despite many similar-
ities in the results of various clinical studies on icodex-
trin, the few discrepancies, mainly concerning the effects
of icodextrin on blood pressure control and RRF, should be
the focus of further studies. Severe side effects of icodex-
trin are rare. Furthermore, studies concerning the long-term

effects of icodextrin on peritoneal membrane function are
anticipated with great interest.
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