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             5.1 Introduction 

 Potential ramifications of climate change, as they relate to waterborne pathogens 
(primarily viruses, bacterial and parasitic protozoa), are the focus of this chapter. 
It seems clear that climate change will impact on waterborne pathogens in various 
ways (Rose et al.  2001) , pertinent to transboundary issues are: (1) increases in 
intense storm events (increasing sewage/animal waste flows into waterways/aquifers) 
(Charron et al.  2004 ; Schijven and de Roda Husman  2005 ; Yang and Goodrich 
 2009 ; De Toffol et al.  2009 ; Richardson et al.  2009) ; (2) warmer surface water 
temperatures or salinity changes (for increased autochthonous pathogen growth) 
(Niemi et al.  2004 ; Koelle et al.  2005 ; Lebarbenchon et al.  2008) ; and (3) changes 
in food production, as most obvious in animal diseases (Lightner et al.  1997 ; 
Rapoport and Shimshony  1997) , but also of concern with zoonoses and from 
changes in social behavior (Schwab et al.  1998 ; Nancarrow et al.  2008 ; CDC 
 2009a) . When considering trans-boundary effects on waterborne pathogens, it is 
therefore the flow of pathogens in surface water (fresh and marine) and in 
groundwater, as well as in the varying ways water is used/reused in association 
with human activities (e.g., food production) that are the trans-boundary issues 
discussed in this chapter (examples in Table  5.1 ). Changes in infectious and 
vector-borne diseases associated with rising sea levels, losses of habitat, interna-
tional travel etc. are not addressed in this chapter.  
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  5.1.1 Areas of Potential Impact by Climate Change 

 One of the largest effects of climate change is likely to be reflected in changes in 
water resource use, which will need to account for water’s equally important roles 
in electricity production/greenhouse gas production (King and Webber  2008)  and 
ecological service provision (Corvalan et al.  2005 ; Keath and Brown  2009)  so as to 
provide more sustainable water services into the future. A likely consequence of 
these changed services is an increase in the use of water fit-for-purpose. For example, 
where there is municipal water supply, not treating all to drinking water quality, 
give that less than 10% is required in the home for that purpose (Rathjen et al. 
 2003) . Rather, for other urban and irrigation needs, there will be increased use of 
recycled wastewater streams for toilet flushing, garden/crop irrigation and cloths 
washing, so reducing the demand on traditional urban water resources (possibly up 
to 70%) and keeping environmental water to support ecological services and reduce 
trans-boundary effects of water pollution. 

 At a regional scale and in developed regions, climate change is already having a 
profound impact on water decisions within Australia (WSAA  2008) , and is expected 
to have major impacts in many other regions. For example, Californian    water 
resources are projected to significantly change with respect to snowpack, river flows, 
and sea levels. By 2050, it is predicted that the Sierra snowpack will decline by 25%, 
which is an important source of urban, agricultural, and environmental water 
(California Department of Water Resources  2009) . More variable weather patterns 
may also result in increased dryness in the southern regions of California. The sea 
level has risen about 7 inches at the Golden Gate Bridge in the last century, and con-
tinued sea level rise could threaten many coastal communities, as well as the sustain-
ability of the Sacramento-San Joaquin Delta that supplies 25 million Californians 
with drinking water. As a consequence, water reuse has to increase, most likely via a 

  Table 5.1    Examples of pathogen effects associated with climate change   
 Pathogen    
group  Agent  Food  Water 

 Indirect 
effects 

 Direct 
effects 

 Enteric 
viruses    

 Hepatitis A 
 Enterovirus 
 Norovirus 

 Shellfish  Ground
water 

 Storms can 
increase 
transport 
from fecal 
sources 

 Survival 
increases 
with reduced 
temperature 
and sunlight 

 Bacteria 
    Cyanobacteria 
  Dinoflagellates    

  Vibrio     
 vulnificus ,  V. 
parahaemolyticus, 
V. cholerae  
non-01 

 Shellfish  Recreation 
 Wound 

infections 

 Enhanced 
zooplankton 
blooms 

 Salinity and 
temperature 
related 
growth 

 Parasitic 
  protozoa 

  Cyclospora 
Cryptosporidium 

   Giardia     

 Fruits 
and 
vegetables 

 Recreational 
and 
drinking 
water 

 Storms can 
increase 
transport 
from fecal 
sources 

 Temperature 
associated 
maturation of 
 Cyclospora  

  Adapted from Rose et al.  (2001)   



735 Global Warming and Trans-Boundary Movement of Waterborne Microbial Pathogens

second non-potable supply pipe to homes (Okum  2002)  and/or through wastewater 
irrigation (direct or via aquifer storage and recovery) (Kracman et al.  2001 ; Dillon 
et al.  2009) , which will open up new ecological niches for waterborne pathogens. 

 An example of the possible effects of climate change on waterborne pathogens in 
developing regions can be seen in the increases in diarrheal disease during El Niño    
periods in Peru. For each 1°C increase in temperature, hospital admission increased 
by 8% (95% CI 7–9%), with an additional 6,225 cases of diarrheal disease recorded 
(Checkley et al.  2000) . In Fiji, diarrheal disease appears to increase by 3% (95% CI 
1.2–5.0%) per 1°C temperature increase, noting also that a significant increase in 
diarrhea    rates occurred if rainfall was either higher or lower than average conditions 
(Singh et al.  2001) . Overall in developing regions, water, sanitation and hygiene-
related disease currently account for some 5.5% of total disability adjusted life years 
(DALYs) lost (Prüss-Üstün et al.  2008) . Changes in diarrheal disease has been the 
main metric used in WHO reports on possible climate change impacts related to 
waterborne disease (McMichael et al.  2004 ; Campbell-Lendrum and Woodruff 
 2006) . What is not clear from most reports, however, are the trans-boundary effects, 
let alone the raft of other diseases unrelated to diarrhea    (e.g., see Table  5.2  and 

  Table 5.2    Major potential pathogens/indicators in aquatic environments   

 Group of organism  Source(s)  Symptom(s)  Survival 

 Viruses     T 
 99.9 

  
 Adenovirus  Human feces  C Co F G H R  50 d 
 Astrovirus  Human feces  G  Unknown 
 Calicivirus (inc. 
Norovirus) 

 Human feces  G  Weeks–months 

 Coronavirus  Human feces  G  Unknown 
 Coxsackie A and B  Human feces  B C D E-M F H R S  2 d–46 wk 
 Echovirus  Human feces  C E-M F G R P.S  2 d–46 wk 
 Hepatitis A  Human feces  H  25 d at 25°C–677 d 

at 4°C 
 Hepatitis E  Pig/human feces 1   H A  Unknown 
 Poliovirus  Human feces  C F E-M P R  2–130 d 
 Reovirus  Human feces  None known  >4 d 
 Rotavirus  An./human feces 1   G  2–34 d 

 Bacteria     T 
90

  
  Aeromonas  spp.  An./human feces  G S W  “Indigenous” 
  Campylobacter      jejuni   An./human feces  G-F  Poor 
 Toxigenic  E. coli      An./human feces  G, kidney failure  5 h–2 d 
 Thermotolerant 

coliforms/ E. coli     
 An./human feces  Fecal indicator  2 h–2 d 

 Fecal streptococci  An./human feces  Fecal indicator  2 h–12 d 
  Legionella     spp.  Biofilms/amoebae  R  “Indigenous” 
  Mycobacterium      avium  

complex 
 Freshwater/

biofilms 
 R, weight loss  “Indigenous” 

  Mycobacterium     
 marinum  

 Sea water  S W Granuloma  “Indigenous” 

(continued)
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Table 5.2 (continued)

 Group of organism  Source(s)  Symptom(s)  Survival 

  Salmonella     spp.  An./human feces  G-F  12 h–5 d 
  Shigella  spp.  An./human feces  Bloody diarrhea  <15 to >70 d 
  Tropheryma whipplei   Human feces  G,  Unknown 
  Vibrio     spp.  Seawater, feces  G W  “Indigenous”/<6d 
  Yersinia enterocolitica   An./human feces  Appendicitis-like G  Days–weeks 

 Protozoa 
  Cryptosporidium     
 parvum/C. hominis  

 An./human feces  Watery diarrhea F  Months 

  Entamoeba histolytica   Feces  G/dysentery  Unknown 
  Giardia      intestinalis   An./human feces  G/bloating  Weeks 

 Helminths 2  
  Ascaris  spp .   An./human feces  Roundworm  Weeks–months 
  Taenia  spp .   An./human feces  Tapeworm  Weeks 

 Dinoflagellates    
  Alexandrium  spp .   Ballast/sea water  PSP  “Indigenous” 
  Gambierdiscus 

toxicus  
 Sea water  Ciguatera shellfish 

poisoning 
 “Indigenous” 

  Gymnodinium  spp.  Ballast/sea water  PSP  “Indigenous” 
  Pfiesteria piscicida   Sea water  Fish kills and 

human illness 
 “Indigenous” 

  Adapted from McNeill  (1985) , Evison  (1988) , Hallegraeff  (1992) , Chung and Sobsey  (1993) , 
Gantzer et al.  (1998) , Fenollar et al.  (2009) , Lathrop et al.  (2009)  
  1 Enteric viruses    from humans cause most waterborne viral infections (i.e., animal viruses from 
the same group/family do not infect humans and visa versa, with possible exceptions of porcine 
hepatitis E and bovine Rotavirus and Norovirus) 
  2 Helminths are largely an issue for direct contact with fecal matter/fecally-contaminated foods and 
typically less important as waterborne pathogens 
  An.  animal source, largely mammals/birds that may yield human-infectious strains 
  A  abortion;  C  carditis;  Co  conjunctivitis,  F  fever;  D  diabetes;  E-M  encephalitis-meningitis; 
 G  gastroenteritis;  G-F gastro + fever;  H  hepatitis;  P  paralysis;  PSP  paralytic shellfish poisoning; 
 R  respiratory infection;  S  skin infection;  W  wound infection 
 T 

90
  or T 

99.9
  times for 1 or 3 log 

10
  reduction in numbers respectively at 10–25°C  

Niklasson et al.  1998 ; Blinkova et al.  2009) . For example, given the increase in 
aquaculture produce from developing regions, what may be the impact on countries 
that purchase these products for increased diarrhea    and other disease endpoints?  

 Globally, some 70% of environmental water withdrawals are used in agriculture 
(Millennium Assessment Board  2005) . The need to reduce the total demand but 
feed the world is probably the biggest global water issue, and the Israelis are lead-
ing the world in demonstrating one solution via drip irrigation of treated municipal 
wastewaters (Oron et al.  2001) . Given the globalization of food products, however, 
numerous disease outbreaks have been recorded for other situations when crops 
eaten raw are spray irrigated with poorly treated water (Rose et al.  2001 ; Jay et al. 
 2007 ; CDC  2009b) . The latter is of particular concern with zoonotic pathogens in 
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surface water (Bharti et al.  2003 ; Fayer  2004 ; Bednarska et al.  2007 ; Mattison et al. 
 2007 ; Moulin-Schouleur et al.  2007 ; Zell et al.  2008 ; Banyai et al.  2009 ; Robertson 
 2009 ; Rutjes et al.  2009) , which includes viruses, bacteria and parasitic protozoa 
(Table  5.2 ).  

  5.1.2 Pathogen    Dynamics and Problematic Identifications 

 Before going into details on the range of waterborne and water-based pathogens of 
concern, two points are important to note. Firstly, pathogens are dynamic in their ability 
to evolve and change in their potential to be human pathogens, as exemplified by 
seasonal changes in flu viruses. Secondly, as we use better methods (largely molecular-
based) difficult to culture or non-culturable pathogens are being identified which were 
previously missed. Hence, it would be fair to say that there are many pathogens yet to 
be identified today (Rosario et al.  2009 ; Victoria et al.  2009) , let alone what may 
evolve tomorrow, in part reflecting new environmental conditions. 

 As an example of the difficulty in describing human pathogens one can look at 
members of the important waterborne parasitic protozoan genus  Cryptosporidium    . 
Most human illness is thought to be due to  C. hominis  and  C. parvum  (cattle genotype), 
yet several other  Cryptosporidium  species or genotypes:  C. meleagridis ;  C. felis ; 
 C. canis ;  C. suis ;  C. muris ;  C. andersoni ;  C. hominis  monkey genotype;  C. parvum  
(mouse genotype);  C. parvum  (pig genotype II) and  Cryptosporidium  rabbit genotype 
have caused human illness (Kváč et al.  2009) . So how to target the right species? In a 
similar way but at the strain level within a species,  Escherichia coli  O157:H7 has been 
the focus of method development and study, due to numerous water- and food-borne 
outbreaks. Yet focusing on O157:H7 strains appears to be at the detriment of missing 
the even more important non-O157 shiga toxin-producing  E. coli     (Bettelheim  2007 ; 
Lathrop et al.  2009) . The situation is further complicated in  E. coli , which is prob-
ably better described as pangenomic (i.e. not a single isolated species, but one that 
shares many genes amongst a broader range of related members) that includes the 
six known pathovars, each of which may have separately inherited particular viru-
lence factors (Rasko et al. 2008).   

  5.2 The Waterborne Pathogens    

 Waterborne pathogens are defined as disease-causing organisms excreted in feces/
urine and ingested/inhaled with water. They are often referred to as being transmitted 
via the fecal-oral route (Ashbolt et al.  2001) . All of these pathogens can persist to 
varying degrees in the aquatic environment, but rarely grow outside the host 
organism(s) they come from. Hence they are introduced and pass through the water 
environment as allochthonous members. Most waterborne pathogens that infect 
humans come from human excreta, other mammals or birds (Table  5.2 ). 
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 In contrast to the fecally-borne pathogens, there are a number of water-based 
pathogens generally unrelated to fecal contamination, but loosely referred to as 
waterborne. Examples of these autochthonous or indigenous pathogens are various 
 Legionella    ,  Mycobacterium     and  Helicobacter     spp. native to freshwaters, and 
 Vibrio      vulnificus ,  V. parahaemolyticus  and  V. cholerae     in saline waters. The bacte-
rium that causes cholera ( V. cholerae ) is a good example of a species with members 
that are transmitted by the fecal-oral route, but that also have a natural life-cycle 
associated with marine zooplankton (Blokesch and Schoolnik  2007) . It also seems 
that  Legionella pneumophila  serogroup 1, and similar respiratory pathogens, are 
accidental human pathogens, with various amoebae possibly acting as their main 
environmental host (Lau and Ashbolt  2009) . Unfortunately our lung macrophages 
are very similar host cells to amoebae, and these  Legionella -like intracellular 
pathogens can also parasitize our lung macrophages (Thomas et al.  2008) .  

  5.3 Changing Habitats 

 In diverse regions around the world, enteric (gastrointestinal) diseases show evidence 
of significant seasonal fluctuations, e.g.,

   In Scotland and Sweden,  • Campylobacter     infections are characterized by short 
peaks in the spring (associated with snowmelt periods)  
  In Bangladesh, cholera outbreaks occur during the monsoon season  • 
  In Peru,  • Cyclospora  infections peak in the summer and subside in the winter    

 Therefore, further extension of “seasonal” effects under climate change is likely to 
yield further peaks in waterborne diseases. Climatic-related peaks are also common 
with various autochthonous (indigenous) pathogens, such as marine  Vibrio      vulnificus . 
Highest concentrations of  V. vulnificus  and increases in shellfish-borne human 
disease have been recorded in Florida following heavy rainfall associated with El 
Niño    events (Lipp et al.  2001) . It appears that reduced salinity due to increased 
freshwater inputs rather than temperature is the key factor increasing the competi-
tive advantage of  V. vulnificus . 

  5.3.1  Which Water-Based (Autochthonous) Microbes 
Are Pathogens? 

 A common feature of the autochthonous (and allochthonous) bacterial pathogens, is 
that not all strains of pathogenic species are effective human pathogens. For exam-
ple, in a three-year study of environmental and clinical  Vibrio      vulnificus  isolates, the 
more important biotype 3 sub-species represented about 21% of the aquaculture 
pond isolates versus 86% of clinical cases (Broza et al.  2009) . Huge quantities of 
aquacultural produce are now exported around the world for direct human consump-
tion as well as animal feedstock – their global significance to disease is largely 
unknown. Indeed, it is often unclear where foodstock or feeds have come from. 
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However, what is clear is the uptake and release of ship ballast waters being respon-
sible for the reintroduction of cholera into South America in the early 1990s 
(McCarthy and Khambaty  1994 ; WHO  2003) , and ballast waters in general continue 
to be a problem for introductions of various toxic dinoflagellates (algae), cyanobacteria 
and  V. parahaemolyticus  (Myers et al.  2003 ; Tang and Dobbs  2007) . 

 Identifying what are important biotypes is also at the heart of the issue with trying 
to determine the clinical significance of the common occurrence of  Mycobacterium     
 avium  complex mycobacteria (Falkinham III  2009)  and  Helicobacter      pylori  (stomach 
ulcer and cancer bacterium) (Kawaguchi et al.  2009) . Water appears to be a likely 
vehicle for the exposure of people to these pathogens, but it is currently unclear if 
water is the primary source or much less important. Interestingly, various mycobac-
teria seem to be selected in chlorinated waters, possibly due to their relatively slow 
growth rates and biofilm-forming habitat.  

  5.3.2 Transfer of Virulence and Antibiotic Resistance Genes 

   5.3.2.1 V. cholerae  as a Model 

 Understanding the ecology of  V. cholerae  ; i.e., its ability to uptake virulence factors 
from bacteriophages (viruses to bacteria), growth in association with marine plankton 
and how it is impacted by climatic conditions, has served as a good model for 
trans-boundary waterborne pathogens and possible climate change impacts (Lipp 
et al.  2002) . The marine life-cycle of  V. cholerae     is now well established and illus-
trated in Fig.  5.1 .  

  Fig. 5.1    Hierarchical model for environmental cholera transmission. From    Lipp et al.  (2002)  with 
permission from the publishers       
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 The cholera toxin (CT), which is responsible for the classic symptom of profuse 
diarrhea   , is encoded by a lysogenic bacteriophage designated CTX Phi (includes 
six toxin genes which also occur on a plasmid) (Faruque et al.  1998) .  V. cholerae , 
requires two coordinately regulated factors for full virulence, cholera toxin (CT) 
and toxin-coregulated pill (TCP, surface organelles required for intestinal colonization 
and the site for phage attachment). Hence, the emergence of toxigenic  V. cholerae  
involves horizontal gene transfer, in vivo gene expression and follows phage sea-
sonality. In marine waters  V. cholerae  becomes resistant to the phage, yet in the 
intestine it remains susceptible and hence, maintains its virulence (Zahid et al.  2008) . 
Also,  V. cholerae     is commensal to phytoplankton and their consumers zooplankton, 
notably copepods, as such it is also a vector-borne disease. Interestingly, growth of 
 V. cholerae  on the chitinous exoskeletons of copepods molts induces competence 
for natural transformation, a mechanism for intra-species gene exchange (Blokesch 
and Schoolnik  2007) . 

 A further point of some controversy is that toxigenic  V. cholerae  are rarely 
isolated from the aquatic environment between cholera epidemics, due to their 
presumed presence in a dormant stage, i.e., active but nonculturable (ABNC) form 
(Colwell et al.  1996) . Nonetheless, the aquatic biofilms rather than surrounding 
seawater, have proved to be a source of culturable  V. cholerae , even in non-epidemic 
periods in Bangladesh (Zahid et al.  2008) .  

  5.3.2.2 Integrons and Antibiotic Resistance    

 The last example of trans-boundary pathogen concern provided in this chapter 
relates to the insidious perfusion of antibiotic resistant genes in the environment. 
Most  b - Proteobacteria  (members of Gram-negative bacteria that includes many 
pathogens and non-pathogens) contain integrons. Class 1 integrons are central players 
in the worldwide problem of antibiotic resistance, because they can capture and 
express diverse resistance genes. In addition, they are often embedded in promiscu-
ous plasmids and transposons, facilitating their lateral transfer into a wide range of 
pathogens and environmental bacteria (Gillings et al.  2008) . 

 Hence, Gillings et al.  (2008)  have promoted the need to understand the origin of 
integrons as important for the practical control of antibiotic resistance and for 
exploring how lateral gene transfer can seriously impact on, and be impacted by, 
human activities. They have shown that class 1 integrons are common in nonpatho-
genic soil and freshwater  b - Proteobacteria  in the absence of antibiotic resistance 
genes, yet are almost identical to the core of the class 1 integrons now found in 
pathogens, suggesting that environmental  b - Proteobacteria  were the original 
source of these genetic elements. Because these elements appear to be readily 
mobilized, their lateral transfer into human commensals and pathogens was inevi-
table, especially given their intersect with the human food chain. The strong selec-
tion pressure imposed by the human use of antimicrobial compounds then ensured 
their fixation and global spread into new species (Hardwick et al.  2008 ; Gillings 
et al.  2009) . Hence, changing food production practices influenced by population 
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growth, water resources and climate change will further impact on our loss of effi-
cacy in antibiotics. Newer treatment systems for wastewater are also not completely 
effective at removing resistance genes (Bockelmann et al.  2009)  and intensive animal 
facilities are a likely hotspot for exchange of antibiotic resistance genes (Kozak 
et al.  2009 ; Toomey et al.  2009) .        
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