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Abstract

Background: Increased reactive microglia are a histological characteristic of Parkinson’s disease (PD) brains,
positively correlating with levels of deposited a-synuclein protein. This suggests that microglial-mediated
inflammatory events may contribute to disease pathophysiology. Mutations in the gene coding for a-synuclein
lead to a familial form of PD. Based upon our prior findings that a-synuclein expression regulates microglial
phenotype we hypothesized that expression of mutant forms of the protein may contribute to the reactive
microgliosis characteristic of PD brains.

Methods: To quantify the effects of wild type and mutant a-synuclein over-expression on microglial phenotype a
murine microglial cell line, BV2, was transiently transfected to express human wild type (WT), and mutant a-
synuclein (A30P and A53T) proteins. Transfected cells were used to assess changes in microglia phenotype via
Western blot analysis, ELISA, phagocytosis, and neurotoxicity assays.

Results: As expected, over-expression of a-synuclein induced a reactive phenotype in the transfected cells.
Expression of a-synuclein increased protein levels of cycloxygenase-2 (Cox-2). Transfected cells demonstrated
increased secretion of the proinflammatory cytokines, tumor necrosis factor-a (TNF-a) and interleukin-6 (IL-6), as
well as increased nitric oxide production. Transfected cells also had impaired phagocytic ability correlating with
decreased protein levels of lysosomal-associated membrane protein 1 (LAMP-1). In spite of the increased cytokine
secretion profile, the transfected cells did not exhibit increased neurotoxic ability above control non-transfected
BV2 cells in neuron-microglia co-cultures.

Conclusions: These data demonstrated that over-expression of a-synuclein drives microglial cells into a form of
reactive phenotype characterized by elevated levels of arachidonic acid metabolizing enzymes, cytokine secretion,
and reactive nitrogen species secretion all superimposed upon impaired phagocytic potential.

Background
Microglia are a dynamic immune cell population of the
central nervous system (CNS) [1-3]. They are involved
in chemotaxis, phagocytosis, and proinflammatory cyto-
kine secretion [4,5] as components of their surveillance
function. A number of chronic neurodegenerative dis-
eases, including Parkinson’s disease (PD), Alzheimer’s
disease, and multiple sclerosis display an apparently
aberrant microglial behavior that is hypothesized to con-
tribute to disease progression [6-8]. Specifically, micro-
glia appear to have a chronically activated phenotype

exemplified by increased levels of various proinflamma-
tory markers as well as elevated cytokine secretion.
It is interesting to note that PD brains have been char-

acterized by progressive loss of dopaminergic neurons in
the substantia nigra par compacta (SNpc) [9,10], a
region with the reportedly highest density of brain
microglia [11]. It is, therefore, not surprising that
increased numbers of reactive microglia in the substan-
tia nigra are characteristic of disease and reactive micro-
glia numbers expand to other brain regions during
progressive neuron loss and disease [12,13].
To explore the possibility that microglial activation

plays a causative role in the proinflammatory and neuro-
degenerative changes observed in PD, we elected to
model a familial form of disease which results from
over-expression of wild type or mutant a-synuclein
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[14-16]. a-Synuclein is a 140 amino acid protein that is
highly expressed in the central nervous system immuno-
localizing to presynaptic terminals of neurons [17-19] as
well as glia and macrophage [20-24]. a-Synuclein
reportedly functions in regulating synaptic vesicle pools
[18], interacts with a variety of proteins [25-27], and
regulates lipid metabolism [28,29]. We have also demon-
strated that a-synuclein expression regulates the beha-
vior of microglia [30]. A reactive microglial phenotype
was increased in a-synuclein knock-out compared to
wild type microglia [30]. However, whether over-expres-
sion of wild type or mutant forms of a-synuclein may
also regulate microglial phenotype remains unclear.
In order to characterize the behavior of microglia that

over-express wild type or mutant a-synuclein, the
mouse microglial cell line, BV2, was transiently trans-
fected to express either human wild type (WT), A30P,
or A53T mutant a-synuclein to assess the impact of
intracellular over-expression on microglial behavior,
rather than phenotype changes due to stimulation with
extracellular a-synuclein. This study offers insight into
varied mechanisms in which a-synuclein may contribute
to phenotype changes in microglia during disease.

Methods
Materials
The anti-a synuclein antibody was obtained from Cov-
ance (Emerryville, CA). The anti-Cox-2, anti-LAMP-1,
anti-actin and anti-GAPDH antibodies were purchased
from Santa Cruz Biotechnology. Anti-PLD1 and PLD2
antibodies were purchased from Abcam (Cambridge,
MA). The anti-Cox-1 antibody was purchased from Cay-
man (Ann Arbor, MI). The anti-MAP2 antibody was
from Sigma (St Louis, MO). Anti-mouse, anti-rabbit and
anti-goat horseradish peroxidase conjugated secondary
antibodies were purchased from Santa Cruz Biotechnol-
ogy (Santa Cruz, CA). Lipopolysaccharide (LPS) was
purchased from Santa Cruz Biotechnology (Santa Cruz,
CA). FITC-labeled Escherichia coli (K-12 strain) Biopar-
ticles were purchased from Molecular Probes (Eugene,
OR). The LDH assay kit was obtained from Promega
(Madison, WI).

Microglial Culture
The BV2 immortalized microglial cell line [31] was
obtained from Dr. Gary E. Landreth (Cleveland, OH).
BV2 cells were grown in Dulbecco’s modified Eagle’s
medium:Nutrient Mixture F-12 Ham (DMEM/F-12)
(Gibco RBL, Rockville, MD) supplemented with 5%
horse serum (Equitech-Bio, Inc., Kerrville, TX) and 10%
fetal bovine serum (U.S. Biotechnologies Inc., Parker-
ford, PA) and 1.5 μg/mL penicillin/streptomycin/neomy-
cin in a humidified atmosphere of 5% CO2 and 95% air
at 37°C.

Transient Transfection
BV2 cells were transiently transfected with constructs
(parent construct pcDNA3.1) containing cDNAs coding
for human WT, A30P, or A53T a-synuclein (1 × 106

cells, 2 μg DNA per transfection) using an Amaxa
Mouse Macrophage Nucleofection Kit (Lonza Group
Ltd, Switzerland) according to the manufacturer’s proto-
col. Constructs were generously provided by Dr. Nelson
Cole (NIH). Transfected cells were plated at 1 × 106

cells/condition in serum containing DMEM/F12 and
harvested after 48 hours post-transfection.

Neuron Culture
Primary cortical neuron cultures were generated as pre-
viously described from cortices of embryonic day 16
C57BL/6 mice [32]. Meninges-free cortices were iso-
lated, trypsinized and plated onto poly-L-lysine-coated
(0.05 mg/mL) tissue culture wells (260 cell/mm2) for 7
days. The neuronal growth media was Neurobasal media
supplemented with B27 and glutamine (Life Technolo-
gies, Rockville, MD, USA), which consistently provide
neuronal cultures that are at least 95% pure. Culture
purity was routinely evaluated by cell counting after
immunostaining, to identify the neuronal cytoskeletal
protein, microtubule-associated protein 2 (MAP2).

Western Blot
To perform Western blot analyses, BV2 cells were
untreated, mock transfected or transfected to express
WT, A30P, or A53T a-synuclein for 48 hours. At 48
hours post-transfection cells were lysed with RIPA buf-
fer, sonicated, and centrifuged at 14,000 RPM, 4°C for
10 minutes. Protein concentrations were quantitated
using the method of Bradford [33]. Proteins were
resolved by 10% or 15% SDS-PAGE and then transferred
to PVDF membrane and Western blotted using anti-a-
synuclein, anti-cPLA2, anti-Cox-1, anti-Cox-2, anti-
PLD1, anti-PLD2, anti-LAMP-1, anti-actin or anti-
GAPDH antibodies, followed by incubation with horse-
radish peroxidase-conjugated secondary antibodies.
Antibody binding was visualized using enhanced chemi-
luminescence (Pierce, Rockford, IL). Experiments were
repeated 5 independent times. To quantify protein
levels, optical density (O.D.) of protein bands were nor-
malized against their respective loading control
(GAPDH or actin) using Adobe Photoshop software
(Adobe Systems, San Jose, CA). Ratios were averaged for
all five experiments (± SD) for statistical analysis.

Enzyme Linked Immunosorbent Assay (ELISA)
The concentrations of secreted TNF-a and IL-6 from
BV2 cultures were determined using commercially avail-
able mouse TNF-a and IL-6 colorimetric sandwich
ELISA reagents purchased from R & D Systems
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(Minneapolis, MN). Briefly, cells were transfected and
then stimulated with or without 25 ng/mL LPS (Sigma)
at 48 hours post-transfection. Media was transferred to
an ELISA plate and the levels of TNF-a and IL-6 were
detected according to the manufacturer protocol.
Experiments were performed with 8 replicates per con-
dition and repeated three times to identify mean values
(± SD).

Griess Assay
The levels of nitrite secreted from BV2 cells were
detected using Griess reagent obtained from Alexis Bio-
chemicals (San Diego, CA). Briefly, after 48 hours post-
transfection, media was transferred to 96 well plates and
incubated with Griess reagent for 10 minute at room
temperature. The nitrite levels were read via microplate
reader at 546 nm. Experiments were performed with 8
replicates per condition and repeated three times to
identify mean values (± SD).

Phagocytosis Assay
Phagocytosis was quantified by measuring the uptake of
a FITC-labeled bioparticle. Briefly, transfected BV2 cells,
in 96 well plates, were incubated with or without FITC-
labeled bioparticle (0.25 mg/mL) for 3 hours. To quench
the signal from extracellular or outer plasma membrane
associated bioparticle, medium was removed and the
cells were rinsed with 0.25 mg/mL Trypan blue in phos-
phate buffer saline (PBS). Intracellular fluorescence was
read via fluorescent plate reader (Bio-Tek, Winooski,
Vermont) at 480 nm excitation and 520 nm emission.
Experiments were performed with 8 replicates per con-
dition and repeated a minimum of three times to deter-
mine mean values (±SD).

Lactate Dehydrogenase (LDH) Assay
LDH release was measured a using CytoTox 96 non-
radioactive cytotoxicity assay kit according to the manu-
facturer protocol (Promega). Optical densities were
measured by a microplate reader at 490 nm. Each con-
dition was performed with a replicate of 8 and mean
values (± SD) from three independent experiments were
determined.

Microglial-mediated Neurotoxicity Assays
To assess the microglia-mediated neurotoxicity, neurons
were co-incubated either alone or with mock trans-
fected, WT, A30P, or A53T transfected BV2 cells for 72
hours. Neurons were plated onto 24 well plates (40,000
cells/well) and at 7 days in vitro were co-cultured with
BV2 cells (4,000 cells/insert) that were plated onto cell
culture inserts (0.4 μm Millicell, Millipore) in Neuroba-
sal medium with or without 25 ng/ml LPS for 72 hours.
After the 72 hour incubation, neurons were fixed in 4%

paraformaldehyde and immunostained with antibody
recognizing the neuronal cytoskeletal protein, microtu-
bule-associated protein 2 (MAP2). A counting grid
placed on the bottom of the wells was used to deter-
mine the number of viable neurons. Neurons from 4
independent fields/well from 8 wells per condition were
counted. Neurons were counted as viable if they were
MAP2 positive, had a visible nuclei and immunostained
processes which were at least two times the length of
the cell body. Mean values (± SD) from three indepen-
dent experiments were determined.

Statistical Analysis
Mean values (± SD) for each experiment were deter-
mined and values statistically different from controls
were calculated using one-way ANOVA. The Newman-
Keuls multiple comparisons post-test was used to deter-
mine p-values. GraphPad Prism 4 software was used for
analysis (GraphPad, San Diego, CA).

Results
Over-expression of mutant a-synuclein increased Cox-2
levels in BV2 cells
To address whether a-synuclein over-expression modu-
lates microglial phenotype, the murine microglial cell line,
BV2, [31] was selected as an in vitro model of microglia
because it is amenable to transient transfection for exo-
genous gene over-expression. BV2 cells were transfected
to express human WT, or missense mutation A30P [34]
or A53T [14]. Following transfection, levels of WT and
mutant a-synuclein as well as several protein associated
with a-synuclein function were examined via Western
blot and changes due to a-synuclein over-expression were
quantified. Interestingly, over-expression of a-synuclein,
both wild type and mutant forms, resulted in not only the
monomeric species but also an SDS-stable oligomeric
form migrating between 24 and 34 kDa. Because over-
expression and interaction of a-synuclein with PLD
attenuates PLD activity [25,35-37] we first examined trans-
fected cells for changes in PLD1 or PLD2 levels. Over-
expression of WT and the A30P and A53T mutants had
no effect on PLD1/2 protein levels suggesting that
although a-synuclein expression or function may regulate
PLD activities it is not involved in regulating enzyme
expression or turnover in these cells (Figure 1).
In addition to a role in regulating PLD activity, a vari-

ety of studies from our group as well as others have
demonstrated that a-synuclein associates with lipid
membranes and its expression regulates lipid metabo-
lism [29,38-46]. For example, a-synuclein expression
modulates brain arachidonic acid metabolism and its
absence produces deficiencies in arachidonic acid recy-
cling [42] in a-synuclein knockout mouse brains relative
to wild type brains resulting in elevated prostaglandin
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formation after an ischemic insult [39]. To examine
whether over-expression of a-synuclein altered arachi-
donic acid metabolism in the cells, several enzymes
involved in regulating arachidonic acid conversion to
prostanoids were examined, cPLA2, Cox-1 and Cox-2.
Transfected cells demonstrated no change in cPLA2 or

Cox-1 levels, but WT, A30P, and A53T mutant a-synu-
clein over-expression significantly increased Cox-2 pro-
tein levels compared to mock transfected control cells
(Figure 1). These data support the notion that a-synu-
clein over-expression can drive microglia to acquire a
reactive phenotype which appears to be exacerbated by

Figure 1 a-synuclein transfected BV2 cells increased Cox-2 protein expression. BV2 cells were transiently transfected to express WT, A30P,
or A53T a-synuclein for 48 hours. A) Cells were lysed and Western blotted using anti-cPLA2, anti-Cox-1, anti-Cox-2, anti-PLD1, anti-PLD2, anti- a-
synuclein, or anti-GAPDH (loading control) antibodies. Protein levels of B) cPLA2, C) Cox-1, D) Cox-2, E) PLD1, and F) PLD2 were quantified and
normalized to GAPDH. Graphs are the average (± SD) of five independent experiments. * p < 0.05 compared to mock transfected cells.
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mutant protein expression and is focused upon altera-
tion of proinflammatory prostaglandin production.

Over-expression of a-synuclein was not toxic to BV2 cells
Because a-synuclein over-expression can promote toxicity
or increased vulnerability to stressors in some cells [47-49]
it was necessary to validate that expression of the exogen-
ous a-synuclein was not inducing cell death as a compo-
nent of the acquisition of a proinflammatory phenotype in
BV2 cells. This is particularly relevant for microglial cells
which often include a programmed death response as a
culmination of their activation pathways [50-52]. Cell via-
bility was assessed by examining enzymatic activity of lac-
tate dehydrogenase released into the media. Although the
transfection procedure produced some expected toxicity
of cells compared to non-transfected controls, expression
of the exogenous human a-synuclein proteins was not
toxic to the cells (Figure 2). This lack of toxicity correlated
with increased detectable levels of monomeric a-synuclein
as well as apparent higher molecular SDS-stable oligomers
ranging from 24-34 kDa but no detectable detergent inso-
luble aggregates (Figure 1). This suggested that a higher
molecular weight or aggregate form may be required for
over-expression dependent toxicity in these cells. This
data demonstrated that changes in proinflammatory Cox-
2 levels were not indicative of a cell death pathway
induced by mutant a-synuclein over-expression.

Over-expression of a-synuclein attenuated the phagocytic
ability of BV2 cells and decreased lysosomal protein
expression
Based upon several prior reports that prostaglandins can
negatively regulate macrophage and microglial phagocytic

ability [53-57] and our observation of increased Cox-2
protein levels in a-synuclein over-expressing cells we
examined whether transfected cells would display an
expected decrease in phagocytic ability. To examine
changes in microglial phagocytic ability, uptake of FITC-
labeled E. coli bioparticles was quantified from transfected
cells. Consistent with the observed increase in Cox-2 pro-
tein levels, cells transfected to express WT, the A30P, or
A53T mutants all displayed a significant decrease in ability
to phagocytose the bioparticles compared to mock trans-
fected cells (Figure 3A). Moreover, the decrease of phago-
cytic ability with over-expression correlated with a
significant decrease in protein levels of the lysosomal
marker protein, lysosome associated protein 1 (LAMP-1)
(Figure 3B and 3C). These data again confirm that micro-
glial over-expression of wild type or mutant a-synuclein
results in an altered phenotype.

Over-expression of a-synuclein increased
proinflammatory secretion from BV2 cells
Based upon the fact that several reports have also
demonstrated that select prostaglandins can negatively
regulate cytokine secretion from microglia [58-60] we
next examined whether secretion of the proinflamma-
tory cytokine, TNF-a, was altered in transfected BV2
cells. Surprisingly, levels of secreted TNF-a were signifi-
cantly higher in medium from cells over-expressing
both wild type and mutant a-synuclein compared to
mock transfected controls (Figure 4). In order to better
examine the range of secretory phenotype change due
to a-synuclein over-expression, cells over-expressing the
A53T mutant as a representative over-expression phe-
notype were stimulated with and without the proinflam-
matory ligand, LPS, to quantify media concentrations of
not only TNF-a, but also an additional cytokine, IL-6.
As expected, stimulation with LPS significantly increased
secretion of both cytokines from A53T transfected cells
above the levels secreted from LPS stimulated mock
transfected cells (Figure 4).
In order to examine other secretory products from

activated microglia we next quantified medium levels of
nitrite via Griess assay as an indirect assessment of
nitric oxide production by the cells. Again using A53T
mutant a-synuclein over-expressing cells, we observed
significantly higher levels of nitrite in the medium, both
basally and with LPS stimulation above the levels
observed from their respective mock-transfected coun-
terparts (Figure 4). These data demonstrated that
although Cox-2 protein levels were increased along with
impaired phagocytosis, the overall secretory capacity of
a-synuclein expressing microglia for TNF-a, IL-6, and
nitric oxide was not compromised but instead poten-
tiated both basally and in response to LPS stimulation.
This demonstrated that the reactive phenotype of a-

Figure 2 a-synuclein over-expression was not toxic to BV2
cells. BV2 cells were transiently transfected to express WT, A30P, or
A53T a-synuclein for 48 hours. An LDH release assay was performed
to determine cell viability by quantifying LDH release into the
medium using commercial LDH assay reagents. Graphs are the
average (± SD) of three independent experiments. Each experiment
was performed with 8 replicates per condition.
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synuclein over-expressing cells is likely not a straight-
forward consequence of elevated Cox-2 activity.

BV2 cells over-expressing a-synuclein did not display
enhanced neurotoxicity
Since we as well as others have demonstrated that TNF-
a can alter neuronal activity and potentiate toxicity
[32,61-66] it was reasonable to expect that a-synuclein
over-expressing cells would demonstrate increased

secretion of neurotoxic factors. To determine whether
transfected BV2 cells had increased neurotoxic capacity,
transfected cells were co-cultured with and without LPS
in primary murine cortical neurons at 7 days in vitro for
three days to assess effects on neuron survival. In spite
of the elevated levels of cytokines and nitric oxide
secreted from a-synuclein over-expressing cells, they
demonstrated no increase in neurotoxic secretion above
that induced by mock transfected cells with or without
LPS stimulation (Figure 5). This demonstrated that
although the reactive phenotype induced by a-synuclein
over-expression included elevated proinflammatory
secretion, this was not sufficient to induce an increased
neurotoxic response in vitro in these particular culture
conditions in which toxicity was already maximal in
control BV2/neuron co-cultures.

Discussion
This study demonstrated that over-expression of a-
synuclein modulates the phenotype of a commonly used
microglial model, BV2 cells. It is important to point out
that these data are derived from a microglial cell line
and the possibility exists that a more accurate prediction
of microglial behavior in response to a-synuclein over-
expression would emerge through the use of primary
cells. For instance, microglia grown from transgenic
mouse lines over-expressing mutant or wild type protein
could be used in future work. Nevertheless, the current
data set demonstrated a clear change in cellular beha-
vior of microglial BV2 cells that involved an increase in
Cox-2 protein levels in cells over-expressing human
WT, mutant A30P and A53T a-synuclein. In addition,
over-expression of A30P and A53T mutants as well as
human WT a-synuclein decreased phagocytic ability of
the BV2 cells while increasing their secretion of TNF-a,
IL-6, and nitric oxide. However, in spite of these robust
changes in behavior, the a-synuclein over-expressing
BV2 cells did not demonstrate any increase in neuro-
toxic capacity.
Although extracellular a-synuclein in PD may be act-

ing as one of the sources for the induction of microglio-
sis, our efforts were to identify a fundamental role for
intracellular a-synuclein in regulating microglial pheno-
type in particularly the familial form of disease. There-
fore, a distinction of our work from several prior reports
is that we have examined effects of a-synuclein expres-
sion on microglial phenotype rather than effects of add-
ing a-synuclein to microglia as a ligand. It is assumed
that microgliosis occurs during disease in part due to
neuronal secretion of a-synuclein which directly stimu-
lates microglia in a fashion requiring CD36 [16,67].
Several studies demonstrate that extracellularly applied
a-synuclein directly stimulates phagocytic cells such as
microglia, macrophage, and monocytes to acquire a

Figure 3 Over-expression of a-synuclein attenuated the
phagocytic ability of BV2 cells and lysosomal protein
expression. BV2 cells were transiently transfected to express WT,
A30P, or A53T a-synuclein for 48 hours. A) Transfected cells were
incubated with FITC-labeled E. coli bioparticles (0.25 mg/mL) for 3
hours. After incubation, the media was removed and the signal
from any unphagocytosed or membrane associated particles was
quenched by incubating cells with a (0.25 mg/mL) trypan blue
solution for 3 minutes. The fluorescence intensity of phagocytosed
particles was measured via fluorescent plate reader (RFU). Each
condition was performed with 8 replicates. B) Transfected cells were
also lysed and Western blotted with anti-LAMP-1 and actin (loading
control) antibodies. C) Optical density of LAMP-1 immunoreactive
bands were normalized against their respective actin bands and
averaged (± SD) from three independent experiments. * p < 0.05
compared to mock transfected cells, **p < 0.01 compared to mock
transfected cells.
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Figure 4 Over-expression of a-synuclein increased TNF-a, IL-6, and nitrite levels in medium from BV2 cells. BV2 cells were transiently
transfected to express WT, A30P, or A53T alpha-synuclein for 48 hours with or without 25 ng/ml LPS stimulation. Media were collected and
used for quantifying concentrations of secreted A) and B) TNF-a, C) IL-6 using a commercial mouse TNF-a and IL-6 ELISA. D) Media was also
used to perform Griess assay to detect the levels of nitrite secreted from BV2 cells. Each condition was performed with 8 replicates. Graphs are
the average (± SD) of three independent experiments. ** p < 0.01, *** p < 0.001.
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reactive phenotype characterized by a number of
changes including increased production of matrix metal-
loproteases [68,69], increased Cox-2 levels [19],
increased cytokine secretion [18], increased neurotoxin
secretion [18,70], and increased cellular migration [69].
Our findings indicate that expression of a-synuclein
also drives microglia into a form of activation character-
ized by elevated proinflammatory cytokine secretion and
Cox-2 levels accompanied by impaired phagocytosis that
appears unique from activation characterized by extra-
cellular a-synuclein stimulation. These findings may
help to elucidate the biology of early onset disease and
indicate that microgliosis occurs as not only a reaction
to neuronal death and a-synuclein secretion but may
also cause neuronal dysfunction through impaired
homeostasis and a proinflammatory phenotype.
Although it is our expectation that the phenotype

changes observed in the BV2 cells was due to effects of

a-synuclein expression we cannot exclude the possibility
that a portion of the translated protein is being exocy-
tosed into the media and acting as an extracellular
ligand as others have reported [71]. It is possible that
BV2 cells over-expressing a-synuclein could be secreting
the protein to provide a pool for extracellular, autocrine
stimulation. A prior report demonstrated that extracel-
lular stimulation with a-synuclein compared to over-
expression of a-synuclein in BV2 cells produced similar
changes in cellular migration and CD44 expression [69].
This supports the idea that some component of the phe-
notype change we observed may be due to autocrine,
feed-forward stimulation of exocytosed a-synuclein
combined with the consequences of over-expression on
cellular behavior. More importantly, this suggests again
that microgliosis in disease is not only a consequence of
a-synuclein expression by microglia but is also modified
by secreted a-synuclein that could be coming from neu-
rons but also other cells in the brain such as microglia
and astrocytes [71,72]. Dissecting the differences
between the two types of a-synuclein-mediated activa-
tion will offer a clearer target for attenuating the micro-
glial contributions to disease.
Histologic data from human PD brains has demon-

strated increased Cox-2 immunoreactivity within both
microglia and neurons of the substantia nigra suggesting
that Cox-2-dependent prostaglandin production contri-
butes to inflammatory gliosis and neuron death [73,74].
A role for Cox-2 dependent inflammation and cell death
in disease is supported by the MPTP toxin model of PD
in which Cox-2 activity is required for the observed
neuronal death [75-77]. Although a myriad of mechan-
isms are feasible, one intriguing idea is that the
increased Cox-2 activity leads to dopamine oxidation
and subsequent a-synuclein accumulation as Lewy
bodies [78]. We now extend this data to demonstrate
that a-synuclein over-expression of particularly the mis-
sense mutant forms increased microglial Cox-2
expression.
The consequences of increased Cox-2 activity in micro-

glia are several. For instance, Zhang et al. (2005) demon-
strated that microglial stimulation with extracellular
aggregated a-synuclein enhances microglial production
of PGE2 required for subsequent neurotoxin secretion
[70]. On the other hand, PGE2 stimulation inhibits TNF-
a secretion from BV2 and microglial cells [58-60] and
impairs phagocytic ability [79]. Although the specific
prostaglandin formation and function downstream of
increased microglial Cox-2 expression or activity is far
from resolved our data correlates well with an emerging
theme that arachidonic acid metabolism is disrupted dur-
ing disease due to a fundamental role of a-synuclein in
regulating lipid metabolism [39,42]. In addition, other
studies have demonstrated that a disruption in particular

Figure 5 Over-expression of a-synuclein did not increase
neurotoxic secretion from BV2 cells. BV2 cells were transiently
transfected to express WT, A30P, or A53T a-synuclein then co-
cultured onto a membrane insert with 7 days in vitro mouse cortical
neurons for 72 hours in the A) absence or B) presence of 25 ng/ml
LPS stimulation. After 72 hours, the inserts were removed and the
neurons were fixed in 4% paraformaldehyde and immunostained
with an anti-MAP2 antibody. MAP2 positive cells were counted to
assess viability. Experiments were performed with 8 replicates per
condition. Graphs are the average (± SD) of three independent
experiments. *** p < 0.001 compared to neurons only.
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prostaglandin levels correlates with disease, a-synuclein
expression, and in some cases induces disease phenotype
[39,80-83]. Therefore, alterations in arachidonic acid
metabolism appear central to both sporadic and familial
disease across cell several types including microglia and
neurons and defining the specific production patterns
and consequences of individual prostaglandins will be
critical in defining their role during PD.
Another interesting phenotype change produced by

over-expression of a-synuclein was the attenuated ability
of microglia to phagocytose the E. coli bioparticles. This
correlated with a significant decrease in LAMP-1 levels
suggesting lysosomal dysfunction, at least, is a component
of the uptake problem. It is clear that a-synuclein has a
role in modulating vesicular trafficking in other cells types
[84,85] so it is not unreasonable that a similar regulatory
role exists in phagocytic cells such as microglia. For exam-
ple, in vitro studies demonstrate that microglia are capable
of taking up a-synuclein, in particular its monomeric
form, in what appears to be a classic-clathrin dependent
mechanism [5,86]. Indeed the monomeric protein facili-
tates overall microglial phagocytic ability, while the aggre-
gate form attenuates phagocytosis [5]. It is possible that a-
synuclein expression by microglia actually attenuates the
ability of these cells to take up aggregate a-synuclein thus
contributing to disease.
Another interesting possibility is that the decrease in

phagocytic ability by a-synuclein over-expressing cells is
due to an increase in Cox-2 mediated prostaglandin for-
mation. Extracellular a-synuclein aggregates stimulate
microglia in vitro and attenuate their ability to phagocy-
tose the aggregates in a fashion requiring PGE2 stimula-
tion of its EP2 receptors [79]. In addition, PGE2

stimulation of its EP2 receptor downregulates microglial
ability to take up another aggregate protein, beta amy-
loid [53,54]. This collectively supports the idea that spe-
cific prostaglandin stimulations modulate microglial
behavior. Therefore, over-expression of a-synuclein may
impair the general homeostatic role of microglia as
brain phagocytes and while certainly of relevance to PD
this implicates a broader role for this protein in how
microglia function in the brain.
It is somewhat surprising that the a-synuclein over-

expressing cells did not demonstrate increased neuro-
toxic capacity in our co-culture paradigm with and with-
out LPS stimulation. One possibility is that altered
culture conditions including different cellular ratios or
incubation times as well as the use of primary microglia
instead of BV2 cells may produce different results in
neuronal or synaptic viability. However, the fact that
cells over-expressing a-synuclein demonstrated signifi-
cant changes in secretory phenotype without a correlat-
ing change in neurotoxic capacity in the conditions

tested is still of importance. For example, there is cer-
tainly in vivo evidence that microgliosis can occur as a
consequence of a-synuclein expression that involves
proinflammatory change without robust neuron death.
Specifically, over-expression of a-synuclein results in an
early increase in microgliosis prior to neuron death in
some rodent models of disease [16,67]. Another study
has shown using an adeno-associated virus model to
over-express a-synuclein in mice that a robust increase
in microgliosis as well as T and B cell infiltration occurs
in the absence of any robust neurodegeneration [87].
Others report that the reactive microglial phenotype
varies in response to neuronal a-synuclein expression
depending upon whether or not neurons are dying [88].
Collectively, it appears that microgliosis in vitro and in
vivo may be heterogeneous in response to a-synuclein
expression.
For instance microgliosis during disease may be a conse-

quence of extracellular a-synuclein stimulation as a dis-
tinct and additional mechanism of activation than that
induced by over-expression of a-synuclein. This suggests
that a heterogeneous range of microgliosis phenotypes
exist during disease and across brain regions that have yet
to be fully described in which each type of activation may
contribute differently to disease. Extracellular stimulation
of microglia with exocytosed a-synuclein may be responsi-
ble for a form of gliosis while direct effects on microglial
phenotype due to expression of a-synuclein may produce
a similar yet unique phenotype. Future efforts examining
primary microglia rather than BV2 cells over-expressing
a-synuclein in neuron microglia co-culture using different
cellular ratios, neuronal populations, or time points may
provide a clearer picture of changes in neuron viability or,
more importantly, synaptic integrity. It will be important
to determine whether a temporal effect of either form of
gliotic stimulation, a-synuclein over-expression or extra-
cellular stimulation, occurs during disease and whether or
not they provide combined or singular insults to the neu-
ronal death that occurs.

Conclusions
These data demonstrate that a-synuclein over-expres-
sion forces microglia to acquire a particular form of
reactive phenotype characterized by increased cytokine
and nitric oxide secretion and Cox-2 levels yet impaired
phagocytic ability. This suggests that microglial activa-
tion by a-synuclein may contribute to the neuroinflam-
matory component of disease.
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