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France, 2 Department of Internal Medicine, Division Clinical and Experimental Immunology, Maastricht University Medical Centre, Maastricht, The Netherlands

Abstract

In animal models of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), the proportion of CD45RC T
cell subsets is important for disease susceptibility. Their human counterparts are, however, functionally ill defined. In this
report, we studied their distribution in healthy controls (HC), AAV patients and in Systemic lupus erythematous (SLE)
patients as disease controls. We showed that CD45RC expression level on human CD4 and CD8 T cells identifies subsets that
are highly variable among individuals. Interestingly, AAV patients exhibit an increased proportion of CD45RClow CD4 T cells
as compared to HC and SLE patients. This increase is stable over time and independent of AAV subtype, ANCA specificity,
disease duration, or number of relapses. We also analyzed the cytokine profile of purified CD4 and CD8 CD45RC T cell
subsets from HC, after stimulation with anti-CD3 and anti-CD28 mAbs. The CD45RC subsets exhibit different cytokine
profiles. Type-1 cytokines (IL-2, IFN-c and TNF-a) were produced by all CD45RC T cell subsets, while the production of IL-17,
type-2 (IL-4, IL-5) and regulatory (IL-10) cytokines was restricted to the CD45RClow subset. In conclusion, we have shown that
CD45RC expression divides human T cells in functionally distinct subsets that are imbalanced in AAV. Since this imbalance is
stable over time and independent of several disease parameters, we hypothesize that this is a pre-existing immune
abnormality involved in the etiology of AAV.

Citation: Ordonez L, Bernard I, L’Faqihi-Olive F-E, Cohen Tervaert JW, Damoiseaux J, et al. (2009) CD45RC Isoform Expression Identifies Functionally Distinct T Cell
Subsets Differentially Distributed between Healthy Individuals and AAV Patients. PLoS ONE 4(4): e5287. doi:10.1371/journal.pone.0005287

Editor: Johan K. Sandberg, Karolinska Institutet, Sweden

Received January 22, 2009; Accepted March 18, 2009; Published April 21, 2009

Copyright: � 2009 Ordonez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
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Introduction

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vas-

culitis (AAV) constitutes a group of disorders characterized by

autoimmune inflammation affecting small- to medium-sized

vessels, which leads to vessel occlusion and systemic organ damage

[1]. AAV consists of four different disease entities: Wegener’s

granulomatosis (WG), microscopic polyangiitis (MPA), Churg-

Strauss syndrome (CSS), and renal-limited vasculitis. ANCA in

these vasculitides are directed against either proteinase 3 (PR3) or

myeloperoxidase (MPO). Although the etiology of AAV is not well

understood [2], several studies have implicated T cells in the

pathogenesis, in particular in WG [3,4]. More recently, various T

cell subsets were found to be either enlarged or functionally

impaired, including regulatory T cells (Treg), naive and memory

T-cells, Th1, Th17 and Th2 cells [5–14].

CD45 is a high molecular weight transmembrane protein with

intrinsic tyrosine phosphatase activity. This heavily glycosylated

protein is expressed at high level on nucleated cells of the

haematopoietic system and is essential for efficient T and B cell

antigen receptor signal transduction [15]. Several CD45 isoforms

can be generated by alternative splicing of exons 4(A), 5(B) and

6(C) leading to change in the extracellular domain of the molecule

[16]. Importantly, polymorphisms and mutations that affect CD45

alternative splicing, and thus isoform expression, have been

associated with several human autoimmune diseases [17–20].

However, although CD45 alternative splicing is highly regulated

and conserved among vertebrates, the function of the different

CD45 isoforms is not clear. In the rat, the level of CD45RC

isoform expression divides CD4 and CD8 T lymphocytes in two

subpopulations. The CD45RChigh T cell subset produces prefer-

entially type-1 cytokines, while type-2 and immunoregulatory

cytokine production is restricted to the CD45RClow subset [21–

24]. The relative proportion of CD45RChigh and CD45RClow T

cell subsets varies between rat strains that differ in their

susceptibility to develop immune mediated diseases [22,23,25].

Brown Norway (BN) rats, that are prone to develop MPO-ANCA

associated vasculitis [26–29], have a preponderance of the
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CD45RClow T cell subset [25]. Importantly, this difference in the

proportion of CD45RChigh and CD45RClow T cell subsets is

genetically controlled by the same chromosomal regions that have

been shown to influence the susceptibility to immune mediated

disorders [22,23,25,30]. Based on these experimental findings,

suggesting that the imbalance between CD45RChigh and

CD45RClow T cell populations contributes to the susceptibility

to vasculitis, we examined the distribution and function of the

CD45RC subsets in healthy individuals and AAV patients.

In the present study, we show that CD45RC subsets within the

CD4 and CD8 T cell compartments exhibit different cytokine

profiles, and that their relative proportion is variable from one

individual to another. Interestingly, the proportion of CD45RClow

CD4 T cells is strongly increased in AAV patients as compared to

healthy controls and patients with systemic lupus erythematosus

(SLE). Since this increase is not associated with disease subtype,

disease duration or number of relapses, we hypothesize that the

observed imbalance between CD45RChigh and CD45RClow T cell

subsets is a pre-existing phenomenon that may be involved in the

etiology of AAV.

Materials and Methods

Study population
For analysis of the distribution of CD45RC T cell subsets in

peripheral blood, patients were recruited via the outpatient clinic

of the Maastricht University Medical Centre (Maastricht, The

Netherlands). All AAV patients (n = 38; 21 men and 17 women;

median age 57 [range 32–75]) fulfilled the disease definitions as

proposed by the Chapel Hill Consensus Conference [31]. Only

patients with inactive disease, as evaluated by the Birmingham

Vasculitis Activity Score [32], were included. Characteristics of

AAV patients are presented in table 1. The SLE patients (n = 20; 4

men and 16 women; median age 40 years [range 22–64 years])

fulfilled the revised criteria of the American College of

Rheumatology [33] and had inactive disease at the time of

sampling. Patient’s spouses were recruited as control subjects

(n = 39; 17 men and 22 women; median age 55 years [25–70]).

Written informed consent was obtained from all subjects. They

were informed about the study and were enabled to ask further

information. All subjects had sufficient time to consider partici-

pation. This study was approved by the Medical Ethics Committee

of the University Hospital of Maastricht. For cytokine analysis on

CD45RC T cell subsets, PBMC were obtained from buffy coat

preparations from anonymous healthy donors, from the Purpan

university hospital blood bank (Toulouse, France).

Antibodies
FITC-, PE-, PE-Cyan5, PE-Cyan7,Alexa 700, Pacific Blue,

APC or biotin-conjugated anti-CD4 (RPA-T4), anti-CD8 (RPA-

T8), anti-TCRab (BW242/412), anti-HLA-DR (LN3), anti-CD25

(4E3), anti-CD28 (CD28.2), anti-CD69 (FN50), anti-CD45RA

(HI100), anti-CD45RB (MT4), anti-CD45RC (MT2), anti-

CD45R0 (UCHL1), anti-CCR7 (3D12), anti-Foxp3 (PCH101),

anti-IL-4 (4D9), anti-IL-10 (JES3-9D7) and anti-IFN-c (25723.11)

mAbs as well APC or PC7-streptavidin and biotinylated MARG-

2a were purchased from BD Biosciences (San José, CA), R&D

Systems (Minneapolis, MN), IQ Product (Groningen, The

Netherlands), Miltenyi (Bergisch Gladbach, Germany), Beckman

Coulter (Fulletron, CA) or eBioscience (San Diego, CA).

Flow cytometry analysis
For immunofluorescence staining, 106 cells were incubated with

mAbs for 20 min at 4uC. After washing with phosphate buffered

saline (PBS) containing 5% fetal calf serum (FCS) the biotin-

labeled cells were incubated with streptavidin-coupled PC7 for 20

min at 4uC, washed twice with PBS/5% FCS. Foxp3 intracellular

expression was detected using APC anti-human Foxp3 Staining

Set from eBioscience, according to their standard protocol. Data

were collected either on a FACS-Calibur (BD Biosciences)

cytometer using the CELLQuestTM software (BD Biosciences)

for analysis or on a LSR-II (BD Biosciences) cytometer using the

DIVA software (BD Biosciences) for analysis.

T cell subsets purification
PBMCs were prepared by gradient centrifugation (MLS-Ficoll,

Eurobio, Les Ulis, France) of buffy coat. Monocytes were removed

by plastic adherence and CD4 and CD8 T cells were purified by

negative selection using CD4 or CD8 negative isolation kit (Dynal;

Oslo, Norway). The percentage of residual CD8 or CD4 T cells after

depletion was always less than 0.5 % and the remaining population

consisted of 95–98% CD4 or CD8 T cells and 2–5% CD4 CD8

double negative non T cells. The isolation of CD45RChigh and

CD45RClow CD4 T cell subsets was performed as follows: CD4 T

cells were stained with limiting amounts of FITC-conjugated anti-

CD45RC mAb and separated into CD45RChigh and CD45RClow

cells by positive selection after addition of anti-FITC MACS

microbeads (Miltenyi). The resulting purity was always more than

92% for CD45RChigh and CD45RClow CD4 T cells. For cell sorting

experiments, purified CD4 T cells were stained with anti-CD4, anti-

CD45RC and anti-TCR mAbs and separated on a Coulter cell

sorter (Epics Altra; Beckman-Coulter, Fullerton, CA). The purity of

sorted CD45RChigh or CD45RClow CD4 T cell subsets was more

Table 1. Clinical characteristics of AAV* patients

Total AAV (n = 38) WG (n = 24) MPA (n = 6) CSS (n = 4) RLV (n = 4) SLE (n = 20)

Gender (M/F) 21/17 12/12 5/1 2/2 2/2 16/4

Age, median (range) yrs 57 (32–75) 55 (32–75) 61 (56–75) 54 (45–60) 65 (58–75) 40 (22–64)

ANCA (PR3/MPO/none) 24/9/5 20/2/2 3/3/0 0/1/3 1/3/0 -

Disease duration, Median
(range) yrs

2.6 (0.6–16.3) 3.5 (0.9–16.3) 1.0 (0.6–4.0) 4.2 (0.9–9.4) 0.8 (0.6–1.7) 6 (0.7–28.1)

Renal involvement (+/2) 18/20 11/13 2/4 1/3 4/0 9/11

Relapses, median (range) 1.3 (0–5) 1.9 (0–5) 0 (0–0) 0.8 (0–2) 0 (0–0) -

*Abbreviations: AAV, ANCA-associated vasculitis; ANCA, anti-neutrophil cytoplasmic antibody; CSS, Churg-Strauss syndrome; MPA, microscopic polyangiitis; MPO,
myeloperoxidase; PR3, proteinase 3; RLV, renal-limited vasculitis; WG, Wegener’s granulomatosis.

doi:10.1371/journal.pone.0005287.t001
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than 99 %. To purify CD45RAhigh and CD45RAlow CD4 T cell

subsets, the CD45RClow CD4 subpopulation, purified by magnetic

beads, were labeled with anti-CD45RA mAb and separated on a

Coulter cell sorter according to CD45RA expression. The purity of

sorted CD45RAhigh or CD45RAlow CD4 T cell subsets was more

than 99 %. Similar procedures were used for purification of CD4

CD45RB subpopulations within the CD45RClow subset. CD8

CD45RC T cell subsets were purified by cell sorting after labeling

purified CD8 T cells with anti-CD8, anti-CD45RC and anti-TCR

mAbs. The purity of sorted CD45RChigh , CD45RCint or

CD45RClow CD8 T cell subsets was more than 97 % .

T cell stimulation and analysis of T cell proliferation and
cytokine production

The culture medium was RPMI 1640 (Gibco Life Technologies

Ltd, Cergy Pontoise, France) containing 5 % of human SAB (Biowest,

France), 1% sodium pyruvate, 1% non essential amino acids, 1% L-

glutamine, 1% penicillin-streptomycin and 261025 M 2-mercapto-

ethanol. Highly purified CD45RC CD4 or CD8 T cell subsets (105 T

cells / well) were polyclonally stimulated in 96 well plates (Falcon,

Becton Dickinson) using bound anti-CD3e (TR66; kindly provided

by Dr Valitutti, Toulouse, France) and soluble anti-CD28 mAbs

(CD28.2, BD Biosciences). Proliferation was measured by 3H-

thymidine uptake during the last 18 h of a 24, 48, 72 or 96 h culture

period. At various times throughout the culture, supernatants were

analyzed for cytokine production using CBA kit (BD Biosciences) or

ELISA for IL-17 (eBiosciences). Cytokine production was also

assessed by intracellular staining as described [34]. Briefly, CD4 or

CD8 T cell subsets were stimulated for 72 h with anti-CD3e plus anti-

CD28 mAbs, then activated with phorbol 12-myristate 13-acetate

(PMA) (20 ng/ml, Sigma) plus ionomycin (0.8 mg/ml, Sigma,) in the

presence of Monensin (2 mM, Sigma) for 4 h. Cells were harvested,

fixed with 2% paraformaldehyde (Fluka Chemie AG, Buchs,

Switzerland) and permeabilized with 0.5% saponin (Fluka). Cells

were incubated with FITC-labeled antibody to IFN-c (Beckman

Coulter), PE-labeled antibody to IL-4 or IL-10 (BD Biosciences

washed, and analyzed by flow cytometry on FACSCalibur or LSRII.

Statistical analysis
Data are presented as box plot. The Wilcoxon matched-pairs

test was used for intra-individual comparison. Linear regression

analysis was performed to assess associations between the age and

the proportion of CD45RC T cell subsets and to assess the

association between the relapse and the proportion of CD45RC T

cells subsets. The non-parametric Mann–Whitney U-test was used

to compare data from AAV patients, SLE patients and HCs. *,

p,0.05; **, p,0.02; p,0.002.

Results

The proportion of CD45RC CD4 and CD8 T cell subsets is
highly variable in the human population

The analysis of CD45RC expression on human peripheral blood

CD4 T cells by flow cytometry revealed an heterogeneous

expression, allowing the definition of two subsets: CD45RChigh

and CD45RClow (Fig. 1A, left panel). In contrast, the CD45RC

expression level on human CD8 T cells revealed a more complex

pattern with usually three subsets: CD45RChigh, CD45RCint and

CD45RClow (Fig. 1A, right panel). We analyzed the relative

proportion of CD4 and CD8 CD45RC subsets in 39 healthy

individuals (22 women and 17 men, median age 56, range 26–71).

As shown in Figure 1, this proportion was very heterogeneous for

CD4 (median and range for CD45RClow: 57% and 37–77%) and

for CD8 (median and range for CD45RClow: 22% and 7–39%;

CD45RCint: 51% and 17–71%; CD45RChigh: 25% and 9–77%).

These differences in the relative proportion of CD45RC subsets

within the CD4 (Fig. 1B, left panel) and CD8 (Fig. 1B, right panels)

T cells were not explained by differences in age. To assess intra-

individual variation over time, the proportion of CD45RC T cell

subsets were reanalyzed after a period of 4 years in 11 individuals.

No significant changes in the proportion of CD45RC T cell subsets

were observed during this period except for the CD8 CD45RCint

subset (Fig. 1C). Finally, we showed that the observed heterogeneity

in the CD45RC subsets was not the result of different numbers of

activated T cells, since we found no correlation between the

proportion of CD45RC T cell subsets and the percentage of HLA-

DR+ cells for CD4 T cells and CD8 T cells (data not shown). Also,

the absolute numbers of T cells and the CD4/CD8 T cell ratio were

not correlated with the proportion of CD45RC T cell subsets (data

not shown). Altogether, these data demonstrate that CD45RC

expression identifies different subsets of CD4 and CD8 T cells that

are differentially distributed between healthy individuals indepen-

dently of age or size and activation state of the T cell compartment.

To identify the relation between the CD45RC phenotype and

naive T cells (CD45RA+RO2CCR7+), effector memory T cells

(CD45RA2RO+CCR72), central memory T cells (CD45RA2R-

O+CCR7+) and natural Treg (Foxp3+), we performed 6-color

staining flow cytometry. As shown in Fig. 2, the CD4 and CD8

CD45RC T cell subsets are heterogeneous. The majority of CD4

CD45RChigh cells are naive cells (87%; range 72–93) whereas the

CD4 CD45RClow subset contains central memory cells (median

36%; range 21–46), effector memory cells (median 19%; range 14–

26%) (Fig. 2A). Concerning the CD8 T cell compartment, the

CD45RChigh and CD45RCint subsets contain the majority of naive

cells (High: 66%; range 44–90; Int: 8% range 2–20) whereas the

CD45RClow subset contains the majority of memory cells (central

memory T cells: 10%; range 7–24, effector memory T cells: 22%;

range 17–34) (Fig. 2B). A significant proportion of CD4 and CD8

CD45RC T cell subsets contains two subpopulations with ill defined

functions i.e; CD45RA+CD45RO2CCR72 and CD45RA+C-

D45RO+. In addition, we found that the majority of Foxp3+ CD4

and CD8 T cells are contained in the CD45RClow subset (Fig. 2).

The proportion of CD45RC CD4 and CD8 T cell subsets is
differentially distributed between healthy individuals and
AAV patients

The analysis of CD45RC T cell subsets in the peripheral blood

of patients with AAV, all in clinical remission, revealed a strong

predominance of the CD45RClow subset within the CD4, but not

the CD8 T cell compartment (Fig. 3A). Interestingly, we did not

observe this increased proportion of CD45RClow CD4 T cells in

patients with SLE, another chronic systemic autoimmune disease

(Fig. 3A). The percentage of CD45RC CD4 T cells was not

different between patients with the distinct disease entities of AAV

(WG, MPA, CSS, and renal limited vasculitis), MPO2 or PR3-

ANCA, or number of relapses (Fig. 3B). Interestingly, the

proportion of CD4 CD45RClow subset was significantly higher

in AAV patients with renal involvement (Fig. 3B, right panel).

Finally, the observed increased proportion of the CD45RClow

CD4 T cells in AAV patients was not influenced by the duration of

the disease and was stable during 4 year follow-up (Fig. 3C).

The level of CD45RC expression identifies two subsets
within human CD4 T cells with differential cytokine
production

In order to characterize the function of CD45RChigh and

CD45RClow CD4 T cell subsets, we determined their cytokine

CD45RC T Cell Subsets in AAV
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profile. For this purpose, we purified these sub-populations from

peripheral blood of 20 healthy individuals using magnetic beads.

The purity was always higher than 92% (Fig. 4A). Purified

CD45RC CD4 T cell subsets were then stimulated in vitro in an

antigen-presenting cell independent system using plate bound anti-

CD3 mAb in the presence of soluble anti-CD28 mAb. Initial

experiments showed that the peak of cytokine production was

reached after 3 days of stimulation (data not shown). Upon this in

vitro stimulation, both T cell subpopulations proliferated equally

well, but produced different cytokines (Fig. 4B). The type-1

cytokines, IL-2, TNF-a and IFN-c, were produced by both

subsets, but the CD45RChigh population produced more IL-2

(Fig. 4B). In contrast, IL-17, IL-10 and the type-2 cytokines (IL-4,

IL-5) were mainly produced by the CD45RClow CD4 T cells

(Fig. 4B). Similar results were also obtained when CD45RC

subsets were highly purified by flow cytometry (.99%), thus

excluding a possible contribution of contaminating cells in these

differences (data not shown). Intracellular staining confirmed the

above results and showed that IFN-c was produced by both the

CD45RChigh and CD45RClow subsets, while IL-4 and IL-10

producing cells were mainly contained within the CD45RClow

subset (Fig. 4C). In addition, these experiments showed that the

majority of IL-4 or IL-10 producing cells did not produce IFN-c
(Fig. 4C). We also analysed CD4 T cells according to the

expression of CD45RA isoform. We showed that the majority of

CD45RChigh subset expresses also high levels of CD45RA isoform.

In contrast, the CD45RClow population is heterogeneous and

contains both CD45RAhigh and CD45RAlow subsets (Fig. S1A,

S1B). After stimulation with anti-CD3 and anti-CD28 mAbs, we

showed that purified CD45RClowCD45RAhigh CD4 T cells and

CD45RClowCD45RAlow CD4 T cells exhibited a similar pattern

of cytokine production as total CD45RClow CD4 T cell subsets

(Fig. S1C and S1D). Similar phenotypic and functional studies

were obtained when CD45RB was used instead of CD45RA (data

not shown). Since the CD45RAhigh (and CD45RBhigh) cells within

the CD45RClow subset produced IL-4, IL-5 IL-10 and IL-17, we

conclude that CD45RC expression is more reliable than CD45RA

(and CD45RB) expression to identify human CD4 T cells that are

responsible for type-2, IL-17 and regulatory cytokine production.

Altogether, these data demonstrate that CD45RC expression

identifies two human CD4 T cell subsets with different cytokine

profiles. The CD45RChigh subset produce mainly type-1 cytokines

while T cells responsible for IL-17, IL-10 and type-2 cytokine

production are mainly contained within the CD45RClow subset.

The level of CD45RC expression identifies three subsets
within human CD8 T cells with differential cytokine
production

We also studied the cytokine repertoire of CD45RChigh,

CD45RCint and CD45RClow CD8 T cell subsets. These three

sub-populations were purified from peripheral blood of 12 healthy

individuals using flow cytometry and stimulated in vitro using plate

bound anti-CD3 mAb in the presence of soluble anti-CD28 mAb.

The purity was always higher than 97% (Fig. 5A). Initial

Figure 1. CD4 and CD8 CD45RC T cell subsets distribution in healthy individuals. Peripheral blood leukocytes from 39 healthy individuals
(median age 55, range 25–70) were stained with mAbs against CD3, CD4, CD8, CD45RC. (A) The histograms represent the CD45RC expression on CD4
T cells (left panel) and CD8 T cells (right panel) from two healthy individuals showing the inter-individual variability in CD45RC expression. (B) The
proportion of CD45RClow CD4 T cells (left panel) and the proportion of CD45RChigh-CD45RCint-CD45RClow CD8 T cells (right panels) are presented
according to age of the donors. Each dot represents a separate individual. The r- and p-values were calculated using linear regression. (C) Represent
the percentage of CD45RClow CD4 T cells (left panel) or the proportion of CD8 CD45RC T cell subsets (right panel) of 11 individuals at 4 years interval.
The p-values were calculated using the Wilcoxon matched-pairs test; *, p,0.05.
doi:10.1371/journal.pone.0005287.g001
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experiments showed that the peak of cytokine production was

reached after 4 days of stimulation (data not shown). All three

CD45RC CD8 T cell subsets produced the type-1 cytokines, IL-2,

TNF-a and IFN-c, but the CD45RCint population produced more

TNF-a and IFN-c (Fig. 5B). In contrast, IL-4, IL-5, and IL-10

were mainly produced by the CD45RClow and CD45RCint CD8

subsets, with the CD45RClow population producing higher

amounts (Fig. 5B). IL-10 was produced only by 4 individuals

among 12 tested and IL-17 was undetectable (data not shown).

Intracytoplasmic staining confirmed the above results and showed

that IFN-c was produced by all three CD8 T cell subsets, while IL-

4 producing cells were mainly contained within the CD45RClow

subset (Fig. 5C). Here again, the majority of IL-4 producing cells

did not produce IFN-c (Fig. 5C). Altogether, these data

demonstrate that CD45RC expression divides human CD8 T

cells into three subsets with differential cytokine production and

that the CD8 T cells responsible for type-2 cytokine production

and IL-10 production are mainly contained within the

CD45RClow and CD45RCint subsets.

Discussion

In the present study, we show that the level of CD45RC

expression on human CD4 and CD8 T cells identifies functionally

distinct subsets that differ by their cytokine profile and stage of

differentiation. In addition, the proportion of these subsets is

diverse within the human population and this diversity is not

related with age or the state of T cell activation. Finally, we show

that the proportion of CD45RClow CD4 T cells is significantly

increased in patients with AAV, but not in SLE, as compared to

healthy controls. This increase concerned only the CD4 T cell

compartment and appeared independent of AAV subtype, ANCA

specificity, number of previous relapses, and duration of disease.

The observation that remission can be induced in AAV patients

by drugs specifically targeting T cells strongly suggests a pivotal

role of T cells in the pathogenesis of this disorder [3,35,36]. In

addition, involvement of T cells is suggested by granuloma

formation in the lesions and by the presence of isotype-switched

autoantibodies, which is compatible with an antigen-driven and T

helper cell-dependent autoimmune response. Furthermore, in an

animal model of MPO-ANCA associated vasculitis, it was

demonstrated that T cells play a pivotal role in the pathophys-

iology of the disease [37]. Our present study shows that AAV

patients in remission harbor an increased proportion of

CD45RClow CD4 T cells that is stable over time and independent

of disease duration and subtype of AAV. In animal models, T cell

activation induces a persistent down-modulation of CD45RC

expression, only when the antigen is continuously presented to the

immune system [38,39]. Therefore, the increased proportion of

CD45RClow CD4 T cells in AAV patients may be indicative of an

ongoing strong antigenic stimulus. In line with this hypothesis, it

has been shown that WG patients exhibit a low frequency of naive

CD4 T cells [9] and high number of CD4 effector memory cells

[13]. Moreover, patients with vasculitis often have increased serum

markers of T cell activation [40,41], and increased percentages of

activated T cells [7], both during active disease and in remission.

This could be explained by a failure of effectively control T cell

activation since a defective suppressive function of circulating Treg

Figure 2. Phenotypic characterization of CD45RC T cell subsets. Peripheral blood leukocytes from healthy individuals were stained with
mAbs against TCR, CD4 or CD8, CD45RC, CD45RA, CD45RO and CCR7 (n = 6) or TCR, CD45RC, CD4 or CD8 and Foxp3 (n = 27). Gates were set on CD4 T
cells (upper panels) or CD8 T cells (lower panels). Box plot diagrams represent the proportion of naive (CD45RA+CD45RO2CCR7+), central memory
(CD45RA2CD45RO+CCR7+), effector memory (CD45RA2CD45RO+CCR72) and natural regulatory T cells (Foxp3+) within the CD45RC subsets. The
group ‘‘others’’ contains both CD45RA+CD45RO2CCR72 and CD45RA+CD45RO+ subsets, subpopulations with ill defined functions. The p-values
were calculated using the Wilcoxon matched-pairs test; *, p,0.05; **, p,0.02; p,0.002.
doi:10.1371/journal.pone.0005287.g002
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has been shown in WG patients [12]. In addition, genetic

polymorphisms in genes encoding the inhibitory molecules for T

cell activation (CTLA-4, PD1, and PTPN22) have been defined as

a risk factor for AAV [42,43].

It remains to be established whether the increased proportion of

CD45RClow CD4 T cells, as observed in AAV patients, is

secondary to the disease process, or is a pre-existing phenomenon

that contributes to the susceptibility to develop AAV. Since this

increase is independent of the treatment (by comparing AAV to

SLE patients), the duration of disease or number of previous

relapses, we would rather favor the second hypothesis. This is

further supported by evidence obtained in animal models. LEW

rats, which have a preponderance of CD45RChigh T cells, develop

preferentially type-1 mediated disorders. In contrast, BN rats, that

harbor high amounts of CD45RClow T cells, preferentially develop

heavy metal-induced type-2 immune-mediated disorders and

MPO-ANCA associated vasculitis [25–28]. In addition, the

differential distribution of CD45RC subsets between LEW and

BN rats is genetically controlled by a locus on chromosome 9 that

co-localizes with a 120 kb interval controlling susceptibility of BN

rats to develop heavy metal-induced immune-mediated disorders

[22,23,25,30] (our unpublished data). Based on these animal

model’s data, we would like to propose the hypothesis that the

imbalance in CD45RC T cell subsets, as observed in AAV

patients, may be a risk factor for developing disease.

The next question is how the high frequency of CD45RClow

CD4 T cells could influence the development of AAV. It is clear

from our study that the CD45RClow CD4 T cell compartment is

composed of distinct T cell subsets, including both effector and

central memory T cells. Interestingly, a persistent expansion of

effector memory CD4 T cells has been described in WG [13],

suggesting that the increased proportion of CD45RClow CD4 T

cells preferentially affects the effector memory compartment. With

respect to the type of effector cells involved, it is of great interest to

note that in animal model of type-2 cytokine dependent heavy

metal-induced immune disorders, the depletion of CD45RChigh T

cells exacerbates disease, while adoptive transfer of this subset has

a protective effect [44,45]. This could be due to the differential

cytokine production by these T cell subsets. In the current study,

we show that IL-17 and type-2 cytokines are exclusively produced

by CD45RClow T cells, while type-1 cytokines are produced by

both subsets, in agreement with our previous findings in rats

[22,23,25]. Interestingly, our study also shows that the proportion

of CD45RClow CD4 T cell subset is higher in patients with renal

involvement, in agreement with the pathogenic potential of this

subset. This is in strong concordance with studies showing that

Th17 cells are identified in the vasculitic lesions [46] and a skewed

distribution of Th2 and Th17 cells in WG patients after either

antigen-specific stimulation or polyclonal activation [11,47,48]. In

addition, IL-17 plays an important role in recruitment and

Figure 3. CD45RC T cell subsets distribution in healthy individuals and ANCA patients. Peripheral blood leukocytes from 39 healthy
individuals (HC), 38 patients with ANCA-associated vasculitis (AAV), and 20 patients with systemic lupus erythematosus (SLE), were stained with mAbs
against CD3, CD4, CD8, CD45RC. (A) The proportion of CD45RClow CD4 T cells (left panel) and the proportion of CD45RChigh-CD45RCint-CD45RClow

CD8 T cells (right three panels) are presented as box plot diagrams for each study population. The p-values were calculated using the Wilcoxon
matched-pairs test; p,0.05; **, p,0.02; ***, p,0.002. (B) The proportion of CD45RClow CD4 T cells are presented according to disease subtype (WG,
Wegener’s granulomatosis; MPA, microscopic polyangiitis; CSS, Churg-Strauss Syndrome; RLV, renal limited vasculitis), type of ANCA specificity (MPO,
myeloperoxidase; PR3, proteinase 3), renal involvement (no: no kidney disease; yes: kidney disease), and relapses (no: no relapse; yes: relapses). Data
are presented as box plot diagrams for each study population. The p-values were calculated using Mann Witney U test; *p,0.05. The proportion of
CD45RClow CD4 T cells are presented according to duration of disease (C, left panel). The proportion of CD45RClow CD4 T cells of 18 AAV patients (13
WG, 3 MPA, and 2 RLV patients) at 4 years interval (C, right panel).
doi:10.1371/journal.pone.0005287.g003
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activation of neutrophils, a characteristic feature of AAV disease.

How expression of the CD45 isoform could influence cytokine

profiles of CD4 T cells is not clear. However, it has been

documented that CD45 modulates signalling through diverse

receptors affecting cytokine production and response to cytokines

[49,50].

The induction of AAV is multifactorial, with an interplay of

environmental factors including silica, bacterial and viral infec-

tious agents, medication, and genetic predisposition, all creating

the environment for the development of disease [2]. Our current

data suggest that the increased proportion of CD45RClow CD4 T

cells may also contribute to the susceptibility to AAV. From

animal studies, the relative proportion of CD45RC subsets is

genetically controlled by the same genetic interval that also

controls several immune-mediated disorders [22,23,25,30]. Al-

though it remains to be determined whether the balance between

Figure 4. Cytokine profile of human CD45RC CD4 T cell subsets. (A) Representative example of the purification of CD4 CD45RC T cell subsets.
Results are shown as histograms for CD45RC expression on CD4 T cells before (left histogram) and after CD45RC subsets purification (right
histograms). The values within the histograms represent the percentage of CD45RC T cell subsets. (B) Purified CD45RChigh (High) and CD45RClow

(Low) CD4 T cell subsets, were stimulated in vitro with plate-bound anti-CD3 and anti-CD28 mAbs. The supernatants were collected at 72 h of culture
and analyzed for the presence of cytokines using the CBA kit and Elisa. The results obtained in 20 healthy individuals are presented as box plot
diagrams. The p-values were calculated using the Wilcoxon matched-pairs test; *, p,0.05; **, p,0.02; ***, p,0.002. (C) For intracellular measurement
of cytokines, purified CD4 CD45RChigh and CD45RClow T cells were stimulated and stained using FITC-labeled anti-IFN-c mAb and PE-labeled anti-IL-4
or anti-IL-10 mAbs. The results are expressed as dot plot representing IFN-c/IL-4 or IFN-c/IL-10 production by CD4 T cell subsets. The values within the
plots represent the fraction of CD4 T cells producing the indicated cytokine. The results are representative of three independent experiments.
doi:10.1371/journal.pone.0005287.g004
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CD45RC subsets in humans is also genetically controlled, the

identification of the gene(s) involved will give new insight in the

etiology and pathogenesis of AAV.

Supporting Information

Figure S1 Differential cytokine production by human CD45RA

CD45RClow CD4 T cell subsets (A) CD4 T cells from 18 healthy

controls were stained for the expression for CD45RA and

CD45RC isoforms. The results are presented as correlation

between CD45RAlow and CD45RClow T cells subsets (r = 0.8;

p,0.001). (B) Dot plot showing CD45RC and CD45RA

expression by CD4 T cells from 2 different donors with different

profiles. (C) CD45RChigh and CD45RClow CD4 T cell subsets

were purified by flow cytometry. CD45RClow CD4 T cells were

stained with anti-CD45RA mAb and separated by flow cytometry

into CD45RAhigh and CD45RAlow subsets. (D) These sub-

populations as well as total CD45RClow CD4 T cells (white bars)

and CD45RChigh CD4 T cells (black bars) were stimulated in

vitro with plate-bound anti-CD3 and soluble anti-CD28 mAbs.

The supernatants were collected after 72 h of culture and analyzed

for the presence of cytokines using the CBA kit. These results are

Figure 5. Cytokine profile of human CD45RC CD8 T cell subsets. (A) Representative example of the purification of CD45RChigh, CD45RCint and
CD45RClow CD8 T cell subsets. Results are shown as histograms for CD45RC expression on CD8 T cells before (left histogram) and after CD45RC
subsets purification (right histograms). The values within the histograms represent the percentage of CD45RC T cell subsets. (B) These sub-
populations were stimulated in vitro with anti-CD3 and anti-CD28 mAbs. The supernatants were collected at 96 h of culture and analyzed for the
presence of cytokines using the CBA kit and Elisa. The results obtained in 12 healthy individuals are presented as box plot diagrams. The p-values
were calculated using the Wilcoxon matched-pairs test; **, p,0.02. (C) For intracellular measurement of cytokines, purified CD8 CD45RC T cell
subsets were stimulated and analyzed for intracytoplasmic cytokines as indicated in the legend of figure 4. The results are representative of three
independent experiments.
doi:10.1371/journal.pone.0005287.g005
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representative of 2 experiments from two different healthy

individuals.

Found at: doi:10.1371/journal.pone.0005287.s001 (9.73 MB TIF)
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