
RESEARCH Open Access

Association between polymorphism at IGF-
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Abstract

Background: Insulin-like growth factor-1 (IGF-1) acts on glucose and protein metabolism and human growth and
also influences blood pressure and renal function. This study investigated whether the single-nucleotide
polymorphism of IGF-1, rs35767, plays a role in metabolic syndrome indicators, including blood pressure, glucose
metabolism, uric acid levels, and renal function.

Methods: In this retrospective longitudinal cohort study, blood samples from 1506 Japanese individuals were
collected and used for genotyping for variant rs35767: T > C in the IGF-1 upstream promoter. Data were analyzed to
identify associations between IGF-1 genotypes and patient biochemical parameters, including the components of
metabolic syndrome and the long-term change in renal function.

Results: The cohort rs35767 genotypes included 650 CC carriers (43.2%), 687 TC carriers (45.6%), and 169 TT carriers
(11.2%). Multiple regression analysis revealed no association between IGF-1 genotype and blood pressure, glycated
hemoglobin level, and serum uric acid level. However, in females, blood pressure was negatively correlated with
the TT genotype. Longitudinal observation revealed that the decline in eGFR over 10 years was greater in TT (−
18.51 ± 1.04 mL/min/1.73m2) than in CC carriers (− 16.38 ± 0.52 mL/min/1.73m2; P < 0.05).

Conclusion: The present study suggests that renal function declines faster in individuals with the TT genotype at
the IGF-1 rs35767 locus than in those with the CC genotype, suggesting that the TT genotype is associated with
the long-term chronological decline in renal function.
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Background
Insulin-like growth factor-1 (IGF-1), also known as som-
atomedin C, is an endocrine hormone produced in the
liver. IGF-1 exerts insulin-like action, affecting human
growth and cell proliferation. The secretion of IGF-1 is
stimulated by growth hormone, insulin, and dietary

protein intake and is modulated by age, sex, ethnicity,
and genetic predisposition. IGF-1 not only acts on glu-
cose and protein metabolism but also has an influence
on blood pressure (BP) and renal function. Circulating
IGF-1 normally reaches peak levels during puberty, grad-
ually declining with advancing age [1]. The role of IGF-1
in BP regulation is complex. Studies have shown that
IGF-1 levels are higher in patients with hypertension
than in those without [2–6]. In patients with excessively
high IGF-1 levels, as in acromegaly, a positive relationship
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has been observed between IGF-1 level and BP [7]. How-
ever, other studies report that the relationship between BP
and IGF-1 level is neutral [8, 9] or even inverse [10–18].
In an animal model, IGF-1 was reported to decrease sys-
temic BP and increase blood flow in selective vascular
beds [19]. In addition, IGF-1 directly stimulates nitric
oxide (NO) production in endothelial cells [20]. Interest-
ingly, in spontaneously hypertensive rats, IGF-1-induced
vasorelaxant effects are impaired [21]. In contrast, GH
and IGF-1 act on the renal tubule to promote the
retention of sodium and water in the body, contributing
to sodium-dependent hypertension [22]. Together, these
observations suggest that IGF-1 helps in either increasing
or lowering BP, depending on the conditions.
Genome-wide association studies show that the total

number of hypertension-related gene loci is well over
500, even if it is limited to common mutations among
determined genes. Although their influence on BP in the
general population is only about 1 mmHg [23], some
gene mutations are reported to have a relatively large
effect on BP. Most of these mutations affect water/electro-
lyte channels and transporters at the tubular level [24, 25].
Clinical evidence suggests that the T/C polymorphism

rs35767 near the promoter region of the IGF-1 gene is
associated with plasma IGF-1 levels. IGF-1 levels are
higher in T carriers than in CC carriers. Interestingly,
another study suggests that IGF-1 plays a role in the
pathogenesis of atherosclerosis [26]. In addition, single-
nucleotide polymorphism analysis of IGF-1 showed that
rs35767 is associated with hypertension in Europeans
[5]. A study of the relationship between IGF-1 poly-
morphism rs35767 and serum uric acid (UA) levels
showed that non-Asian CC carriers have elevated UA
levels [27]. Despite this preliminary evidence that IGF-1
plays a role in BP regulation, studies investigating the
role of IGF-1 in renal function are limited.
This study investigates whether the IGF-1 gene poly-

morphism rs35767 is associated with metabolic syndrome
indicators, including BP and glycated hemoglobin (HbA1c).
Of particular focus is the relationship between IGF-1
genotype and long-term changes in renal function.

Methods
Aim, design, and setting
This study aimed to investigate whether the IGF-1 gene
polymorphism rs35767 is associated with metabolic syn-
drome indicators, including BP and glycated hemoglobin
(HbA1c). This is a retrospective, longitudinal cohort
study conducted in Japan.

Characteristics of participants
The original candidate group included 3250 individuals,
all native Japanese living in the vicinity of Tokyo. They
attended annual medical check-ups at our health

management center. As a result, 2601 of the 3250 indi-
viduals agreed to participate in the study. Of the 2601
patients, some [n = 543, 20.9%] were excluded from the
study, because they were treated for medical conditions,
including hypertension [n = 283 (10.9%); F/M, 11/272],
diabetes mellitus [n = 111 (4.3%); F/M, 4/107], and hy-
peruricemia [n = 149 (5.7%); F/M, 0/149] during the allo-
cated period. Individuals whose renal function could not
be monitored for a period of 10 years were also excluded
[n = 552]. The final analysis was then made using 1506
individuals. The flow diagram of the study was shown in
Fig. 1.

Laboratory tests
Blood was drawn after an 8–12-h fasting. Measured
biochemical parameters included serum aspartate
aminotransferase (AST), alanine aminotransferase (ALT),
creatinine (Cr), and UA levels, as well as lipid profiles of
total cholesterol, high-density lipoprotein cholesterol
(HDLC), low-density lipoprotein cholesterol (LDLC),
triglyceride (TG), and HbA1c.

Other variables
Body mass index (BMI) was calculated using the follow-
ing equation: BMI = Body weight × 1/(body height)2. BP
was measured with the patient in a sitting position dur-
ing a morning visit (fasting state, time: 9–11 AM) after
5 min of rest in a supine position (to avoid the so-called
“white coat hypertension”) using an automatic self-
measuring device equipped with a 47 × 13-cm cuff and
24 × 13-cm bladder. Mean BP (MBP) was calculated
from systolic BP (SBP) and diastolic BP (DBP) using the
following equation: MBP = DBP + (SBP −DBP)/3. For
the Japanese individuals, renal function expressed as
eGFR was calculated using the following equation:
eGFR = 194 × Cr− 1.094 × age− 0.287(for women, × 0.739), as
reported elsewhere [28]. Laboratory tests were per-
formed using the BioMajesty auto-analyzer Series JCA-
9130 (JOEL, Tokyo, Japan).

DNA analysis
Genomic DNA was extracted from whole peripheral
blood cells, and samples were stored at − 80 °C until use.
Polymorphism analysis was performed by Sanger se-
quencing [29]. PCR reactions were performed in a total
volume of 20 μL containing 50 ng genomic DNA,
TaKaRa Ex Taq DNA Polymerase supplied by Takara
Bio Inc., and 10 μM of each forward and reverse primers.
PCR amplification was performed in a DNA thermal cy-
cler (BIO-RAD DNA Engine Peltier Thermal Cycler). The
amplification conditions were as follows: initial denatur-
ation at 94 °C for 5min followed by 35 cycles of 94 °C for
30 s, 60 °C for 30 s, and 72 °C for 30 s, with final extension
for 5min at 72 °C. The amplified PCR products were
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visualized by 1% agarose gel electrophoresis under UV
light. Primers ordered from Eurofins Genomics K.K.
Tokyo, Japan, were as follows; 5′-TTGGGCACAT
AGTAGAGCTCAC-3′ and 5′-CAAAAGCCCAGAG-
CAGACAT-3′.

Statistical analysis
The database and all statistical outputs were retained by
the University. Access to the database was limited as
deemed necessary. The authors assume full responsibil-
ity for the completeness and accuracy of the content of
the manuscript. Results of the different subgroups were
examined by one-way analysis of variance. The final vari-
ables were chosen on the basis of clinical importance
and biological plausibility at the investigators’ discretion.
Multiple regression analysis was used to calculate the
regression coefficient (β) and standard error (SE) to
estimate factors affecting BP, HbA1c, UA, and eGFR
after adjusting confounders. For the evaluation of long-
term changes in eGFR (ΔeGFR), longitudinal analyses
were performed. For the further evaluation of the age
effect, participants were divided into the younger age
[18-32y.o., n = 768, F/M = 168/600] and the older age
[33-55y.o., n = 738, F/M = 38/700].
Statistical analyses were performed using Stat Flex ver-

sion 7.0 (Artec Ltd. Co., Osaka, Japan) and EZR (Version
1.33, Saitama Medical Center, Jichi Medical University,
Saitama, Japan), which is a graphical user interface for R
(The R Foundation for Statistical Computing, Vienna,
Austria). EZR is a modified version of R Commander de-
signed to add statistical functions frequently used in

biostatistics. Data are presented as the mean ± standard
deviation unless otherwise indicated. P-values of ≤0.05
were considered statistically significant. Because the his-
tograms of each parameter distributed in a parametric
manner, logarithmic transformation was not performed.

Results
The final cohort included 206 females and 1300 males
[n = 1506; 13.8% female]. The cohort was grouped ac-
cording to IGF-1 rs35767 genotype as CC [n = 650
(43.2%); F/M, 101/549], TC [n = 687 (45.6%); F/M, 83/
604], and TT [n = 169 (11.2%); F/M, 22/147] (Table 1).
Biochemical parameters of participants according to

rs35767 genotype are shown in Table 1. No difference
was found in any of the parameters including SBP, DBP,
MBP, serum Cr concentration, eGFR, serum UA level,
HbA1c among the three groups.
The association between IGF-1 genotype and BP (SBP,

DBP, and MBP) was determined using multiple regres-
sion analysis with CC as the standard for comparison
(Table 2). Using three models (Model 1, male only;
Model 2, female only; and Model 3, both sexes), In any
of the three independent models (Model 1, 2 and 3), we
observed that SBP, DBP and MBP were all associated
with the TT genotype (P < 0.05) in females, but not in
male. In contrast, no association was observed between
rs35767 genotype and HbA1c level, serum UA level, or
eGFR in any of the three models (Table 3).
The results of longitudinal analysis of factors to

explain time-dependent ΔeGFR are shown in Table 4. In
a total of 1506 participants whose renal function was

Fig. 1 A flow diagram of the study. A total of 3250 candidates were asked to participate in the study with the written informed consent with an
invitation letter, in which 2601 individuals agreed. After applying exclusion criteria on medical conditions such as hypertension, diabetes mellitus
and hyperuricemia during the allocated period, a total of 543 were excluded, and 2058 remained. In addition, a total of 552 were also excluded
due to incomplete data on long-term observation on eGFR. The final number for the longitudinal analysis was 1506
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monitored for a period of 10 years, we observed a grad-
ual decline in eGFR of approximately 1.0–1.5 mL/min/
1.73m2/year. A significant negative correlation was ob-
served between ΔeGFR and MBP (P < 0.05), and between
ΔeGFR and HbA1c (P < 0.05). ΔeGFR correlated posi-
tively with serum UA level (P < 0.05). Notably, a negative
association was observed between ΔeGFR and the TT
genotype (P < 0.05). With respect to the effect of age on
ΔeGFR, participants were divided into two groups; the
younger and the older age. The negative association be-
tween ΔeGFR and the TT genotype remained significant
in the younger age, while it became insignificant in the
older age (Table 4).
The decline in eGFR over 10 years according to geno-

type is shown in Fig. 2. eGFR declined significantly faster
in TT carriers (18.51 ± 1.04 mL/min/1.73m2; n = 169)
than in CC carriers (16.38 ± 0.52 mL/min/1.73m2;
n = 650) (P < 0.05).

Discussion
The notable finding of this study is that the TT genotype
of the rs35767 IGF-1 gene polymorphism is associated
with a faster decline in eGFR than the CC genotype.
This finding suggests that IGF-1 is not merely a meta-
bolic growth hormone but may also influence BP and
long-term renal function.

eGFR normally declines with age by approximately
1.03 mL/min/1.73m2/year, even in the absence of pro-
gressive renal diseases such as moderate-to-severe
hypertension, overt diabetic nephropathy, and primary
glomerular disease [30]. This age-related decline in renal
function is caused by changes in renal morphology
resulting from arteriosclerosis and concomitant renal
atrophic changes. Renal function is greatly influenced by
inner and middle membrane thickening and luminal
narrowing that occur with age. The resulting decrease in
glomerular blood flow causes collapse of the glomerular
tuft and ischemia in the glomeruli and interstitial tissue,
leading to an irreversible gradual loss of renal function
known as nephrosclerosis.
Despite the observed association between the TT

genotype and accelerated eGFR decline, BP in females
were negatively associated with the TT genotype
(Table 2). The reason for this contradiction is un-
clear. The negative association between TT genotype
and BP suggests that the TT genotype has either a
BP-lowering or a renal-protective effect. The association
of BP with the TT genotype was observed only in females;
thus, we believe that this discrepancy is probably attribut-
able to the relatively small number of female participants
(15.9%); the benefits of lowering BP on eGFR may have
been offset by the majority of male participants.

Table 1 Characteristics of participants according to the SNP rs35767 genotypea

Genotype

CC TC TT P

Sex (Female/Male) 101/549 83/604 22/147 0.17

Age (years) 33.8 ± 9.4 34.0 ± 9.3 33.8 ± 8.7 0.89

BMI (kg/m2) 22.9 ± 3.6 22.9 ± 3.5 22.7 ± 3.2 0.76

SBP (mmHg) 126.6 ± 17.1 127.6 ± 16.5 126.2 ± 17.5 0.42

DBP (mmHg) 76.6 ± 11.8 77.6 ± 11.4 76.2 ± 12.2 0.22

MBP (mmHg) 93.28 ± 12.5 94.2 ± 12.1 92.9 ± 13.2 0.25

AST (IU/L) 22.9 ± 11.4 23.5 ± 11.3 23.4 ± 10.1 0.68

ALT (IU/L) 26.1 ± 21.6 26.4 ± 19.9 25.2 ± 17.9 0.67

Cr (mg/dL) 0.77 ± 0.18 0.77 ± 0.23 0.78 ± 0.28 0.87

eGFR (mL/min/1.73m2) 96.8 ± 19.8 96.8 ± 20.1 98.3 ± 19.4 0.65

UA (mg/dL) 5.8 ± 1.4 5.8 ± 1.4 5.9 ± 1.4 0.81

TC (mg/dL) 195.1 ± 33.1 194.8 ± 32.9 193.6 ± 31.8 0.27

HDLC (mg/dL) 65.8 ± 16.3 66.0 ± 16.1 64.9 ± 15.3 0.83

LDLC (mg/dL) 116.0 ± 31.6 112.6 ± 30.0 112.4 ± 28.1 0.10

TG (mg/dL) 104.1 ± 80.2 106.9 ± 82.8 99.9 ± 81.9 0.27

HbA1c (%) 5.32 ± 0.59 5.32 ± 0.68 5.20 ± 0.45 0.07
an = 1506
Data are presented as the mean ± standard deviation
Abbreviations: SNP single-nucleotide polymorphism, IGF-1 insulin-like growth factor-1, BMI body mass index, SBP systolic blood pressure, DBP diastolic blood
pressure, MBP mean blood pressure, AST aspartate transaminase, ALT alanine transaminase, Cr creatinine, eGFR estimated glomerular filtration rate, UA uric acid, TC
total cholesterol, HDLC high-density lipoprotein cholesterol, LDLC low-density lipoprotein cholesterol, TG triglyceride, HbA1c glycated hemoglobin
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The serum UA levels were comparable among the
three genotypes (Table 1). Our observation is not in
accordance with a previous report showing that serum
UA levels are lowest in TT carriers in a non-Asian, sex-
matched study [27]; TT carriers also displayed higher
uricosuria levels than CC carriers. Our differing result
may stem from differences in the study population, in-
cluding ethnicity (non-Asians vs Asians in our study),
differences in sex distribution (well-balanced sex ratio
vs. small number of females in our study), and age distri-
bution (old age vs. relatively younger age in our study).
Regarding the relationship between UA and eGFR, the

longitudinal study showed a positive correlation between
these parameters (Table 5). The physiological role of UA
as an oxidant is supported by a number of in vitro and

in vivo studies reporting that intracellular UA causes in-
flammation, oxidative stress, endothelial dysfunction,
and activation of the renin–angiotensin–aldosterone
system [31]. However, UA is also known as a powerful
antioxidant in the extracellular milieu [32]. Importantly,
numerous studies have shown that UA is a risk factor
for the progression of hypertension and CKD. For
example, Kamei et al. reported that a slight increase in
serum UA level within the normal range causes a de-
crease in renal function [33]. Conversely, in individuals
with mild-to-moderate renal disease, UA is not associ-
ated with elevated serum Cr level or end-stage renal dis-
ease adjusted for eGFR and proteinuria [34]. The effect
of UA on renal function may not be renal-toxic unless
serum UA levels are extremely high [35]. At an early

Fig. 2 Decline in eGFR according to three IGF-1 rs35767 genotypes. n = 1506, (F/M = 206/1300) individuals who were followed up for 10 years.
*P < 0.01, by multiple regression analysis. Bars represent standard error of the mean

Table 4 Longitudinal analysis of factors to explain the decline in eGFRa

Objective variable ⊿eGFR in 10 years

All Younger age Older age

β
(SE)

t value p value β
(SE)

t value p value β
(SE)

t value p value

BMI −0.01 (0.11) −0.08 0.94 −0.17 (0.17) −0.98 0.32 0.01 (0.15) 0.05 0.96

MBP −0.06 (0.03) −1.97 < 0.05 −0.06 (0.05) −1.26 0.20 −0.05 (0.04) −1.36 0.18

UA 1.17 (0.28) 4.12 < 0.05 1.69 (0.44) 3.84 < 0.05 0.59 (0.37) 1.60 0.11

HbA1c −2.30 (0.57) −4.07 < 0.05 2.22 (1.77) 1.25 0.21 −2.83 (0.60) −4.70 < 0.05

rs35767 polymorphism

CC Ref Ref Ref

TC −0.19 (0.67) −0.28 0.78 −0.99 (0.96) −1.03 0.31 0.71 (0.93) 0.77 0.44

TT −2.42 (1.06) −2.28 < 0.05 −3.90 (1.53) −2.55 < 0.05 −1.02 (1.47) −0.70 0.49
an = 1506 individuals who were followed up for 10 years (F/M = 206/1300)
Younger age (18-32y.o.), n = 768 (F/M 168/600)
Older age (33-55y.o.), n = 738 (F/M = 38/700)
Model includes sex, age, BMI, MBP, UA, HbA1c, and rs35767 genotype
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stage, renal dysfunction caused by hyperuricemia is pre-
dominantly arteriosclerosis-related; with progression, a
J-shaped phenomenon occurs between serum UA level
and intraglomerular pressure, with a concomitant in-
crease in renal afferent arteriolar resistance [36]. In the
present study, serum UA levels were nearly within
normal range (approximately 5.0–6.5 mg/dL) (Table 1).
Despite this condition, the deleterious effect of UA on
renal function was observed here.
Previous studies have shown that serum IGF-1 level

depends on genotype, with TT > TC > CC [37, 38]. Ac-
cordingly, the observed decline in renal function could
result from the constantly elevated IGF-1 levels. IGF-1
given intravenously decreases systemic BP and increases
blood flow in selective vascular beds in animal model
[19]. In addition, IGF-1 directly stimulates NO in endo-
thelial cells [20], leading to an increase in glomerular
blood flow [39]. However, GH and IGF-1 also induce
hypertension. Indeed, studies show that patients with
hypertension have higher IGF-1 levels than those with-
out [2–6]. Furthermore, in a literature review of 20 stud-
ies including 11,704 subjects, Schutte et al. found a
positive relationship between IGF-1 levels and BP for
high IGF-1 levels in conditions such as acromegaly [7].
Notably, impairment of the IGF-1-induced vasorelaxant
effects has been reported in spontaneously hypertensive
rats [21]. Together, these observations indicate that IGF-
1 increases BP under most circumstances but can lower
BP in certain medical conditions. In the presence of ex-
cessive salt, individuals with TT genotype with elevated
serum IGF-1 level might be susceptible to hypertension
and CKD. We speculate that presumably elevated IGF-1
levels in TT carriers resulted in their faster decline in
renal function over 10 years.
IGF-1 is a hormone that decreases with age [40]. We

addressed the effect of age on the TT-related decline in
eGFR by comparing the younger participants with the
older ones. The faster decline in eGFR in TT carriers in
the younger age remained significant compared with
that in the older age. This could be explained by the fact
that IGF-1 levels might have been higher in the younger
age. The decline may be related to the age-related other
factors such as salt sensitivity, BP, and NO production.
While gaining insight into the mechanism underlying
the faster decline in eGFR in TT carriers is important,
such work is beyond the scope of this study.
Although this study is unique in its relatively large co-

hort (1506 individuals) and the long follow-up period on
renal function (10 years), there are some limitations.
First, all of the participants lived in the vicinity of Tokyo
and were of Japanese ethnicity. So, extrapolation of the
result to other ethnic groups is not always justified.
Second, the low proportion of female participants
may be problematic. Third, serum IGF-1 level was

not measured. Modification of such innate problems
would have increased the strength of our findings.

Conclusions
This study provides preliminary evidence that the TT
genotype at rs35767 in the IGF-1 gene is associated with
long-term chronological decline in renal function. Future
study is needed to clarify the relationship between
rs35767 and renal function.
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