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ABSTRACT: Phenotypic memory can predispose cells to physiological
outcomes, contribute to heterogeneity in cellular populations, and allow @ " Growth  Fe
computation of environmental features, such as nutrient gradients. In @ 5| Arrested |7
bacteria and synthetic circuits in general, memory can often be set by — — —_— 2 —
protein concentrations: because of the relative stability of proteins, the At @ At At L A %
degradation rate is often dominated by the growth rate, and inheritance is

a significant factor. Cells can then be primed to respond to events that

recur with frequencies faster than the time to eliminate proteins. Protein

memory can be extended if cells reach extremely low growth rates or no growth. Here we characterize the necessary time scales
for different quantities of protein memory, measured as relative entropy (Kullback—Leibler divergence), for a variety of cellular
growth arrest transition dynamics. We identify a critical manifold in relative protein degradation/growth arrest time scales where
information is, in principle, preserved indefinitely because proteins are trapped at a concentration determined by the competing
time scales as long as nongrowth-mediated protein degradation is negligible. We next asked what characteristics of growth arrest
dynamics and initial protein distributions best preserve or eliminate information about previous environments. We identified that
sharp growth arrest transitions with skewed initial protein distributions optimize flexibility, with information preservation and
minimal cost of residual protein. As a result, a nearly memoryless regime, corresponding to a form of bet-hedging, may be an
optimal strategy for storage of information by protein concentrations in growth-arrested cells.
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C omputation depends on memory,"”” and the ability to Many classic’® and modern*' ™ studies in bacteria have
clear previous memory storage imposes a lower limit on characterized mechanisms and characteristics of growth arrest
the energetic costs of computation (Landauer’s Principle).”” and modulation of proliferation in bacteria.”* As bacterial cells
Memory effects have been explored in biological computation spend most of their time in a growth-arrested state, the residual
as well.”” In dividing cells from bacteria to metazoa, phenotypic protein content from previous environments may have a strong
memory has been well-established as an important factor in effect on resumption of growth. The well-known stochasticity
both natural and synthetic contexts, """ and strategies for of gene expression in single cells, combined with a dynamic loss
engineering it with gene circuits have been developed.12 While of growth-mediated dilution during the transition to growth
memory can arise from a variety of sources,"” one important arrest, creates the possibility of a distribution of memory levels
mechanism is via inheritance of protein concentrations. Most in growth arrested populations. As cells enter growth arrest,

naturally occurring proteins in bacteria, and synthetic networks
lacking specific degradation tags in any cells, can have a strong
effect on memory because protein degradation is dominated by
dilution from growth, and growth rate can have a global effect
on gene expression.'* Expression levels of proteins have been
shown to affect the dynamics of bacterial signaling in some
contexts'”"® but not others.'®"” Expression costs in natural and
synthetic circuits can also create a growth feedback loop where
expression or production of a toxic agent creates a metastable
or bistable population growth dynamic with different growth
rates between subpopulations of cells.”'*"*'? In nonlaboratory
environments, the effects of growth arrest on synthetic circuits
may be an important factor; determining how to engineer

fluctuations in protein concentrations could become frustrated,
quenched at levels far from the previous steady state. Thus, in
common with kinetic trapping in protein assembly,” multi-

. o 2627
allelic optimization in evolution,

and glass formation in
physics,”® competing dynamics stand to lock transient
fluctuations in place. This effect then leads to random
configurations with potentially diverse phenotypes on resump-
tion of growth, similar to cases of bet-hedging studied in the
past.””??

computation in living matter, and stands to have important

Such an effect could have implications for
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practical consequences in the evolution and synthetic biology of
gene networks.

Here we characterize conditions that affect the accumulation
of long-lived proteins during growth arrest and analyze their
implications for survival of information during the growth arrest
transition. We hypothesized that the competing time scales of
protein dilution and growth arrest would dominate the level of
phenotypic molecular memory from the previous environment.
Mathematical models demonstrate the existence of a critical
time scale of growth arrest, below which memory is an
important factor and beyond which it is effectively erased.
Considering the unpredictable nature of future environments
and potential differential fitness effects of surviving proteins, we
determined the optimally flexible memory level of cells (i.e.,
highest information transfer with the least mean residual
protein) based on timing and cooperativity of the growth arrest
rate. As a result of these analyses, we arrive at two novel
conclusions about computation and memory in growing cells
with long-lived components. First, there is a parameter
manifold that distinguishes high-memory and memoryless
regimes depending on the suddenness of the growth arrest
transition. Second, an almost-memoryless regime represents a
flexible phenotype where residual information from the
previous environment can be retained, but easily discarded,
depending on the phenotypic needs in the future environment.
The flexible phenotype can arise if the growth arrest transition
is sufficiently switchlike and the initial distribution of protein
sufficiently skewed. This result suggests a strategy for encoding
flexible synthetic phenotypic memory by designing pro-
grammed cellular growth arrest with appropriate parameters,
which may be useful for synthetic biology in contexts outside of
the laboratory.®'

We begin with a simple mean-field mathematical model of
protein concentration, (p), in the presence of competing time
scales of first-order loss and growth arrest, cellular growth being
driven by extrinsic (i.e, non-p) stresses. While protein sznthesis
is capable of continuing after growth arrest in bacteria,”” many
naturally occurring gene expression events are halted as part of
the regulated transition into growth arrest.”>’ We therefore
restrict consideration to the case where synthesis has already
stopped, and ask what effect remaining growth has on protein
concentrations and information transfer across growth arrest
transitions. For this protein (or ensemble of proteins degraded
at identical rates), we have

dp_

dt (1)

where V, represents the initial degradation rate (the growth
rate of the cell in the previous, faster-growing environment), g
€ [0,1] represents a decreasing function of time, and &
represents the rate of growth-independent protein degradation,
absent active enzymatic degradation of p, § < Vg p(t). In
principle, g could fluctuate nonmonotonically between [0,1] to
represent arbitrary dynamical changes from alterations in
protein synthesis and degradation as well, but here we analyze
the dynamics of entering a longer-lived growth arrest state.
We have some initial protein concentration, p(0) = p,. The
goal is to identify the possible outcomes of protein
concentrations at various time scales. Experiments have
shown that batch cultures of Escherichia coli can stop growing
at a variety of speeds, depending on the stressor.” Growth rates
of single cells undergoing growth arrest appear to be dominated
by the extrinsic conditions as well,”” suggesting that a

[Vaog () + 61p(t)
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deterministic forcing function is an acceptable approximation.
To capture a wide variety of deterministic growth transition
dynamics, let us exploit the convenient Hill function:

g(t) = q,z—:t,‘. Here parameter q represents the halfway point

of growth arrest, and n determines the sharpness of the loss rate
(Figure 1a). Then the solution to eq 1 is, in the most general
case, of the form
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Figure 1. Cellular growth arrest traps long-lived molecules at
concentrations strongly dependent on initial conditions. (a)
Ilustration of the growth arrest process quenching cytoplasmic
protein degradation at present levels. In the model, the cell has
already stopped producing more of the protein (red), and subsequent
growth lowers its cytoplasmic concentration until growth has ceased.
(b) We consider three models of growth arrest with Hill functions:
gradual arrest (n = 1), steeper arrest (n = 2), and instantaneous arrest
(n > 0, a Heaviside step function). (c) Resulting predicted mean-
field protein dynamics for the three arrest models at various arrest
rates g. Protein concentrations represent fraction of initial concen-
tration, p,. Parameter § = 107° for these plots.
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p(t) = p, exp(—t[é + VdozPi(l; %5 1+ %5 - (qt)n)])
)

with n, ¢ > 0, where ,F, is the ordinary hypergeometric
function. Three cases of n are informative for intuitive
purposes: n = 1, n = 2, and n — oo (Figure la). They
correspond to gradual loss of growth, intermediate steepness of
growth, and a fast switch between the highest growth rate and
complete growth arrest. These cases also simplify eq 2, creating
familiar closed-form functions:

i (1 + qt)_Vb‘O/q n=1

—[8t+Vyearctan(qt) /q]

p(t) =qp, e n=2

g, e OVt (1/4=000-1/9)]
0

e (3)
where 6 is the Heaviside step function. We can see by
inspection of eq 3 and of their nondimensionalized graphs
(Figure 1) that there is a distinct growth arrest rate regime
where the concentration of p is frozen in arbitrary
concentrations that are sensitive to the rate of arrest before
eventual growth-independent protein loss has a significant
effect (Figure 1b—d). (In the interest of studying time scales on
which residual protein concentrations are capable of persisting
in growth arrested cells, hereafter we assume that nongrowth-
mediated protein degradation is negligible: § — 0). On that
time scale, more gradual growth arrest transitions soften the
edges of the high-memory regime. Generally, as the transition
becomes less sharp, the quenching parameter g must be larger
for memory to form, corresponding to a shorter time to reach
the growth-mediated protein half-life. In terms of growth arrest
physiology, this means that a gradual downregulation of
growth-limiting factors in response to stress will reduce
memory compared to more extreme events.

‘What are realistic parameters that could result in controllable
protein memory? That is, given a known concentration of initial
protein, what arrest parameters are necessary to attain either
effective memory extinction or residual protein at a certain
concentration?

In the discrete growth rate switch after the growth arrest
transition (n — ©0), we arrive at the frozen protein
concentration p* = pye”"*/% For the case of n = 2, we
similarly have p* = p,e *4/(20 Therefore, parameters
selecting for sufficiently large p* can be clearly chosen for n
> 2. There is no mathematically clear threshold for the frozen
concentrations with n = 1 because gradual loss of protein
concentration continues indefinitely. We can get an estimate for
when each case is approaching a high-memory state by taking
the logarithmic sensitivity of p(t) to t (Figure S1):

olnp(t) ¢ dp(t) Vgt
Olnt p(t) ot 1+ (qt)

L(p(t), t) =
(4)

For g > 0%, L » —oo with t (memoryless regime). For ¢ — oo,
L ~ 0 for all t (“perfect” memory regime). The transition
between the regimes occurs when q"t""' & V. Here, there is
an initial transient with an eventual slowing down of protein
dynamic sensitivity, settling to a sensitivity near the ratio Vy,/q
in the case of n = 1 (Figure Sla). When this loss rate is lower
than the fluctuation rate of the environment, phenotypic
memory is a significant factor. This result is also precisely the

sensitivity of frozen protein concentrations to changes when
the instantaneous switch to growth arrest occurs, g, in the case
of n = oo.

Then for a given characteristic time scale 7, the threshold for

the high memory regime is approximated by
v
— = p(7)

q (s)
and we can find it precisely only with implicit equations. For
instance, in the case of n — o0, and assuming 7 > 1/g, we have
q = Vi/W(p,) where W is the product logarithm, or the
Lambert W function: the inverse of (W) = We.

Another way to view the kinetics of protein survival is to
consider a constant number of proteins, 1, in an initial cell
volume €, and follow the (deterministic) growth of cell
volume. Mathematically, this is equivalent to eq 2, with § = 0
and protein concentration as

p(t) = p,/Q(t) (6)

Consider p, to be a random variable in an initial distribution,
P(p,), that is well-characterized, parametric, and has a
multiplicative scaling rule. Because the time evolution of the
system is deterministic, we can exploit multiplicative scaling to
analytically derive time evolution of the distribution and its
entropy. For example, if the protein is initially in a gamma
distribution, py ~ Gamma(q, f8) and kp, ~ Gamma(a,kf3). The
distribution over time is then simply p(t) ~ Gamma(a,/Q(t))
(Figure 2). This is a biologically relevant model of protein
concentrations because, in many parameter regimes, protein
distributions in bacteria’*™>® and other organisms®’ are well-
approximated by gamma distributions (though other para-
metrizations, such as lognormal and Fréchet distributions, have
been suggested as well’*). We now explore the implications of
various growth arrest rates assuming an initial gamma
distribution.

We can compute the relative entropy, or Kullback—Leibler
divergence,39 without the need for special functions in the
entropy term itself after cancellation of terms, and avoiding
some of the problems given by the standard entropy in a
continuous probability density function. The divergence is
asymmetric:

D(P(p)Il P(p,/Q(t))) =pr(Po) log, % P

In words, this equation gives the divergence of information over

time, in units of bits. In practice, the divergence is often

symmetrized, but that is unnecessary because we are concerned

with irreversible divergence from an initial condition with time.

For brevity, we refer to the divergence at a given time as D(t).
For the gamma distribution we have a divergence of

D) = (ay — a®)w(ay) - logz(M)

F(ao)
+ a(t) Iogz( ﬂ/é(t)] + aoﬁ/g(;) il -

where the 0 subscript indicates the initial condition, y is the
digamma function, and I is the gamma function.” Because a is
constant with time, and canceling the /3 terms, eq 7 simplifies to

D(t) = a(log,(Q(t)) + ()™ ~ 1) (8)
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Figure 2. Analytical prediction of exact time evolution of a gamma-
distributed protein in an infinite, deterministically growth arresting
population. (a) Example of the distribution evolving over time.
Parameters: @ = 10, f = 10, Vo = 1, n > o0, q = 1, § = 0. (b)
Comparison of probability distribution dynamics for different orders
(n) of growth arrest. All other parameters are the same as in panel a.
Probabilities are normalized so that red is the maximum probability
over all time, and blue is the minimum.

The three specific growth models considered above (n =1, n =
2, n — o) give the following solutions:

a(log,((1 + qt)" /1) + (1 + qt) @1 - 1), n=1

o ‘fdo arctan(qt) + e—VdOarctan(qt)/q 1], n=2
qln2

fee -t

+ o Valt+(1/a=00=1/0)] _ 1}

D(t) = 1

n— o0

)
Various limits make eq 9 more intuitive. For example, choosing
time units of Vyy/In 2 = 1, for n — oo and t > 1/q, we get

D= a(é +2 eV 1), and so for slow (later) growth

arrest, the divergence is approximately a/q bits while for fast
(immediate) growth arrest it approaches 0. Figure S2 graphs
the divergence for a selection of parameter values.

The shape parameter of the gamma distribution scales the
divergence of information between initial and final states (eq
9). Populations undergoing sharper growth arrest transitions
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that have more highly skewed distributions of proteins (ie.,
smaller @) have a small divergence (e.g., less than 1 bit) for a
larger part of the growth arrest rate parameter space (Figures 3,
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Figure 3. Divergence of information during the growth arrest process.
In an infinite population, a gamma distribution of proteins relaxes for
10® units of time as the growth arrest rate parameter, g, is scanned.
Parameter & = 0 in all cases (see main text): (blue) mean protein, V,
X (p); (green) K-L divergence, D, for a = 0.1, # = 1000; (light green)
D for @ = 1, f = 100; (orange) D for a = 10, § = 10. (red) K-L
divergence for a = 100, f = 1. (a) n = 1; (b) n = 2; (c) n = 0.

4a). Then it should be possible to choose a shape parameter
(i.e, choose a shape of the protein gamma distribution) that
simultaneously minimizes the divergence and the protein
concentration. Clearly, because these quantities do not have the
same units, comparing them directly depends on the goal of the
application: choosing a threshold amount of relative entropy
and a threshold concentration of protein is necessary.For
divergence threshold D*, the shape parameter is (for t > 1/q
and n — o0):

ge/%n2

a = D* I
gln2+e’%(1 - gln2)

(10)

which has a nearly linear relationship with g (Figure 4b).
Plotting this with the mean protein concentration parametri-
cally over g illustrates the shape needed to attain a divergence
no larger than various threshold levels (D* = 0.1, 1, S bits;
Figure 4c). Thus, distributions of cells rarely expressing a
protein, but doing so in bursts, appear to maximize the
flexibility of cellular populations.

We have characterized relaxation kinetics of a cellular protein
distribution subject to deterministic growth-mediated dilution
as growth stalls, representative of many cases in natural or
synthetic systems after protein synthesis has been halted. The
results predict that proteins can become trapped at an arbitrary
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Figure 4. Distribution properties and divergence of protein
concentrations during growth arrest. (a) Example distributions with
identical initial mean = 100. (b) For a given growth arrest rate
parameter g, the shape parameter, @, necessary for maximal divergence,
D*. Black line, y = x for reference. (c) Mean protein concentration Vy,
X (p) and shape parameter @ for various maximal divergence
thresholds D* for the case of n — oo.

concentration depending on the relative time scales of dilution
and growth arrest, assuming that growth-independent protein
degradation is negligible. Such an effect provides the potential
for phenotypic memory, useful for creating computation in
single cells across growth rate transitions, but erasable with a
brief period of growth.

Our results suggest that slight cooperativity in the growth
arrest rate (with a Hill coefficient &~ 2) should be sufficient to
trap protein concentrations for arbitrary amounts of time in the
absence of other degradation effects.

A possible limitation of this analysis is the deterministic
nature of the growth arrest transition in the models. While
stress is often associated with stochastic induction of growth
arrest mechanisms,””*" and cell volumes can fluctuate,*
changes in cell volume over time show reversion to the
mean,” and extrinsic stresses can simultaneously arrest cell
populations.”" This suggests that our approximation is useful,
even if it does not capture some aspects of fluctuations.

In E. coli, important new characteristics of the relationship
between protein synthesis and growth arrest have recently been
revealed. When growth arrest is strongly induced via a specific
mechanism, it appears to be accompanied by a burst of
expression of genes relevant to the particular stress.”'

814

Furthermore, stationary phase bacteria are capable of having
protein synthesis induced even after growth arrest, with
resulting linear accumulation of expressed protein,”” but the
patterns of what naturally present genes are subject to this
phenomenon has yet to be established. Thus, it will be pressing
in further studies to explore the competition between protein
synthesis and degradation during growth arrest as well. While a
standard entropy measure was sufficient to be revealing about
information transfer in this study, cases with competing
synthesis and degradation processes may require a more
sophisticated information measure, such as transfer entropy,*
to handle nonmonotonic dynamical transitions.

The different time scales of loss of protein mass and
information that can be attained suggest a method for applying
a cost/benefit relationship to arrive at a maximally flexible
protein memory strategy, by creating skewed distributions and
inducing sharp transitions to growth arrest. Systems with bursty
gene expression (known to occur in many bacterial
subsystems’*”°) in sufficiently large populations should be
able to meet these criteria. Populations that use bet-hedging
survival strategies™ likely already conform to these require-
ments. Exploiting this principle could potentially be useful for
programming memory without excessive cost, and for
improving fitness in fluctuating environments where previous
memories may no longer be beneficial. Studies have shown the
importance of fitness in synthetic circuits with long memory for
their evolutionary stability," underscoring the potential utility
of optimized protein memory.

Most studies in bet-hedging have emphasized the role of
skewed phenotypic distributions in preparing for uncertain
future environments.’® Our results suggest that one important
aspect of bet-hedging is its effect on memory: the ability of a
cellular population to be responsive to the previous environ-
ment if it recurs, yet also to eliminate the residual cost if it is
unnecessary. A previous study found that the Bacillus subtilis
sporulation decision switches between memoryless and high-
memory states,’® suggesting that the strategy of minimal
memory with maximal information transfer has precendence in
evolution.

B METHODS

Mathematical analysis and simulations were performed with
Mathematica 10.2 (Wolfram Research).
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