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Constructing and deconstructing GATA2-regulated
cell fate programs to establish developmental
trajectories
Kirby D. Johnson1*, Daniel J. Conn2*, Evgenia Shishkova3, Koichi R. Katsumura1, Peng Liu4, Siqi Shen5, Erik A. Ranheim6, Sean G. Kraus1,
Weixin Wang7, Katherine R. Calvo7, Amy P. Hsu8, Steven M. Holland8, Joshua J. Coon3, Sunduz Keles2, and Emery H. Bresnick1

Stem and progenitor cell fate transitions constitute key decision points in organismal development that enable access to a
developmental path or actively preclude others. Using the hematopoietic system, we analyzed the relative importance of cell
fate–promoting mechanisms versus negating fate-suppressing mechanisms to engineer progenitor cells with multilineage
differentiation potential. Deletion of the murine Gata2 −77 enhancer, with a human equivalent that causes leukemia,
downregulates the transcription factor GATA2 and blocks progenitor differentiation into erythrocytes, megakaryocytes,
basophils, and granulocytes, but not macrophages. Using multiomics and single-cell analyses, we demonstrated that the
enhancer orchestrates a balance between pro- and anti-fate circuitry in single cells. By increasing GATA2 expression, the
enhancer instigates a fate-promoting mechanism while abrogating an innate immunity–linked, fate-suppressing mechanism.
During embryogenesis, the suppressing mechanism dominated in enhancer mutant progenitors, thus yielding progenitors
with a predominant monocytic differentiation potential. Coordinating fate-promoting and -suppressing circuits therefore
averts deconstruction of a multifate system into a monopotent system and maintains critical progenitor heterogeneity and
functionality.

Introduction
Stem and progenitor cell fate transitions are critical determinants
of development, physiological homeostasis, and adaptive re-
sponses to life-threatening stresses. In principle, engineering a
particular fate potential into a cell with developmental plasticity
can be accomplished by instigating fate-promoting or negating
fate-suppressing mechanisms. Whether these operationally dis-
tinctmechanisms are commonlymutually exclusive or interlinked
is unclear. It is instructive to consider this problem in the context
of hematopoietic stem and progenitor cells (HSPCs) that generate
the diverse cells comprising blood. Major progress has been made
in identifying the heterogeneous HSPC populations and the in-
trinsic transcriptional networks and microenvironment-based
mechanisms that control their functional transitions (Haas et al.,
2018; Weissman, 2016). These studies have forged principles that
guide a wide swath of basic and translational research and extend
well beyond the hematopoietic system.

A plethora of macromolecules (proteins, RNAs, and metabo-
lites) control hematopoiesis and generate HSPC heterogeneity
(Haas et al., 2018; Orkin and Zon, 2008; Rossi et al., 2012). A
major challenge has been to establish a global perspective of how
factors, signals, and pathways functionally intersect or operate
independently to sustain HSPC pools and accommodate massive
demands to generate diverse progeny. Conventional strategies
involve loss-of-function or gain-of-function analyses while
measuring mechanistic (e.g., impact on a transcriptome) and
biological (e.g., impact on a cell state transition) consequences.
Transcriptomes of tens of thousands of mRNAs, which might or
might not be highly concordant with proteomes, often weigh
heavily in functional assessments. Proteomic advances permit
quantification of several thousand proteins in a mammalian
cell, far short of comprehensive coverage (Richards et al., 2015).
Although single-cell transcriptomic (Watcham et al., 2019) and
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proteomic (Palii et al., 2019) analyses have utility for decon-
voluting mechanisms emerging from cell population data,
when deployed alone, these approaches may have intrinsic
limitations. Amalgamating transcriptomic and proteomic data
can surmount limitations to mechanistic discovery, including
those involving master regulators that instigate complex net-
works to establish and/or maintain cellular states.

Transcription factors, such as the master hematopoietic regu-
lator GATA2 (Tsai and Orkin, 1997; Tsai et al., 1994), establish ge-
netic networks that promote HSPC proliferation, survival, and
differentiation (Katsumura et al., 2017). Mutations of murine Gata2
(de Pater et al., 2013; Ling et al., 2004; Rodrigues et al., 2005; Tsai
et al., 1994) or +9.5 and −77 enhancers (+9.5 kb downstream and
−77 kb upstream of the Gata2 transcription start site; Gao et al.,
2013; Grass et al., 2006; Johnson et al., 2012; Johnson et al., 2015;
Mehta et al., 2017; Soukup et al., 2019) abrogate HSPC genesis and
function. Human GATA2 coding (Dickinson et al., 2011; Hahn et al.,
2011; Hsu et al., 2011; Ostergaard et al., 2011) or +9.5 enhancer (Hsu
et al., 2013; Johnson et al., 2012)mutations yield immunodeficiency
and predisposition to develop myelodysplastic syndrome (MDS)
and acute myeloid leukemia (AML; Churpek and Bresnick, 2019;
Dickinson et al., 2014;McReynolds et al., 2018; Spinner et al., 2014).
In poor-prognosis 3q21;q26 AML, an inversion translocates −77
next to MECOM (encoding the transcription factor EVI1) to gen-
erate a super-enhancer, increasing EVI1 and reducing GATA2 to
cause leukemia (Gröschel et al., 2014; Katayama et al., 2017; Yamazaki
et al., 2014).

As an erythroid and megakaryocytic fate-promoting mecha-
nism, GATA2 increases GATA1 expression (Mehta et al., 2017),
which upregulates its own coregulator friend of GATA1 (FOG1;
Crispino et al., 1999). As a fate-suppressing mechanism, GATA1
antagonizes PU.1, thereby blocking myelopoiesis (Nerlov et al.,
2000; Zhang et al., 2000); however, whether this occurs in
single cells is unclear (Hoppe et al., 2016). Solitary and inte-
grated fate-promoting and -suppressing mechanisms provide
the architectural framework for building complex develop-
mental and biological processes.

Prior to GATA1 expression, GATA2 must meet unique chal-
lenges to know when and where to induce HSPC cell genesis
and function (Churpek and Bresnick, 2019; Katsumura et al.,
2017). Although GATA2 and PU.1 cooperatively stimulate pro-
genitor differentiation into mast cells (Walsh et al., 2002), the
converging mechanisms that endow GATA2 (and other master
regulatory transcription factors) with fate-promoting versus
-suppressing activities are undefined. We describe a mecha-
nism in which an enhancer (−77) promotes GATA2 expression,
inducing a fate-promoting mechanism and concomitantly ab-
rogating a fate-suppressing mechanism. −77−/− progenitors
mounted a response to sustain the fate-suppressing mechanism
involving innate immune machinery. The consequence of this
genetic aberration is deconstruction of an integrated multipotent
differentiation system into a predominantly unipotent system.
Furthermore, the innovative multiomics resource of WT and en-
hancer mutant primary progenitor cells, involving quantitative
proteomics, single-cell transcriptomics, and population tran-
scriptomics, linked to GATA2 rescue, will catalyze many addi-
tional discoveries beyond those described herein.

Results
Discovering progenitor cell fate mechanisms using multiomics
Hematopoietic progenitors from murine fetal liver, WT for the
Gata2 −77 enhancer (−77+/+), can undergo erythroid, megakar-
yocytic, granulocytic, and monocytic differentiation ex vivo. By
contrast, progenitors with a −77 homozygous deletion (−77−/−)
exhibit a predominant monocytic cell fate and generate abun-
dant macrophages (Fig. 1 A; Johnson et al., 2015). Human GATA2
deficiency syndrome, resulting from GATA2 coding (R398W) or
intron 5 (human equivalent of murine +9.5 enhancer) muta-
tions, is characterized by bone marrow hypocellularity, dys-
plastic megakaryocytes, and monocytopenia (Fig. 1 B; Calvo
et al., 2011). Flow cytometry confirmed monocyte depletion
from marrow aspirates (Fig. 1, C and D). Despite the monocy-
topenia, bone marrow macrophages were abundant in hetero-
zygous R398W or intron 5 mutant patients (Fig. 1 B), consistent
with the capacity of GATA2-deficient murine progenitors to
generate macrophages ex vivo.

To address the contribution of cell fate–promoting versus
–suppressing mechanisms to the activity of a cell fate–regulatory
enhancer, we isolated a lineage-negative (Lin−)Sca1−c-Kit+CD34+

myeloid progenitor population (common myeloid progenitor
[CMP] and granulocyte-monocyte progenitor [GMP]) from fetal
liver of embryonic day 14.5 (E14.5) −77+/+ and −77−/− mouse
embryos (Fig. 2, A and B). The CMP/GMP pool is a complex
mixture of progenitors with diverse transcriptional profiles
(Olsson et al., 2016; Paul et al., 2015). Previously, we showed
that −77+/+ fetal liver CMPs possessed erythroid and myeloid
colony-forming capacity ex vivo, whereas GMPs only generated
myeloid cells. −77−/− CMPs and GMPs were largely restricted
toward macrophage production (Johnson et al., 2015). Herein,
we analyzed the molecular changes resulting from loss of the
−77 enhancer, which underlie the restricted cell fate potential.
Quantitative proteomics was conducted to discover the −77-
regulated protein ensemble endowing progenitors with multi-
fate potential (Fig. 2, C and D). GATA2 was 4.7-fold lower in
−77−/− progenitors. GATA2 directly activates Gata1 transcription
in progenitors (Mehta et al., 2017), and although essential
GATA1 functions are manifested principally in committed
megakaryocytes, erythrocyte and mast cell precursors, and
their developing progeny (Fujiwara et al., 1996; Pevny et al.,
1995; Pevny et al., 1991; Tsang et al., 1998), GATA1 protein was
detected in progenitors. GATA1 was 51-fold lower in −77−/−
progenitors (Fig. 2, C and D), and the GATA1-induced gene/
protein FOG1 (Crispino et al., 1999) was 2.4-fold lower
(Fig. 2 D). GATA2 directly activates Hdc and Gfi1b transcription
(Gao et al., 2013; Katsumura et al., 2016; Katsumura et al., 2014;
Mehta et al., 2017), and respective proteins were 52- and 2.7-
fold lower in −77−/− progenitors.

Although GATA2 is not known to be a key regulator of genes/
proteins mediating innate or adaptive immune processes, innate
immune machinery was upregulated, including IFN signaling
pathway components (Schneider et al., 2014; Table S1). IFN-
inducible transcription factors, termed IFN regulatory factors
(IRFs), were upregulated in −77−/− progenitors, including IRF5
(2.1-fold), IRF8 (2.7-fold), and IRF9 (2.3-fold). Deletion of murine
Irf8 and biallelic human IRF8 mutations that cause severe
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monocytopenia and primary immunodeficiency disease (Bigley
et al., 2018; Hambleton et al., 2011; Kurotaki et al., 2013; Yáñez
et al., 2015) revealed IRF8 to be an essential monocytic differ-
entiation determinant. PU.1 upregulates IRF8 expression (Schönheit
et al., 2013), and IRF8 and PU.1 function collectively to control
myeloid and inflammatory genes through composite binding sites
(Marecki et al., 2001; Meraro et al., 2002). However, expression of
Spi1 encoding PU.1 is not altered in −77−/− CMPs or GMPs (Johnson
et al., 2015), and PU.1 levels were unaltered in the CMP/GMP pool
(Fig. 2 D).

Other upregulated IFN-inducible innate immune components
included the pattern recognition receptors TLR9 (9.7-fold) and
TLR2 (7.2-fold; Fig. 2 D); the negative regulator of TLR signaling
IRAK3 (IRAK-M; Kobayashi et al., 2002) was downregulated

2.8-fold. Other IFN-inducible proteins upregulated in −77−/− pro-
genitors were oligoadenylate synthase-like protein 2 (OASL2; 5.6-
fold), nucleotide-binding domain, leucine-rich repeat protein 1A
(NLRP1A; 8.0-fold), the non-TLR pattern recognition receptor
dectin-1 (3.4-fold), and the IFNγ target ISG15 (3.4-fold).

We used gene ontology and STRING network prediction tools
to infer global consequences of proteome alterations. The 202
upregulated proteins highlighted a spectrum of immune and
inflammatory mechanisms, whereas the 232 downregulated
proteins were linked to functional processes in megakaryocyte
and granulocyte biology (Fig. 2 E). This illustrated the overt loss
of megakaryocyte and granulocyte biology–linked proteins, in-
dicative of abrogated cell fate programs, with acquisition of IFN
response proteins (Fig. S1).

Figure 1. Gata2 and GATA2 enhancer and
coding mutations deconstruct a multifate
program. (A) Representative Giemsa staining of
dissociated colonies from −77+/+ and −77−/−
E14.5 fetal liver cells cultured for 8 d in M3434
complete methylcellulose media. −77+/+ and
−77−/− alleles are depicted. Scale bars = 50 µm.
(B) Immunohistochemical (IHC) detection of
CD68+ bone marrow macrophages from patients
with GATA2 coding or intron 5 heterozygous
mutations. IHC of bone marrow from a healthy
control subject, a 17-yr-old female with GATA2
deficiency and germline GATA2 mutation
(c.1192C>T; p. R398W) with early dysplastic
changes and normal bone marrow karyotype,
and a 29-yr-old female with GATA2 defici-
ency and germline mutation in intron 5
(c.1017+572C>T) diagnosed with MDS with ab-
normal bone marrow karyotype involving tri-
somy 1q. Sections were stained with H&E or
CD68 or CD163 antibody to detect bone marrow
macrophages and CD14 antibody to detect
monocytes. Scale bars = 50 µm. (C) Flow cy-
tometric analysis of marrow aspirates from
control subject and patient samples described in
B using CD14 versus CD64 to detect monocytes
and monocytic precursors (RBCs in hatched
boxes). Percentages are of total marrow cells.
(D) Quantitation of bone marrow (BM) mono-
cytes from 30 healthy volunteer control sub-
jects and 30 patients with GATA2 mutations
presenting with bone marrow failure, pre-MDS,
or overt MDS. Individual data points are graphed
on a log2 scale with median values and inter-
quartile ranges demarcated. P = 2.99e−23 using
unpaired two-tailed Student’s t tests. APC, allo-
phycocyanin; Cy7, cyanine 7.

Johnson et al. Journal of Experimental Medicine 3 of 17

GATA2-regulated developmental trajectories https://doi.org/10.1084/jem.20191526

https://doi.org/10.1084/jem.20191526


To test if the aberrant −77−/− progenitor proteome reflects
GATA2 downregulation and not genes topologically associated
with the −77 enhancer, we used our previously described genetic
rescue system in primary −77−/− progenitor cells (Katsumura
et al., 2018). Lin− progenitors from −77+/+ or −77−/− E14.5 fetal
liver (Fig. 2 A; McIver et al., 2018) were infected with GATA2-

expressing or control retroviruses and cultured for 3 d. Under
conditions in which GATA2 is expressed at near-physiological
levels (Fig. S2 A), transcriptomes (four replicates of each con-
dition; Fig. S2 B) were elucidated with RNA sequencing (RNA-
seq). Of the 3,161 differentially expressed genes between −77+/+
and −77−/− progenitors, GATA2 expression rescued or partially

Figure 2. Elucidating cell fate mechanisms
through multiomics and genetic rescue of
transcriptomic aberrations in enhancer mu-
tant progenitors. (A) Schematic representation
of experimental workflow for the multiomic
analyses. (B) Representative flow plot of the
CMP/GMP pool (Lin−Sca1−cKit+CD34+) isola-
ted for proteomic and scRNA-seq analyses.
The CMP:GMP ratio was 1:2 in both −77+/+
and −77−/− fetal livers. The megakaryocyte-
erythrocyte–restricted progenitor (MEP) popu-
lation was excluded because the −77 deletion
strongly reduces fetal liver MEPs. (C) Quanti-
tative proteomic analysis performed by MS.
Flow-sorted cells were pooled into replicates of
5–6 × 106 cells. Three pools of −77+/+ (n = 17
from 11 litters) and four pools of −77−/− (n = 13
from seven litters) were analyzed. The plot
shows reduced recovery of representative
peptides of GATA2 and GATA1 in −77−/− sam-
ples. (D) Volcano plot depicting 202 upregu-
lated and 232 downregulated proteins in −77−/−
CMP/GMP pool (q < 0.05). Select upregulated
IFN targets and downregulated proteins are
highlighted. Fold change relative to −77+/+ is
shown in parentheses. See also Table S1. (E)
Top categories from Gene Ontology (GO)
analysis of down- and upregulated proteins
using DAVID Bioinformatics Resources
(https://david.ncifcrf.gov). See also Fig. S1. (F)
Population RNA-seq analysis. Heatmap of the
3,161 differentially expressed (DE) genes (fold
change ≥2 and adjusted P value <0.05) from
comparing −77−/− (n = 4) and −77+/+ (n = 4) Lin−

fetal liver cells infected with empty pMSCV vector
(EV) and cultured for 3 d. Infection of −77−/−with a
GATA2 expression vector (n = 4) parses the DE
genes into four categories: (I) no rescue of upre-
gulated genes (n = 51), (II) rescue of upregulated
genes (n = 1,251), (III) rescue of downregulated
genes (n = 1,463) and (IV) no rescue of down-
regulated genes (n = 396). See also Fig. S2. (G)
Comparison of mRNA levels for select DE genes
mined from the RNA-seq data. See also Table S2.
(H) Quantitation of mRNA levels in −77+/+ (n = 5
from three litters) and −77−/− (n = 7 from three
litters) Lin− fetal liver cells cultured for 72 h. In all
graphs, error bars represent mean ± SEM. Statis-
tics were calculated using unpaired two-tailed
Student’s t test; *, P ≤ 0.05; **, P ≤ 0.01; ***, P
≤ 0.001. FPKM, fragments per kilobase of tran-
script per million mapped reads.
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rescued the majority (86%; 2,714) of the alterations (Fig. 2 F).
Rescue was defined as genes that were up- or downregulated in
the GATA2 rescue system and in −77+/+ versus −77−/− progenitors.

Many −77-repressed and -induced proteins (Fig. 2 D) were
also regulated at the mRNA level (Fig. 2, F and G). Using criteria for
protein and mRNA changes of twofold or greater and false discov-
ery rate <0.05, we analyzed the 92 and 57 proteins downregulated
and upregulated, respectively, in −77−/− progenitors. This analysis
revealed 58 targets, 67% of which were regulated in a qualitatively
indistinguishable manner at the mRNA level (Table S2). The rescue
analysis demonstrated that GATA2 loss caused the IFN response and
many of the gene expression alterations in −77−/− progenitors. Thus,
the ectopic innate immune machinery induction in −77−/− progen-
itors was also detected in cultured −77−/− progenitors.

To further test if innate immune machinery induction is
sustained when progenitors are segregated from niche compo-
nents, progenitors were cultured for up to 3 d. At all times
tested, Irf8 and Tlr9 mRNA levels in −77−/− exceeded those of
−77+/+ progenitors (Fig. 2 H). Because the GATA2-reversible,
aberrant −77−/− progenitor transcriptome is maintained upon
progenitor propagation without a heterocellular microenviron-
ment, these results support a cell-intrinsic transcriptome/
proteome dysregulation in GATA2-downregulated progenitors.

Enhancer-instigated developmental circuits in single
progenitor cells
On the basis of proteomic and transcriptomic analyses of progenitor
populations (Fig. 2), we considered the relationship between
−77-regulated GATA2 expression and the GATA2-dependent
transcriptome and proteome in single progenitors. Single-
cell RNA sequencing (scRNA-seq) of Lin−Sca1−c-Kit+CD34+

cells was conducted with the 10x Genomics platform and
analyzed using multiple dimensional reduction approaches and
tools (principal component analysis [PCA], t-distributed stochastic
neighbor embedding [t-SNE]; van der Maaten and Hinton, 2008;
and UniformManifold Approximation and Projection; Becht et al.,
2019), which yielded qualitatively similar conclusions. scRNA-seq
data derived from PCA was subjected to k-means clustering.
Maximizing average silhouette width, calculated as a function of
the number of clusters, revealed three clusters to be optimal
(Fig. 3, A and B). t-SNE analyses, which leverage nonlinear di-
mensional reduction, also revealed three or four clusters to be
optimal (Fig. 3 B and Fig. S3 A). On the basis of cohorts of genes
enriched in each cluster, the transcriptome of cluster 2 cells is
characterized by an innate immune response, whereas enriched
genes of cluster 3 cells highlight transcriptional and translational
processes linked to red cell production (Fig. S3 B). A comparison of
differential gene expression between −77+/+ and −77−/− progeni-
tors included prominent myeloid gene expression in cluster 2,
which was reduced in −77−/− progenitors (Fig. 3 C). A subset of
cells in all clusters expressed Gata2, and Gata2 expression was
uniformly lower in −77−/− progenitors (Fig. 3 D). Irf8 was ex-
pressed in a subset of cells in all clusters, highly upregulated in
cluster 2 in mutants (3.04-fold increase in expression per cell; P =
1.0e−205), and upregulated significantly but to a lesser extent in
clusters 1 (1.26-fold increase; P = 3.3e−13) and 3 (1.29-fold increase;
P = 1.7e−14; Fig. 3 E).

Because Gata2 and Irf8 were expressed in a subset of cells in
all clusters, and because −77 deletion downregulated Gata2 and
upregulated Irf8 transcription, we tested whether this opposing
expression pattern occurs in distinct, common, or both cohorts
of cells. In the heterogeneous population, most cells lacked co-
expression of Gata2 and Irf8 (Fig. 3 F, hex plot). When single cells
were parsed on the basis of Gata2 expression levels, and when
expression of Irf8, relative to Gata2, was compared by cluster
(Fig. 3 F), cluster 1 cells exhibited a broad range of Gata2 ex-
pression, and Irf8 expression was detected only in cells with a
low level of or no Gata2. −77 deletion greatly reduced Gata2
expression, and only cells with the lowest Gata2 levels expressed
Irf8. Cluster 1 and 2 cells shared a common range of Gata2 ex-
pression, and Irf8 expression was detected in cells with little to
no Gata2. −77 deletion nearly abrogated Gata2 expression, and
Irf8 expression emerged prominently, with the highest level
detected in cluster 2 cells. Cluster 3 cells also exhibited a broad
range of Gata2 expression, with Irf8 detectable only in cells ex-
pressing little to no Gata2. The −77 deletion abrogated Gata2 and
upregulated Irf8 identically to the other clusters. This analysis
identified cells expressing both Gata2 and Irf8, with one high and
the other low. Taken together with IRF8 being a vital monocytic
differentiation determinant and our discovery that GATA2 res-
toration in −77−/− progenitors rescued Irf8 expression, these
results support a model in which −77 loss downregulates GATA2,
corrupting the transcriptome and proteome. Under these con-
ditions, Irf8 expression increases and IRF8 enables or drives the
predominant monocytic differentiation.

Genetic construction and deconstruction of progenitor
heterogeneity and developmental trajectories
To further dissect how an enhancer deletion deconstructs a
multifate system to yield a predominant solitary fate, the pro-
genitor scRNA-seq data were analyzed with the pseudotime
trajectory tool SPRING (Weinreb et al., 2018). By segregating
cells with disparate transcriptomes, pseudotime trajectory
analysis identifies potential developmental paths. It was unclear,
however, if this analysis would unveil trajectories when applied to
a more restricted progenitor population. SPRING trajectory plots
were color coded to illustrate the relationship of the trajectories
(Fig. 4 A) with the previously established PCA-defined clusters
(Fig. 3 B). One prominent trajectory (Fig. 4 A, trajectory a) and
additional, less pronounced trajectories (Fig. 4 A, boxed inset,
trajectories b–d) extrude from cluster 3 in the −77+/+ plot. Cells
expressing the highest Gata2 levels composed the smaller trajec-
tories (Fig. 4, B and C). Gata1 expression overlapped extensively
with that of Gata2 in the short leftward extrusion (Fig. 4, B and C)
but was also detected throughout trajectory a that lacked Gata2.
Restricted expression of multiple erythroid-specific genes (e.g.,
Klf1, Hba-a1, Alas2, Slc4a1), as with Gata1, which is expressed in
erythroid cells and additional cell types, provides evidence that
this extended trajectory reflects progressive erythroid differenti-
ation. These cells compose just 2% of the total −77+/+ population
and may represent erythroid-primed cells within the CMP pop-
ulation. Within the inset, trajectory b cells of cluster 3 expresses
erythroid markers Klf1 and Car1 (Fig. 4 C), whereas the megakar-
yocytic gene Pf4 is restricted to trajectory c. A distinct subset of
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cells, trajectory d, expressed basophil markers Lmo4, Ifitm1, Ly6e,
and Srgn (Tusi et al., 2018). Because all of these trajectories are
absent or greatly diminished in −77−/− progenitors, the enhancer
deletion abrogated erythroid, megakaryocytic, and basophil de-
velopmental trajectories.

Cluster 1 cells comprise the central mass of the SPRING plot
and express myeloid transcripts, including Flt3, Spi1, Cebpa, and
Irf8 (Fig. 5 A). Expression of the monocyte progenitor markers
Csf1r (CD115) and Cx3cr1 in the central mass was restricted to
a cell cohort that was expanded in the −77−/− samples (Fig. 5 B).

A rightward extrusion comprising cluster 2 cells was enriched in
neutrophil transcripts (e.g., Elane and Fcnb; Fig. 5 B), with the
left-to-right directionality characterized by attributes associated
with progressive neutrophil development. Although the −77
deletion had little to no impact on Spi1- and Cepba-expressing
cells in the central mass, it abrogated the neutrophil develop-
mental trajectory. Expansion of GMP-derived monocyte pro-
genitors and loss of granulocyte progenitors was confirmed by
flow cytometry. Bipotential Ly6C− GMPs were unaffected by the
−77 deletion (Fig. 5 C).

Figure 3. Enhancer-dependent genetic network in single progenitor cells: anticorrelative Gata2 and Irf8 expression. (A) Selection of optimal numbers
of clusters by maximizing the average silhouette width in k-means clustering after dimension reduction with PCA. See also Fig. S3. (B) Comparison of cell
clusters revealed by linear and nonlinear dimension reduction methods, PCA, and t-SNE. PCA was used for subsequent clustering. (C) Heatmap of median
expression of selected DE genes across clusters. The genes displayed include DE genes of each cluster with adjusted P value <0.05 and fold change within the
top 1% of the cluster. (D) Cluster-specific distribution of Gata2 and Irf8 expression overlaid on the PCA map. Blue and gray colors indicate high and low
expression levels, respectively. (E) Violin plots of cluster-specific Irf8 expression. Fold increases (in −77+/+ versus −77−/−) and P values are indicated for each
cluster. (F)Hex and ridgeline plots of Gata2 and Irf8 coexpression. The hex plot compares coexpression in the entire population. In the ridgeline plots, cells were
stratified by Gata2 expression within each cluster. The Irf8 expression distribution within each Gata2 stratum is colored so that the darkest value represents the
median Irf8 distribution within each stratum. PC, principal component.
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In the −77−/− progenitors, Irf8 expression was a common at-
tribute of many cells within the central mass, consistent with
Irf8 upregulation as an early step in acquisition of the predom-
inant monocytic fate program. Thus, −77 and GATA2 endow
myeloid progenitors with erythroid-, megakaryocyte-, basophil-,
and neutrophil-primed transcriptomes, and this multilineage
transcriptomic heterogeneity suggests a mechanism under-
lying the diverse differentiation potentials of the heterotypic
progenitor population. Accordingly, −77 deletion attenuates
transcriptomic heterogeneity, thus deconstructing progenitor
multipotentiality to yield a predominant monocytic fate. This
deconstruction of the multifate system occurs without gross
changes in progenitor cell cycle status, though 2.0- and 2.3-
fold increases in G2/M- and S-phase cells were detected in a
small percentage of cluster 2 cells (Fig. S4 A). These alterations
were not associated with changes in genes expressed specifically
in proliferating cells (Pcna and Mki67). Pcna and Mki67 were
expressed broadly in cells within all clusters, and −77 deletion
had little to no impact on their expression (Fig. S4, B–D). By
coordinating fate-promoting and -suppressing circuits, this en-
hancer mechanism generates progenitor functional heteroge-
neity to accommodate physiological requirements.

Coordinating fate-promoting and -suppressing circuits to
generate multipotency: Mechanistic considerations
How does an enhancer deletion trigger progenitors to mount an
ectopic innate immune response? IFN signaling is implicated in

diverse HSPC functions in physiology and pathology (Baldridge
et al., 2010; de Bruin et al., 2014; Essers et al., 2009; Li et al.,
2014; Zoumbos et al., 1985), and its regulation is controlled at
multiple levels (Schneider et al., 2014). During fetal liver he-
matopoiesis, GATA2-mediated suppression of IFN signaling may
balance IFN-activated and -suppressed processes, thus mini-
mizing the emergence of dysregulated signaling and deleterious
consequences. GATA2 downregulation would disrupt this de-
fensive mechanism, causing ectopically high IFN signaling. Al-
ternatively, GATA2 downregulation might desensitize IFN
signaling components, resulting in subphysiological signaling
insufficient to support progenitor functions. Elevated IFN sig-
naling may constitute an attempt to restore physiological IFN-
dependent signaling outputs. Finally, GATA2 downregulation
might upregulate IFN signaling components independent of
IFN receptor signaling.

To address these potential mechanisms, we asked whether
−77−/− progenitors with upregulated IFN signaling components
are responsive to exogenous IFN or if the preinduced state re-
flects maximal pathway activity and lack of competence to re-
spond further. Because gene ontology analysis, gene set
enrichment analysis, and individual gene attributes did not
reveal that upregulated components conform to a strict type I
(α and β) or type II (γ) IFN signature, we analyzed the re-
sponsiveness of −77+/+ and −77−/− cells to α, β, or γ IFN. IFNγ
increased Irf8 expression 2.8-fold (P = 0.007) and 2.9-fold (P =
0.005) in −77+/+ and −77−/− cells, respectively (Fig. 6 A).

Figure 4. Enhancer-dependent developmental
trajectories. Developmental trajectories were es-
tablished by SPRING analysis (Tusi et al., 2018;
Weinreb et al., 2018) using 4,980 −77+/+ or −77−/−
progenitors. (A) SPRING analysis identified lineage
trajectories that are nearly absent in −77−/− pro-
genitors. The PCA-derived cluster designation of
each cell (Fig. 2) was mapped onto the SPRING
trajectory plots. Prominent trajectories of cells from
cluster 2 or 3 were absent in −77−/− samples. Red
letters mark specific developmental trajectories:
erythroid (a, b), megakaryocyte (c), and basophil (d).
(B) Global distribution of Gata2- and Gata1-expressing
cells. Both genes are abundantly expressed in cluster 3.
(C) Gene expression patterns define lineage trajectories
for megakaryocytes (Pf4), basophils (Ifitm1, Srgn,
Ly6e, and Lmo4), and erythroid cells (Gata1, Klf1, and
Car1). Expression of each gene is shown for the boxed
area of A.
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Similarly, IFNγ increased Tlr9 expression 2.9-fold (P = 0.012) and
4.4-fold (P = 0.049) in −77+/+ and −77−/− cells, respectively (Fig.
S5 A). IFNα and IFNβ were less effective inducers than IFNγ in
−77+/+ cells and elicited similar responses in −77+/+ and −77−/−
cells (Fig. 6 A). Normalization of the data revealed that −77+/+ and
−77−/− progenitors had a comparable sensitivity to IFNγ-
mediated induction of Irf8 and Tlr9 expression (Fig. S5, A and
B). Thus, the preinduced Irf8 and Tlr9 state of −77−/− progenitors
did not preclude or impact the IFN dose-dependent transcrip-
tional response. IFNγ did not affect Gata2 expression in −77+/+ or
−77−/− progenitors (Fig. 6 A, right). Because IFN induced a hy-
perphysiological expression response in −77−/− cells, in which
multifate potential was deconstructed into a singular fate, these
results support a model in which −77 and GATA2 suppress IFN
signaling, thus averting the emergence of dysregulated signaling
with consequences deleterious for cellular differentiation.

Because IFN signaling components are upregulated in −77−/−
progenitors with skewed, predominant monocytic differentia-
tion, and since IFNγ induced Irf8 and Tlr9 expression in −77+/+
progenitors, we asked if IFNγ suffices to skew differentiation.
Cells were treated with 20 ng/ml IFNγ when plated for colony
formation. 8 d later, cells were analyzed by Wright-Giemsa
staining (Fig. 6 B). Consistent with the prior report that IFNγ
favors monocytic over granulocytic differentiation (de Bruin

et al., 2012), IFNγ increased monocytic and decreased granulo-
cytic progeny by 3.1-fold (P = 0.0004) and 1.5-fold (P = 0.0004),
respectively (Fig. 6 C).

IFN induces Irf8 and Tlr9 expression (Schneider et al., 2014),
both being ectopically high in −77−/− progenitors. In dendritic
cells, TLR9 signaling requires IRF8 for NF-κB activation (Tsujimura
et al., 2004). Thus, in certain contexts, IRF8 and TLR9 mechanisms
are functionally intertwined. In other contexts, IFNγ and TLR sig-
naling synergistically control cell function (Hu and Ivashkiv, 2009).

Is IFN signaling responsible for ectopic innate immune ma-
chinery upregulation in −77−/− progenitors? IFNγ dimerizes and
binds a heterodimeric receptor of IFNGR1 and IFNGR2 subunits,
which recruits Janus kinases (JAK1 and JAK2), leading to phos-
phorylation and STAT1 transcription factor activation (Stark and
Darnell, 2012). If increased IFNγ signaling causes elevated Irf8
and Tlr9 expression, blocking JAK1/2 should attenuate or abro-
gate aberrant gene expression. If Irf8 and Tlr9 upregulation does
not involve canonical IFNγ signaling, JAK1/2 inhibition should
not impact expression. After treatment with the JAK1/2 inhibitor
ruxolitinib for 48 h, the elevated expression of Irf8, Tlr9, and
other IFN-inducible genes in −77−/− progenitors was attenuated
to a level resembling that of −77+/+ progenitors (Fig. 6 D). Rux-
olitinib did not significantly affect the low Gata2 expression in
−77−/− versus −77+/+ progenitors.

Figure 5. Loss of neutrophils but retention of
monocyte progenitors in −77−/− progenitors.
(A) Expression of myeloid regulatory genes in
cluster 1. In our proteomic analysis, FLT3, a
marker for monocyte–dendritic cell precursors,
was elevated 2.4-fold in −77−/− progenitors,
whereas PU.1 (Spi1) and CEBPαwere unchanged.
(B) −77 enhancer deletion abrogates a granulo-
cyte trajectory (Elane and Fcnb) in cluster 2 but
promotes monocyte progenitors (Csf1r, Cx3cr1).
CSF1R was elevated 2.6-fold in −77−/− progeni-
tors. (C) Flow cytometric analysis of granulocyte
and monocyte progenitors within the GMP pool.
Quantitation of Ly6C− GMPs and monocyte
progenitors. −77+/+ (n = 4; two litters), −77+/−
(n = 16; three litters), −77−/− (n = 4; two litters).
Error bars represent mean ± SEM. Statistics
were calculated using unpaired two-tailed Stu-
dent’s t test; **, P ≤ 0.01; ***, P ≤ 0.001.
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Because the Irf8 expression level dictates monocytic versus
granulocytic fate (Bigley et al., 2018; Giladi et al., 2018; Hambleton
et al., 2011; Kurotaki et al., 2013; Yáñez and Goodridge, 2016; Yáñez
et al., 2015), and because ruxolitinib downregulated Irf8 expres-
sion, we reasoned that ruxolitinib would attenuate the prefer-
ential monocytic fate potential. Ruxolitinib treatment reduced
expression of monocytic genes Fcgr1, Siglec1, and Cx3cr1 to levels
comparable with those of WT cells, whereas expression of the
granulocytic gene Elane was unaffected (Fig. 6 D). Thus, the
GATA2 deficiency–instigated fate-deconstructing mechanism re-
quires JAK1/2 signaling to elevate expression of IFN response and
monocytic genes.

The histone deacetylase HDAC11 is a suppressor of type I and
type II IFNs. T cells from Hdac11-knockout mice display elevated
IFNγ levels, which increase IFN signaling (Woods et al., 2017),
andHDAC11 suppresses type I IFN signaling via limiting receptor
deposition in the plasma membrane (Cao et al., 2019). Fatty
acylation of SHMT2 promotes its localization to endosomes/
lysosomes, where association with BRISC (BRCC36 isopeptidase
complex) induces deubiquitination and stabilization of IFNαR1.
HDAC11-mediated defatty-acylation of SHMT2 impairs endo-
some/lysosome localization, leading to reduced receptor re-
cycling (Cao et al., 2019). Consistent with this mechanism,

upregulated IFN signaling was associated with a 5.6-fold reduc-
tion in Hdac11 mRNA in primary −77−/− progenitors (Fig. S5 C).
Chromatin immunoprecipitation sequencing revealed GATA2
occupancy at mouse and human Hdac11 loci, and GATA2 motifs
(WGATAR) reside at the occupancy site (Fig. S5 D), suggesting
direct regulation.

To further test whether the gene expression differences in
−77−/− versus −77+/+ primary fetal liver progenitors are stable
when progenitors are removed from an in vivo environment, we
used estrogen-regulated HoxB8 (Wang et al., 2006) to immor-
talize the progenitors (Fig. 7 A). HoxB8-immortalized (hi) −77−/−
cells retained lower expression of Gata2 and its target genes
Gata1, Hdc, and Hdac11 versus hi−77+/+. However, innate immune
(Irf8, Tlr9; Fig. 7 B) and monocytic (Cx3cr1 and Siglec1; Fig. 7 C)
gene expression were higher in hi−77−/− progenitors. Expressing
exogenous IRF8 in hi−77+/+ cells increased levels of both mono-
cytic (Cx3cr1) and innate immunity (Oas3) mRNAs (Fig. 7 D),
analogous to the high Irf8, Cs3cr1, and Oas3 expression in hi−77−/−
cells. Thus, the −77−/− phenotype is stable ex vivo, and, on the
basis of known monocytic differentiation activity of IRF8 in
mouse (Kurotaki et al., 2013; Yáñez et al., 2015) and humans
(Bigley et al., 2018; Hambleton et al., 2011) and our gain-of-
function analysis, elevated IRF8 contributes to the phenotype.

Figure 6. Mechanisms underlying the ectopic
innate immune response in GATA2-deficient
progenitors. (A) Responsiveness of Irf8 and
Gata2 to IFN treatment in −77−/− versus −77+/+
Lin− cells. Lin− E15.5 fetal liver cells were cul-
tured for 24 h with type I (IFNα or IFNβ) or type II
(IFNγ) IFN, and RNA was quantitated by quanti-
tative RT-PCR (qRT-PCR). n = 3–7 biological
replicates from −77−/− and −77+/+ littermates
were analyzed for each condition. Mean ± SEM;
*, P < 0.05; **, P < 0.01; ***, P < 0.001, by two-
tailed, paired Student’s t test for comparison of
expression for each IFN concentration relative to
untreated cells. See also Fig. S5. (B) Represen-
tative Giemsa staining of dissociated colonies
from −77+/+ and −77−/− E14.5 fetal liver cells
grown for 8 d in M3434 complete methylcellu-
lose media supplemented with 20 ng/ml IFNγ or
vehicle (PBS, 0.01% BSA). Scale bars = 50 µm.
(C)Quantitation of macrophages and neutrophils
as a percentage of Giemsa-stained cells recov-
ered from colonies. n = 4 biological replicates for
each condition. (D) JAK1/2 inhibition by rux-
olitinib (Rux) suppresses IFNγ and monocytic
target gene expression in −77−/− progenitors. n = 4
biological replicates. In all graphs, error bars
represent mean ± SEM. Statistics were calcu-
lated using unpaired two-tailed Student’s t test;
*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001.
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Discussion
Stem and progenitor cell activity to efficiently generate diverse
progeny requires mechanisms that enable, propel, or restrict cell
fate transitions to achieve specific developmental outputs. For
multipotent cells, it is instructive to consider if the distinct fate
potentials are acquired concomitantly, via independent steps, with
each dedicated to an individual fate, or via a hybrid mechanism.
Using hematopoietic progenitors and an enhancer mutant allele of
a gene encoding the master regulator GATA2, we demonstrated
that GATA2 primes the progenitor genome to generate a tran-
scriptome and proteome that endow erythroid, megakaryocytic,
granulocytic, and monocytic fates. The enhancer deletion renders
GATA2 limiting, corrupting the GATA2-dependent transcriptome
and proteome that confer multifate potential, leading to a pre-
dominant monocytic fate. Because restoring GATA2 reverses the
transcriptomic aberrations, this powerful system was used to
elucidate mechanisms that construct and deconstruct multifate
systems. The −77 enhancer builds the multifate system by estab-
lishing a fate-promoting circuit and concomitantly negating a
fate-suppressive circuit. The fate-promoting circuit requires the
downstream target GATA1 with its coregulator FOG1 to establish
erythroid- and megakaryocyte-primed transcriptomes (Fig. 8).
The fate-suppressing circuit revealed a link between GATA2 and
innate immune machinery, IFN signaling pathway components
and sensors of pathogen constituents and activities, which defend
against pathogen intruders. The analysis therefore unveiled
mechanistic underpinnings of a multicell fate system construc-
tion process.

Foundational insights into circuitry underlying fate mecha-
nisms have emerged from a transdifferentiation system in
which pre–B cells acquire the capacity to form macrophages
(Bussmann et al., 2009). Pre–B cells are heterogeneous vis-à-vis
their potential to transdifferentiate. Single cells that generate
macrophages rapidly are more refractory to reprogramming
into induced pluripotent cells than are cells exhibiting slow
transdifferentiation (Francesconi et al., 2019). The levels of a
single protein, c-Myc, determine rapid transdifferentiation/low
reprogramming (low c-Myc) efficiency versus slow trans-
differentiation/high reprogramming (high c-Myc) efficiency
states. Analogous to c-Myc, variable GATA2 levels control cir-
cuits that alter fate output. Gata2 +9.5−/− aorta gonad meso-
nephros is quantitatively defective in its capacity to generate
HSPCs, and +9.5+/− embryos exhibit intermediate phenotypes
in aorta gonad mesonephros and fetal liver hematopoiesis
(Gao et al., 2013; Johnson et al., 2012). Gata2+/− embryos and
adults also exhibit intermediate phenotypes (Ling et al., 2004;
Rodrigues et al., 2005). Contrasting with these quantitative
differences, GATA2 levels dictate establishment of a multifate
system with qualitatively distinct fate outputs by induction of a
fate-promoting circuit concomitantwith negating a fate-suppressing
circuit (Fig. 8).

The deconstruction of a multifate system, with emergence of
a dominant fate-suppressing circuit, was unpredictable on the
basis of transcriptional or developmental paradigms.Whywould
this circuit consist of innate immune machinery including IFN
signaling components and pattern recognition receptors? In

Figure 7. Differential expression of innate immunity and monocytic genes is retained in immortalized −77−/− progenitors. (A) Representative Giemsa
staining of HoxB8-immortalized (hi) fetal liver progenitor cells. Scale bars = 20 µm. (B) qRT-PCR analysis of mRNA expression in hi−77+/+ and hi−77−/−
progenitors. Each point depicts the value from an independently derived hi line. n = 12. (C) qRT-PCR analysis of mRNA expression in hi−77+/+ and hi−77−/−
clones. n = 4 biological replicates. (D) qRT-PCR analysis of mRNA expression in clonal hi−77+/+ cells transiently expressing IRF8. In all graphs, error bars
represent mean ± SEM. Statistics were calculated using unpaired two-tailed Student’s t test; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001.
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GATA2 deficiency syndrome, mechanisms that trigger MDS and
AML are enigmatic (Churpek and Bresnick, 2019). GATA2 loss
creates a disease predisposition, and we proposed that GATA2-
low cells are vulnerable to genetic and/or environmental insults
that launch HSPCs on a pathogenic path (Soukup et al., 2019). By
instructing an efficient monocytic program, IRF8 induction in
GATA2-deficient cells during embryogenesis may consume
progenitors vulnerable to genetic or environmental insults.
Pathogen infection of progenitors can elevate NLRP1A, an in-
flammasome component that senses pathogen enzymatic activ-
ity (Martinon et al., 2002) and triggers cell death via pyroptosis
to clear pathogen-harboring progenitors (Masters et al., 2012);
Nlrp1a is upregulated in −77−/− progenitors. Alternatively, IFN
response gene expression may confer pathogen resistance and
preserve progenitors, analogous to viral resistance of human
embryonic stem cells and differentiated neural stem cell prog-
eny (Wu et al., 2018). By extrapolation, innate immune ma-
chinery upregulation in −77−/− progenitors may ensure integrity
of the progenitor pool. Pattern recognition receptors, which
confer pathogen resistance (Ronald and Beutler, 2010), would
provide sensors for progenitors to respond to bacterial (and
Mycobacterium, a common pathogen in GATA2 deficiency syn-
drome; Dickinson et al., 2014; Spinner et al., 2014), viral, and
fungal pathogens to evade deleterious consequences of infection.
Without the upregulated innate immune machinery safety net,
infection-induced stress might constitute a pathogenic trigger
for an otherwise silent GATA2 mutation. Our results revealed
some differences from IFN actions on embryonic stem cells (Wu
et al., 2018). Embryonic stem cells with upregulated IFN com-
ponents exhibit an attenuated IFNγ response, and oligoadeny-
late synthase family members, important determinants of
pathogen immunity, were not upregulated (Wu et al., 2018). By
contrast, −77−/− progenitors retain normal IFNγ responsiveness,
and oligoadenylate synthase family members were upregulated.
Given direct GATA2 activation of HDAC11 transcription

described herein (Fig. S5 and Fig. 7) and established links between
HDAC11 and reduced IFN signaling (Cao et al., 2019; Woods et al.,
2017), it is attractive to propose that the fate-suppressing circuit
involves a GATA2–HDAC11–innate immune axis.

In summary, we elucidated a mechanism in which an en-
hancer constructs amultifate systemvia coordinating fate-promoting
and -suppressing circuits. The enhancer deletion instigates an ectopic
innate immune response that deconstructs the multifate system,
which unveils new dimensions to GATA factor, hematopoiesis, and
immune mechanisms. Further dissecting the system will almost
certainly yield additional principles governing broadly operational
fate-regulatory circuits and transformative insights into innate im-
mune machinery function in multipotent cells in physiology and
pathology. In addition, the innovative multiomics resource of WT
and enhancer mutant primary progenitor cells, involving quantita-
tive proteomics, scRNA-seq, and population RNA-seq coupled with
GATA2 genetic rescue, will uniquely enable diverse molecular/cel-
lular discoveries beyond those described herein.

Materials and methods
Contact for reagent and resource sharing
A detailed list of reagents and resources is provided in Table S3.
Further information and requests for resources and reagents
should be directed to and will be fulfilled by the lead contact,
E.H. Bresnick.

Human subjects
Patients with germline GATA2 mutations were enrolled in clin-
ical protocols approved by the institutional review board at the
National Institute of Allergy and Infectious Diseases (Clinical-
Trials.gov identifier, NCT01905826) and in accordance with the
Declaration of Helsinki. Patient-specific information is provided
in Fig. 1. Bone marrow biopsies were performed with informed
consent.

Figure 8. Coordinating cell fate–promoting and –suppressing circuitry to establish a multifate progenitor system. The model depicts a physiological
mechanism in which GATA2 induces a fate-promoting circuit involving another transcription factor, GATA1, and its coregulator FOG1 and opposes an IRF8-
dependent fate-suppressing circuit. Because PU.1 commonly occupies chromatin and functions with IRF8 (Mancino et al., 2015), repression might involve the
reported GATA2–PU.1 antagonism (Walsh et al., 2002) or a PU.1-independent mechanism involving HDAC11-mediated suppression of IFNγ signaling. PU.1 levels
are constant in −77+/+ and −77−/− progenitors (Fig. 2 D). −77 enhancer deletion abrogates circuits promoting erythroid and megakaryocytic fates, and −77−/−
cells mount an ectopic response in which the IRF8-dependent fate-suppressive circuit prevails, skewing multilineage potential into a predominant monocytic
program.
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Mice
Hematopoietic progenitor cells were obtained from fetal livers of
staged embryos from timed mated Gata2 −77+/− or C57BL/6J
mice. All animal protocols were approved by the University of
Wisconsin–Madison Institutional Animal Care and Use Com-
mittee in accordance with the Association for Assessment and
Accreditation of Laboratory Animal Care (AAALAC Interna-
tional) regulations.

Primary cell culture
Fetal livers were harvested on ice in PBS containing 2% FBS,
10 mM glucose, and 2.5 mM EDTA. Cells were dissociated and
passed through a single-cell strainer. Cells expressing lineage
markers were removed using biotin-conjugated antibodies
CD3e, CD11b, CD19, CD45R (B220), GR-1, Ter119, CD71, and Mo-
joSort Streptavidin Nanobeads, all purchased from BioLegend.
The remaining Lin− cells were cultured for up to 3 d in Gibco
IMDM (Life Technologies) containing 20% FBS, 4% stem cell
factor (SCF)–conditioned media, 4% IL-3–conditioned media,
and 1% penicillin-streptomycin (Gemini Bio). IFN responsive-
ness was assayed by treating Lin− cells with either IFNγ, IFNα,
IFNβ, or PBS with 0.1% BSA (vehicle) at the time of culture for 24
h. Alternatively, unfractionated E14.5 fetal liver cells were plated
in M3434 methylcellulose media at 20,000 cells per 35-mm dish
with 20 ng/ml IFNγ or an equal volume of PBS, 0.1% BSA. After
7–8 d, cells were recovered for Giemsa staining. For JAK1/2 in-
hibition, ruxolitinib was added to the Lin− cells at 0.25 or 1 µM
and cultured for 48 h, at which point RNA was isolated with
TRIzol reagent (Thermo Fisher Scientific). Cells were cultured in
a humidified 5% CO2 incubator at 37°C.

For generation of ER-HoxB8-immortalized (hi) progenitors,
fetal liver Lin− cells were immortalized by retroviral expression
of estrogen-regulated HoxB8 as described previously (Wang
et al., 2006). Cells were cultured in OPTI-MEM supplemented
with 10% FBS, 1% penicillin-streptomycin, 1% SCF-conditioned
medium, 30 mM 2-mercaptoethanol, 1 µM β-estradiol, and
500 µg/ml G418. For transient expression of IRF8, hi−77+/+ cells
were resuspended in 100 µl of Nucleofector Solution R and
transfected with 20 µg of IRF8 expression vector or control
vector using the G-016 program of Nucleofector II (Lonza). Cells
were harvested for RNA extraction 72 h after transfection.

Quantitative RT-PCR
Total RNA was purified from cells with TRIzol reagent and
treated with DNase I (Thermo Fisher Scientific) for 15 min at
room temperature. Following heat inactivation for 10 min at
65°C, RNA was incubated with 125 ng of a 5:1 mixture of oli-
go(dT) primers and random hexamer at 68°C for 10 min. RNA/
primers were incubated with Moloney murine leukemia virus
reverse transcription (Thermo Fisher Scientific), 10 mM dithi-
othreitol (Thermo Fisher Scientific), RNAsin (Promega), and
0.5 mM deoxynucleoside triphosphates (New England Biolabs)
at 42°C for 1 h and then heat inactivated at 98°C for 5 min.
Quantitative gene expression analyses was performed by real-
time PCR using Power SYBR Green Master Mix (Applied Bio-
systems) and run on a ViiA 7 Real-Time PCR System (Applied
Biosystems).

Immunohistochemistry
Biopsies were fixed in buffered formalin, decalcified, paraffin
embedded, cut into 4-μm sections, and stained with H&E.
Paraffin-embedded biopsy sections (4 μm) were stained for
CD68 and for CD14 in a Ventana Benchmark Ultra automated
staining instrument (VentanaMedical Systems) according to the
manufacturer’s protocols. Images were captured on an Olympus
BX41 microscope equipped with an Olympus DP72 camera using
Olympus cellSens Entry software.

Flow cytometry and cell sorting
Flow cytometric analysis of bone marrow aspirates was per-
formed using a FACSCanto II analyzer (BD Biosciences)
equipped with three lasers and eight fluorescence detectors.
Antibodies used to identify monocytic populations were CD14
APCH7 (clone M7P9) and CD64 PE (clone 10.1). Cells were
stained with the above-mentioned antibodies in appropriate
dilutions for 15 min. RBCs were lysed with BD FACS lysing so-
lution, and cells were washed with PBS containing 1% albumin.
Cells were fixed in a 1% paraformaldehyde solution, and 105

events were acquired using FACSDiva software (BD Biosciences).
The list mode files were analyzed with FCS Express (DeNovo
Software).

Proteomic and single-cell transcriptomic analyses were per-
formed on a CMP/GMP pool (Lin−Sca−c-Kit+CD34+) sorted from
E14.5 fetal livers using a FACSAria II cell sorter (BD Biosciences).
Lineage markers were stained with FITC-conjugated B220, CD3,
CD4, CD5, CD8, CD19, IgM, Il7Ra, AA4.1, and TER-119 antibodies.
Other surface proteins were detected with PE-conjugated FcγR,
eFluor 660–conjugated CD34, peridinin chlorophyll (PerCP)-
Cy5.5–conjugated Sca1, and PE-Cy7–conjugated c-Kit. After
staining, cells were washed with PBS, 2% FBS, 10 mM glucose,
and 2.5 mM EDTA, then resuspended in the same buffer con-
taining DAPI and passed through 25-µm cell strainers to obtain
single-cell suspensions for sorting. For proteomic analysis, sor-
ted cell pellets were frozen in a dry ice/ethanol bath and stored
at −80°C until the time of processing. For single-cell analysis,
cells were sorted in PBS with 10% FBS, adjusted to 1,000 cells/µl,
and cell viability was measured with a Countess II automated cell
counter (Thermo Fisher Scientific) before processing. Quantita-
tion of Lin−Sca1−cKit+CD34+FcgRHiLy6C+Flt3−CD115Hi monocyte
progenitors and Lin−Sca1−cKit+CD34+FcgRHiLy6C+Flt3−CD115Lo

granulocyte progenitors was performed using the LSR For-
tessa flow cytometer (BD Biosciences). Antibodies are listed in
Table S3.

Proteomics
Cells sorted by flow cytometry were frozen for storage at −80°C.
Cell pellets were resuspended in 20–30 µl of lysis buffer
(100 mM Tris, 8 M urea, 10 mM tris(2-carboxyethyl)phosphine,
40 mM 2-chloracetamide) and sonicated in a Qsonica Q700
sonicator at an amplitude of 35 and 4°C for 20 s on/10 s off with a
total processing time of 10 min. The contents of two or three
tubes were then combined on the basis of the number of cells
counted during the sorting to obtain enough material for pro-
teomic analysis (5–6e5 cells). The NanoDrop OneC Microvolume
UV-Vis spectrophotometer (Thermo Fisher Scientific) at 280 nm
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was used to determine protein concentrations of the samples.
Lysates were diluted with 50 mM Tris to a final urea concen-
tration of ∼1.5 M before the addition of LysC in a 1:50 ratio
(enzyme/protein; FUJIFILM Wako Chemicals) and overnight
digestion at room temperature, followed by additional digestion
with trypsin (1:50 ratio of enzyme/protein; Promega) for 3 h,
acidification with 10% trifluoroacetic acid, desalting over 10-mg
StrataX solid-phase extraction columns (Phenomenex), and ly-
ophilization to dryness in a SpeedVac (Thermo Fisher Scientific).
Peptides were resuspended in 0.2% liquid chromatography–mass
spectrometry (LC-MS) grade formic acid (Pierce; Thermo Fisher
Scientific), and the resultant peptide concentrations were de-
termined using the NanoDrop spectrophotometer.

A 1260 Infinity II High Pressure Liquid Chromatography
(HPLC) system with an Analytical-Scale Fraction Collector
(Agilent) was used to separate ∼35 µg of peptides across the
XBridge Peptide Ethylene Bridged Hybrid C18 Column, 130 Å,
3.5 µm, 4.6-mm × 150-mm column (Waters) at a flow rate of
0.8 ml/min over a 25-min gradient into 16 fractions. For high
pH reverse-phase fractionation, mobile phase A consisted of
10 mM ammonium formate (Sigma-Aldrich) in HPLCMS-grade
water (Thermo Fisher Scientific), buffered to pH 10.0 with
ammonium hydroxide (Sigma-Aldrich), and mobile phase B
contained 10 mM ammonium formate at pH 10.0 in 80% HPLC-
MS–grade methanol (Thermo Fisher Scientific). Fractions were
collected into conical bottomed 96–deep-well plates (Analytical
Sales & Services) and concatenated by hand into eight final
fractions. The plates were lyophilized to dryness in a SpeedVac,
and peptides were resuspended in 0.2% formic acid for analysis
by LC with tandem MS (LC–MS/MS) analysis.

For nanoscale LC–MS/MS, capillary columns were fabricated
in-house. Self-pack PicoFrit 75–360-µm inner–outer diameter
bare-fused silica capillary columns with 10-µm electrospray
emitter tips (New Objective) were packed using an in-house–built
ultrahigh-pressure column packing station (Shishkova et al., 2018)
with 1.7-µm, 130-Å pore size Ethylene Bridged Hybrid C18 par-
ticles (Waters) to a final length of ∼40 cm and installed on a Di-
onex Ultimate 3000 nano-HPLC system (Thermo Fisher
Scientific). Mobile phase buffer A was composed of 0.2% formic
acid in water; mobile phase Bwas composed of 0.2% formic acid in
70% HPLC-MS grade acetonitrile (Thermo Fisher Scientific).
Peptides (∼1 µg) from each fraction were loaded onto a column,
which was kept at 50°C inside an in-house–made heater and
separated at a flow rate of 300 nl/min over a 120-min gradient,
including column wash and reequilibration time. Peptide ions
were analyzed on a quadrupole ion trap hybrid Orbitrap Fusion
Lumos mass spectrometer (Thermo Fisher Scientific). During
data-dependent acquisition (whole-proteome analysis) Orbitrap
survey scans were performed at a resolving power of 240,000 at
200 m/z with an automatic gain control target of 1.5 × 106 ions
and maximum injection time of 50 ms. The instrument was
operated in the top-speed mode with 1-s cycle times using an
advanced precursor determination algorithm (Hebert et al.,
2018) for monoisotopic precursor selection. Precursors were
isolated using a quadrupole with an isolation window of 0.7 Th.
MS-MS scans were performed in the ion trap using the rapid
scan rate on precursors with two to four charge states using

higher-energy collisional dissociation fragmentation with nor-
malized collision energy of 25 and dynamic exclusion of 20 s. The
ion trap MS/MS ion count target was set to 3 × 104 with a maxi-
mum injection time of 18 ms and fixed m/z range of 200–1,200.
For parallel reaction monitoring analysis (Peterson et al., 2012),
Orbitrap MS2 scans of targeted peptides were performed over a
200–2,000 m/z scan range at a resolving power of 60,000 at
200m/zwith an automatic gain control target of 1.5 × 106 ions and
maximum injection time of 425–750 ms, depending on the num-
ber of peptides targeted simultaneously. Precursor ions were
isolated using a quadrupole with 1.6 daltons isolation window and
fragmented using higher-energy collisional dissociation with
normalized collisional energy of 25.

The whole-proteome data were processed using the Max-
Quant quantitative software package (version 1.6.1.0) and
searched against the UniProt Mus musculus database (down-
loaded on June 18, 2018), containing protein isoforms. If not
specified, default MaxQuant settings were used. Label-free
quantitation (LFQ) was performed using an LFQ minimum ra-
tio count of 1 and no MS/MS requirement for LFQ comparisons.
Carbamidomethylation of cysteine residues was included as a
fixed modification; oxidation of methionine and acetylation of
protein N-termini were set as variable modifications. Match
between runs was performed using default settings. Ion trap
mobility spectrometry tandem MS tolerance was set to 0.3
daltons, and first search tolerance was set to 27 ppm. Lists of
quantified proteins were filtered to remove reverse identi-
fications, potential contaminants, and proteins, which were
identified only by a modification site. Missing quantitative
values were imputed for proteins that were observed in at least
four of seven samples by randomly drawing values from the
low end of the distribution of all measured protein abundance
values (Cox et al., 2014).

GATA2 rescue assay
The reduced levels of GATA2 observed in −77−/− hematopoietic
progenitors were rescued by infection of E14.5 Lin− fetal liver
cells with retrovirus carrying the murine Gata2 cDNA in the
murine stem cell virus plasmid (pMSCV; Katsumura et al., 2018).
Ecotropic retrovirus was packaged in 293T cells, and retrovirus-
containing supernatants were collected 24 and 48 h after
transfection. Cells were infected with infectious supernatant by
spinoculation for 90 min at 1,315 ×g, followed by 3 d of culturing
in IMDM containing 20% FBS, 1% penicillin-streptomycin, 4% IL-
3–conditioned media, and 4% SCF-conditioned media. RNA was
purified with TRIzol. Global changes in gene expression were
determined by RNA-seq of four biological replicates each of
−77+/+ infected with empty vector, −77−/− infected with empty
vector, and −77−/− infected with the Gata2 pMSCV-PIG expres-
sion vector. RNA libraries were prepared by the University of
Wisconsin Gene Expression Center and sequenced using an Illu-
mina HiSeq 2500 sequencer. Sequencing reads were aligned by
STAR (version 2.5.2b) to themouse genome (mm10; chromosomes
1 to 19; X, Y, and M) with GENCODE comprehensive gene anno-
tation (version M16) on the reference chromosomes only. Gene
expression levels were quantified by RSEM (version 1.3.0). STAR
and RSEM runnings followed the RNA-seq quantification protocol
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from ENCODE (https://github.com/ENCODE-DCC/long-rna-seq-
pipeline/blob/master/dnanexus/quant-rsem/resources/usr/bin/
lrna_rsem_quantification.sh).

scRNA-seq
scRNA-seq was performed by the University of Wisconsin Gene
Expression Center using the Chromium Single Cell Gene Expres-
sion platform (10x Genomics). Single-cell suspensions of CMP/
GMP pools sorted from E14.5 fetal livers of two −77+/+ and two
−77−/− embryos were loaded onto the Chromium Controller to
generate single-cell barcoded gel bead emulsions for preparation of
cDNA libraries and sequencing. Sequences were obtained from
5,167 −77+/+ and 10,028 −77−/− cells. Mean reads per cell were as
follows: −77+/+ (37,365 and 25,498) and −77−/− (11,599 and 12,368).
CellRanger (Zheng et al., 2017) was used with default parameter
settings for alignment of sequencing reads, quantification of
unique molecular identifier (UMI) counts, and filtering of empty
barcodes. Cells with unusually high or low total UMI counts, a low
number of detected genes, and a high proportion of UMI counts
originating from mitochondrial genes were filtered with the
isOutlier function in the R package scater (version 1.10.1; McCarthy
et al., 2017) with nmads = 3. Genes that did not have UMI counts >4
in more than five cells were filtered out as well. Scran (version
1.10.2; Lun et al., 2016a)was used to normalize data across cells, and
PCA, t-SNE (van der Maaten and Hinton, 2008), and SPRING
(Weinreb et al., 2018) were used for dimension reduction. For PCA
and t-SNE, the Seurat function (version 2.3.4; Butler et al., 2018)
ScaleData was used to regress out total UMI count and average
mitochondrial gene expression to ensure that principal compo-
nents and t-SNE components were independent of these sources
of variation. PCA and t-SNE were fit using the most variable genes
via Seurat’s FindVariableGenes function. For trajectory analysis,
SPRING was used with default settings after subsampling cells to
ensure equal numbers of −77+/+ and −77−/− cells. Clustering analysis
was performed with k-means using the R package cluster. We
maximized average silhouette, which quantifies how similar a cell
is to its own cluster compared with other clusters to determine the
numbers of clusters, using the function silhouette from the R
package cluster.

Quantification and statistical analysis
Quantitative RT-PCR
Results are presented as either the mean ± SEM or as box-and-
whisker plots with whiskers ranging from minimum to maxi-
mum values. Multiple independent cohorts were used in each
experiment. Statistical comparisons were performed using two-
tailed Student’s t tests (significance cutoff of P value <0.05),
with correction of statistical overrepresentation of functions
calculated using the two-stage stepup method of Benjamini,
Krieger, and Yekutieli as calculated using Prism software
(GraphPad Software).

Proteomics
Statistical significance of changes in protein abundance between
WT and mutant samples was determined using two-tailed Stu-
dent’s t test followed by the correction for multiple hypothesis
testing according to the Benjamini-Hochberg method (q < 0.05).

RNA-seq for GATA2 rescue
Differentially expressed genes were detected by DESeq2 (ver-
sion 1.16.1), requiring that genes have at least twofold changes
and an adjusted P value <0.05. Heatmaps of gene expression
levels were prepared using ComplexHeatmap (version 1.99.7).
Fragments per kilobase of transcript per million mapped reads
values were added by 10−4 to avoid taking logarithm on zero.

scRNA-seq
For differential expression analysis, MAST (version 1.8.2; Finak
et al., 2015) was used along with the Benjamini-Hochberg false
discovery rate control to adjust for multiple comparisons. Genes
with an adjusted P value <0.05 were considered differentially
expressed.

Data and software availability
All raw files associated with proteomic analysis were depos-
ited in the Proteomics Identifications Database (PRIDE) archive
(Vizcaı́no et al., 2016) under project accession no. PXD013855.
RNA-seq raw files and RSEM quantification results were de-
posited in the Gene Expression Omnibus database under ac-
cession no. GSE133606. scRNA-seq raw files were deposited in
the Gene Expression Omnibus database under accession no.
GSE134439.

Online supplemental material
Fig. S1 shows STRING analysis of differentially expressed pro-
teins in −77−/− CMP/GMP cells. Fig. S2 shows GATA2 Western
blot and hierarchical clustering related to population RNA-seq
datasets. Fig. S3 shows scRNA-seq cluster number optimization
and cluster-specific Gene Ontology term analysis. Fig. S4 shows
a comparison of cell proliferation features of −77+/+ and −77−/−
progenitors mined from scRNA-seq data. Fig. S5 shows re-
sponsiveness of Tlr9 and Irf8 to IFN treatment and evidence for
regulation of Hdac11 by GATA2. Table S1 reports dysregulated
expression of immunemachinery proteins in −77−/− progenitors.
Table S2 shows the relationship between −77-regulated proteins
and mRNAs. Table S3 lists resources and reagents used in
the study.
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Supplemental material

Figure S1. Network analysis reveals loss of erythroid, megakaryocyte, and granulocyte proteins and induction of innate immune proteins in pro-
genitor cells. Functional relationships between up- or downregulated cohorts of proteins identified in our proteomic analysis of the −77−/− CMP/GMP pool
were evaluated by using STRING (https://string-db.org). Relationships reveal loss of erythroid/megakaryocyte and granulocyte proteins and induction of
inflammatory proteins in progenitor cells.
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Figure S2. Reproducibility of biological replicates from the population RNA-seq analysis. (A) Representative Western blot of GATA2 expression in
samples used for transcriptomic analysis. Lin− fetal liver progenitors were infected with retrovirus for expression of hemagglutinin (HA)-tagged GATA2 or the
empty vector MSCV-PIG. The Western blot was probed with an antibody to detect both endogenous and expressed GATA2. (B) RNA-seq read counts for all
genes were transformed to the log2 scale by using the DESeq2 rlog function and employed for calculating Euclidean distance. Hierarchical clustering of all the
12 RNA-seq datasets was performed on the basis of Euclidean distance and denoted to the right of the heatmap.

Figure S3. Cluster number optimization and cluster-specific features derived from gene expression patterns. (A) Selection of optimal numbers of
clusters by maximizing the average silhouette width in k-means clustering after dimension reduction with t-SNE. (B) Top categories obtained from GO analysis
of the 100 most enriched genes for PCA clusters 2 and 3 using DAVID Bioinformatics Resources (https://david.ncifcrf.gov). Genes enriched in cluster 1 did not
parse into specific categories. The enriched genes in each cluster were determined using the MAST function of Seurat’s FindAllMarkers.
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Figure S4. Cell fate deconstruction does not impact progenitor proliferative status. (A) Cell cycle status was determined for each cluster using the scran
function cyclone. (B) Comparison of the distribution of Pcna- and Mki67-expressing cells. Red and gray colors indicate high and low expression levels, re-
spectively. (C) Violin plots depicting cluster-specific Pcna and Mki67 expression. Fold increases (in −77+/+ versus −77−/−) and P values are indicated for each
cluster. (D) Developmental trajectories were established by SPRING analysis.
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Tables S1–S3 are provided online as separate Word documents. Table S1 displays the dysregulated expression of innate immune
machinery proteins in −77−/− progenitors. Table S2 shows the relationship between −77-regulated proteins and mRNAs. Table S3
lists the resources and reagents used in this study.

Figure S5. GATA2 directly induces Hdac11, encoding a suppressor of IFN signaling. (A) Responsiveness of Tlr9 to IFNγ treatment in −77−/− versus −77+/+
Lin- fetal liver cells. Cells were cultured for 24 h in the presence of IFNγ, and RNA was quantitated by qRT-PCR. n = 4 biological replicates from −77−/− and
−77+/+ littermates were analyzed for each condition. Mean ± SEM; *, P ≤ 0.05 by two-tailed, paired Student’s t test for comparison of expression for each IFN
concentration relative to untreated cells. (B) Comparable sensitivity of −77+/+ and −77−/− progenitors to IFNγ-dependent transcriptional regulation. The means
for Irf8 expression in untreated −77+/+ and −77−/− samples have been normalized to 1, with treated conditions set relative to the untreated value. n = 3–7
biological replicates. (C) Hdac11 mRNA expression in −77+/+ or −77−/− progenitors from lineage-depleted E14.5 fetal livers cultured for 3 d. n = 3 biological
replicates. Error bars represent mean ± SEM. Statistics were calculated using unpaired two-tailed Student’s t test; ***, P ≤ 0.001. (D) GATA2 occupancy at
Hdac11was mined from existing mouse (GATA1-null G1E cells; upper profile) and human (K562 cells; lower profile) chromatin immunoprecipitation–sequencing
datasets.
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