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Background: Melanoma is a highly aggressive skin cancer with a poor prognosis

and mortality. Immune checkpoint blockade (ICB) therapy (e.g., anti-PD-1 therapy)

has opened a new horizon in melanoma treatment, but some patients present a

non-responsive state. Cancer-associated fibroblasts (CAFs) make up the majority of

stromal cells in the tumor microenvironment (TME) and have an important impact on

the response to immunotherapy. There is still a lack of identification of CAFs-related

predictors for anti-PD-1 therapy, although the establishment of immunotherapy

biomarkers is well underway. This study aims to explore the potential CAFs-related

gene panel for predicting the response to anti-PD-1 therapy in melanoma patients and

elucidating their potential effect on TME.

Methods: Three gene expression datasets from melanoma patients without anti-PD-1

treatment, in a total of 87 samples, were downloaded from Gene Expression

Omnibus (GEO) as the discovery sets (GSE91061) and validation sets (GSE78220

and GSE122220). The CAFs-related module genes were identified from the discovery

sets by weighted gene co-expression network analysis (WGCNA). Concurrently,

we utilized differential gene analysis on the discovery set to obtain differentially

expressed genes (DEGs). Then, CAFs-related key genes were screened with the

intersection of CAFs-related module genes and DEGs, succeeded by supervised

machine learning-based identification. As a consequence of expression analysis, gene

set enrichment analysis, survival analysis, staging analysis, TME analysis, and correlation

analysis, the multidimensional systematic characterizations of the key genes were

uncovered. The diagnostic performance of the CAFs-related gene panel was assessed

by receiver operating characteristic (ROC) curves in the validation sets. Eventually, the

CAFs-related gene panel was verified by the expression from the single-cell analysis.
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Results: The six-gene panel associated with CAFs were finally identified for

predicting the response to anti-PD-1 therapy, including CDK14, SYNPO2, TCF4, GJA1,

CPXM1, and TFPI. The multigene panel demonstrated excellent combined diagnostic

performance with the area under the curve of ROC reaching 90.5 and 75.4% ∼100% in

the discovery and validation sets, respectively.

Conclusion: Confirmed by clinical treatment outcomes, the identified CAFs-related

genes can be used as a promising biomarker panel for prediction to anti-PD-1 therapy

response, which may serve as new immunotherapeutic targets to improve survival

outcomes of melanoma patients.

Keywords: melanoma, anti-PD-1 therapy, CAFs-related biomarker panel, WGCNA, supervised machine learning

INTRODUCTION

Cutaneous melanoma is a highly aggressive malignancy that
has been found to contribute to ∼1.7% (232,100 cases) of all
newly diagnosed primarymalignant cancers, leading to a∼55,500
deaths every year (1). Recent clinical studies promised the
great advantages of anti-PD-1 immunotherapy over traditional
treatments, including superior clinical efficacy and significant
survival benefits for melanoma patients (2). Meanwhile, anti-
PD-1 therapy for melanoma remains challenging because of
its heterogeneous immune response of 30–60% of patients
characterized by little or no response (3, 4). Moreover,
immunotherapy is expensive and patients usually are involved
in a high-grade immune-related adverse event (5). In terms of
the clinical response, costs, and side effects, it is urgent to find
biomarkers to predict the efficacy of anti-PD-1 therapy.

PD-L1 immunohistochemical assay is commonly used in
predicting the efficacy of anti-PD-1 therapy. However, the
variety of PD-L1 expression over time leads to its insufficiency

Abbreviations: CAFs, Cancer associated fibroblasts; ICB, Immune checkpoint

blockade; TME, Tumor microenvironment; TMB, Tumor mutation burden;

MSI, Microsatellite instability; ECM, Extracellular matrix; MCP-1, Monocyte

chemotactic protein 1; NK, Natural killer; EMT, Epithelial mesenchymal

transition; CTL, Cytotoxic T lymphocytes; TF, Tissue factor; teLEC, tumor

exposed-lymphatic endothelial cells; pDCs, plasmacytoid dendritic cells; DEGs,

Differentially expressed genes; CDEGs, CAFs-related differentially expressed

genes; KCDEGs, Key CAFs-related differentially expressed genes; TCGA-SKCM,

TCGA-skin cutaneous melanoma; GEO, Gene Expression Omnibus; WGCNA,

Weighted gene co-expression network analysis; LASSO, Least absolute shrinkage

and selection operator; GSEA, Gene set enrichment analysis; MAD, Median

absolute deviation; TOM, Topological overlap matrix; MEs, Module eigengenes;

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; REAC,

Reactome; WP, WikiPathways; ROC, receiver operating characteristic; AUC, Area

under curve; OS, overall survival; CDK14, Cyclin Dependent Kinase 14; SYNPO2,

Synaptopodin 2; TCF4, Transcription Factor 4; TFPI, Tissue Factor Pathway

Inhibitor; GJA1, Gap Junction Protein Alpha 1; CPXM1, Carboxypeptidase X,

M14 Family Member 1; LIF, LIF Interleukin 6 Family Cytokine; HSF1, Heat Shock

Transcription Factor 1; IL6, Interleukin 6; IL1B, Interleukin 1 Beta; CXCL12, C-

X-C Motif Chemokine Ligand 12; CXCL10, C-X-C Motif Chemokine Ligand 10;

CXCL9, C-X-C Motif Chemokine Ligand 9; CXCR3, C-X-C Motif Chemokine

Receptor 3; CCL5, C-C Motif Chemokine Ligand 5; CCL4, C-C Motif Chemokine

Ligand 4; TIGIT, T Cell Immunoreceptor With Ig And ITIM Domains; LAG3,

Lymphocyte Activating 3; CTLA4, Cytotoxic T-Lymphocyte Associated Protein 4;

CD274, CD274 Molecule; PDCD1, Programmed Cell Death 1.

as a routine clinical biomarker (6). Tumor mutation burden
(TMB), microsatellite instability (MSI), and molecular subtypes
can predict the clinical response of patients (7). Unfortunately,
these detection ways are inconvenient and expensive because of
complex molecular detection methods. Therefore, we necessary
explore faster and more economical predictors for anti-PD-1
therapy response.

The tumor microenvironment (TME), a complex system
composed of tumor cells, stromal cells, infiltrating immune
cells, and abundant extracellular matrix (ECM), has a
strong connection with tumor immunosuppression (8).
Cancer-associated fibroblasts (CAFs) constitute vastly
heterogeneous stromal cells and are prominent components
of the microenvironment in solid tumors. To date, it has
been recognized as one of the most promised biomarkers of
immunosuppressive TME (9).

CAFs are the activated fibroblasts in the early stage of tumor
development marked by the heterogeneity of origin, phenotype,
and function. Studies identified CAFs promote the development
of malignant tumors through various mechanisms, including
secreting growth factors, remodeling the extracellular matrix,
promoting angiogenesis, and mediating tumor-promoting
inflammation. Furthermore, it is also involved in tumor
immune escape by affecting immune cell infiltration, inducing
immunosuppression, and inhibiting lymphocyte tumor-
killing effects (10, 11). Studies demonstrated that CAFs can
inhibit CD8+ T cells and activate FoxP3+ lymphocytes by
secreting IL-6 and thus promote immunosuppression of TME
(9). The tumor-associated macrophages (TAM) are part of
inflammatory infiltrating cells in TME, of which the M2 type
has immunosuppressive functions. CAFs have been proved to
recruit monocytes and induce their differentiation into M2 type
via monocyte chemotactic protein 1 (MCP-1) and chemokine
CXCL-12 (12). Importantly, CAFs have been proved to directly
reduce the activation of CD8+ T cells and natural killer (NK) cells
by upregulating the expression of immune checkpoint signals
(e.g., PD-1, PD-L1, PD-L2), which in turn hinders anti-tumor
immunity (13, 14). In conclusion, CAFs can promote tumor
immunosuppression and immune escape by interacting with the
immune cell through the secretion of cytokines, chemokines,
and other cytokines.
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The evidence above suggests the association between CAF-
related genes and the effectiveness of anti-PD-1 therapy
in tumor patients. There are some studies foucusing on
biomarkers for the response prediction of anti-PD-1 therapy
in melanoma, but the majority of them tend to ignore
the exploration of the functional correlation between genes
as well as the regulatory mechanism of genes in TME.
Furthermore, the exploration of anti-PD-1 therapy response
biomarkers related to CAFs in melanoma is few up to now.
Therefore, in this study, a robust analysis, comprised of
weighted gene co-expression network, least absolute shrinkage
and selection operator (LASSO), and random forest machine
learning, was applied to screen CAFs-related gene panel
associated with anti-PD-1 therapeutic response in melanoma,
aiming to understand the potential functions of these genes
in TME and evaluate their anti-PD-1 therapeutic response
prediction performance.

Here, three existing RNA-seq datasets on anti-PD-
1 immunotherapy of melanoma were analyzed using a
bioinformatics approach. First, GSE91061 was applied to
construct a gene co-expression network by weighted gene
co-expression network analysis (WGCNA) to screen key
modules related to CAFs score. Functional enrichment
analysis was further to investigate the biological function of
the key module genes. Second, six CAFs-related genes for
predicting response to anti-PD-1 therapy were identified with
the combination of LASSO and random forest. Subsequently,
adopting gene set enrichment analysis (GSEA) and gene
expression profiling interactive analysis (GEPIA), the biological
functions and survival/staging associations of the six genes
were explored based on TCGA-SKCM RNA sequencing
data. To gain insight into the impact and association of
these molecules on immune/stromal cells in TME, xCELL
was applied to explore the correlation of the six genes
with immune/stromal cells. Not only that, the multivariate
Cox model confirmed the excellent performance of the
six-gene panel in survival prediction, and TME analysis
demonstrated significant TME alterations existed in different
risk groups. Further gene correlation analysis revealed significant
positive correlations of these six genes with anti-tumor
immune-related molecules, immune checkpoint-associated
molecules, and CAFs-related stimulators, which suggested
the potential anti-tumor immune functions. After validating
the prediction accuracy of the gene panel in the GSE78220
and GSE122220 datasets, we finally summarized key features
of the KCDEGs and investigated single-cell localizations
to determine their significant expression in CAFs and
TME-associated cells.

METHODS

The workflow of this study is shown in Supplementary Figure 1,
including three main parts, WGCNA-based CAFs-related
differential gene screening, key gene extraction by machine
learning models, and key gene validation based on

multidimensional system analysis. The details are described
as follows.

Acquisition of Gene Expression Data
Datasets were collected using “melanoma,” “SKCM,” “PD-1,”
“treatment,” “therapy” and “immunotherapy” as keywords
in Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.
nih.gov/geo) (15), ArrayExpress (https://www.ebi.ac.uk/
arrayexpress) (16) and Expression Atlas (https://www.ebi.ac.uk/
gxa/home) (17). The collected data were reviewed and included
by the following standards: (i) gene expression datasets included
responsive (full response or partial response) or non-responsive
(disease progression or disease stabilization) melanoma patients
to anti-PD-1 therapy. Responders and non-responders to
immunotherapy were confirmed consulting iRECIST guidelines
(18); (ii) each dataset contained at least 10 samples; (iii) the data
were publicly accessible and downloadable. Ultimately, three
datasets (n = 87) were filtered out and downloaded from GEO,
including GSE91061 (39 non-responders and 10 responders)
(19), GSE78220 (13 non-responders and 15 responders) (20) and
GSE122220 (6 non-responders and 4 responders). Additionally,
GSE114445 was downloaded to explore gene expression in
normal skin (n = 6), nevus (n = 12) and melanoma (n =

16) samples. Moreover, we obtained TCGA-skin cutaneous
melanoma (TCGA-SKCM) patient mRNA expression matrix
(n = 458) and corresponding clinical data from UCSC-Xena
(http://xena.ucsc.edu/) (21) for expression analysis, gene set
enrichment analysis, survival analysis, staging analysis, TME
analysis, and correlation analysis.

Construction of Weighted Co-expression
Network in Melanoma Patients
WGCNA aims to mine functionally related genes with similar
co-expression patterns (22). Expression correlation coefficients
were applied to measure intergenic co-expression relationships,
and genes with high correlation coefficients were assigned to the
same module and presented similar expression patterns. These
highly correlated module genes may be involved in the same
biological process or pathway. Gene co-expression networks were
constructed using the WGCNA package in R (4.1.1) by the top
25% of the median absolute deviation (MAD) ranked genes in
the GSE91061 expression matrix normalized by log2(count+1).
The co-expression similarity matrix for all genes was generated
using the average linkage method and subsequently converted
into an adjacency matrix to ensure the construction of an
unsigned scale-free network. The weighted adjacency matrix
was further transformed into a topological overlap matrix
(TOM) to estimate the connectivity of the unsigned network.
A hierarchical clustering approach was adopted to construct
the clustering tree structure of the TOM, and dynamic hybrid
cuts were achieved by the variability of the TOM with a cut
height of 0.25. Gene modules were fused under the variability
of the estimated module eigengenes (MEs) and represented by
different colors.
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Identification of the Co-expression Gene
Module Associated With CAFs
First, 56 marker genes (Supplementary Table 1), associated with
CAFs and reported in many pan-cancer CAFs studies, were
collected from Mao et al.’s review (14). Then, according to the
marker genes, the CAFs score was calculated for each patient
in GSE91061 (n = 49) using the GSVA algorithm. Finally, the
correlation between the CAFs score and MEs was assessed using
Pearson’s correlation coefficient, and the gene module with the
smallest P-value was selected as the most relevant module for
the CAFs score. Genes in the module were defined as highly
correlated with CAFs.

Functional Enrichment Analysis of Module
Genes
For the biological functions of the module genes associated
with CAFs, enrichment analyses of Gene Ontology (GO) (23),
Kyoto Encyclopedia of Genes and Genomes (KEGG) (24),
Reactome (REAC) (25), and WikiPathways (WP) (26) were
executed in g:Profiler online tool (https://biit.cs.ut.ee/gprofiler/
gost) (27). Entries with FDR < 0.05 were considered significant
and visualized by Hiplot (https://hiplot.com.cn).

Identification of Key Genes by LASSO
Regression Analysis and Random Forest
Algorithm
RNA-seq count data fromGSE91061 were normalized with TMM
(trimmed mean of M values) and analyzed using the edgeR
package (28), and genes with P < 0.05 were defined as anti-PD-1
response differentially expressed genes (DEGs). The intersection
betweenmodule genes associated with CAFs and DEGs related to
anti-PD-1 therapy response were extracted and defined as CAFs-
related DEGs (CDEGs), and further LASSO and random forest
analysis were adopted to identify key CDEGs (KCDEGs) using
the glmnet package (nlambda = 1000, 10-fold cross-validation)
and randomForest package. LASSO regression was characterized
by variable selection and regularization while fitting a generalized
linear model, which aids it well-adapted to the linear and non-
linear operations (29) and random forest is a popular classifier
that can handle input samples without dimensionality reduction
to generate an unbiased estimate of the error in the process of
forest building (30).

Gene Set Enrichment Analysis for KCDEGs
Once 458 TCGA-SKCM samples were divided into two groups
with the median gene expression, the edgeR package was
further employed for differentially expressed genes (FDR < 0.05)
between the two groups. Subsequently, based on hallmark gene
sets of the MSigDB (http://www.gsea-msigdb.org/gsea/msigdb/
index.jsp) (31), GSEA was utilized (FDR < 0.05) to estimate the
function of KCDEGs by clusterProfiler package (32).

Survival and Staging Analysis of KCDEGs
in Melanoma Patients
To investigate whether KCDEGs have an impact on survival
and disease progression in melanoma patients, we applied gene

expression analysis (One-way ANOVA, P < 0.05), survival
analysis (Log-rank P < 0.05), and staging analysis [One-way
ANOVA, Pr(>F) < 0.05] in TCGA-SKCM patients by GEPIA
(33). In addition, we evaluated the predictive effect of combined
KCDEGs on patients’ prognosis in the TCGA-SKCM cohort (n=
458). A multivariate Cox proportional risk regression model was
constructed for the KCDEGs using the survival R package (34),
as well as regression coefficients were retained for each KCDEG.
And risk score was calculated for each patient according to the
following equation.

Risk score =
∑

i

Coefficient(KCDEGi)
∗Expression(KCDEGi)

SKCM patients were assigned to low- and high-risk groups based
on the median risk score calculated above. We finally assessed
the overall survival between the two risk groups by the Kaplan-
Meier curve.

Association Assessment of KCDEGs With
TME Signature
The RNA-seq count matrix of TCGA-SKCM was converted
into TPM (transcripts per million) values for the next analysis.
The variation of TME for each sample and 64 xCell TME
signature were investigated by the xCell online tool (https://
xcell.ucsf.edu/) (35) to estimate the infiltration level of TME-
associated cells (mainly include immune cells and stromal cells).
Pearson correlation analysis was utilized to calculate the degree
of correlation between KCDEGs and the infiltration levels of
TME-associated cells (P < 0.05). We used the Wilcoxon test to
compare the TME-associated cell infiltration level between low-
and high-risk groups (P < 0.05).

Correlation Analysis of CAFs-Related
Stimulators and Immunotherapy-Related
Genes
The mRNA expression data for KCDEGs, CAFs-related
stimulators, antitumor immune-related genes and, immune
checkpoint-related genes were extracted from the TPM matrix
of TCGA-SKCM. Spearman correlation analysis was adopted
to calculate the correlation coefficient between each gene (P <

0.05). And the ggcorrplot R package (36) was employed for the
correlation coefficient visualization.

Diagnostic Performance Evaluation and
Validation of KCDEGs
To further assess the predictive ability of KCDEGs for anti-PD-
1 treatment response, the pROC package (37) was chosen to
calculate the area under the curve (AUC) of the receiver operating
characteristic (ROC) curve for each KCDEGs in discovery and
validation sets. Higher AUC values represent a better gene
diagnostic performance. By binary logistic regression (SPSS,
v25.0), KCDEGs were firstly fitted to the CAF-derived gene panel,
and the diagnostic performance of the CAF-derived gene panel
was assessed through ROC curves.
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FIGURE 1 | CAFs related gene module was identified by WGCNA. (A) The test of scale independence and mean connectivity for constructing scale-free network. (B)

Hierarchical clustering dendrogram of co-expressed genes after module fusion. (C) Eigengene dendrogram of function module. (D) Eigengene adjacency correlation

heatmap of the function module. (E) Heatmap of the correlation between module and trait. (F) Correlation scatter plot of gene significance for CAFs and module

membership from green module. WGCNA, Weighted gene co-expression network analysis.

To determine the single-cell expression distribution of
these KCDEGs, we analyzed the expression of each KCDEGs
with single-cell RNA-seq data by Tumor Immune Single Cell
Hub (TISCH) (38). Six SKCM datasets were included in the
analysis: four non-treatment cohorts (GSE123139, GSE139249,
GSE148190 and GSE72056), one anti-PD-1 treatment cohort
(GSE115978) and one anti-PD-1/anti-CTLA-4 treatment
cohort (GSE120575).

Statistical Methods
Statistical analyses and visualization were performed with
R software (version 4.1.1). Normally distributed continuous
variables between two groups were compared by t-test.
Otherwise, the Wilcoxon test was applied. The P-values for
GSEA were corrected by the Benjamini-Hochberg method.
The statistical significance of survival analysis was assessed

by the Log-rank test and corrected by the Bonferroni
method. Correlations between variables were explored
by Pearson or Spearman coefficients. All statistical tests
were two-sided.

RESULTS

Construction of Weighted Gene
Co-expression Networks and Identification
of CAFs-Related Modules
To obtain the gene modules associated with CAFs, we
constructed a weighted gene co-expression network by WGCNA
for GSE91061. A soft threshold of β= 10 (Figure 1A) was chosen
for the scale-free topological network model fitting (R2 = 0.85).
Subsequently, 14 gene modules were obtained by average linkage
hierarchical clustering, TOM dynamic hybrid cut (cutHeight =

Frontiers in Medicine | www.frontiersin.org 5 April 2022 | Volume 9 | Article 880326

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Tian et al. A CAFs-Related Gene Panel for Melanoma

FIGURE 2 | Functional enrichment analysis of genes in the green module. (A) Enrichment analysis of gene ontology (GO). (B) Enrichment analysis of Kyoto

Encyclopedia of Genes and Genomes pathways (KEGG). (C) Enrichment analysis of Reactome pathways (REAC). (D) Enrichment analysis of WikiPathways (WP). MF,

molecular function; BP, biological process; CC, cellular component.

0.25), and module fusion, with gray as a non-functional module
and the rest as functional modules (Figure 1B). Figures 1C,D
demonstrated the similarities and differences among these
modules. Similar module genes may be involved in similar
biological function regulation. Finally, the Pearson correlation
analysis was performed to calculate the correlation of MEs
with the CAFs score and clinical characteristics (Non-response
and Response). The results suggest that the green module
was the most relevant to the CAFs score, which included 184
module genes (Figure 1E). Further, we displayed a significant
correlation between module membership in the green module
and gene significance for CAFs (Figure 1F, Cor = 0.89,
P = 5.6E-64).

Biological Functions of Genes in the Green
Module
The green module was identified as the most associated gene
module with CAFs. To further explore the functional association
between green module genes and CAFs, enrichment analysis
(FDR < 0.05) of module genes was realized based on GO,

KEGG, REAC, and WP. GO results exhibited that the molecular
function of 184 genes is mainly enriched in extracellular matrix
structural constituent, structural molecule activity, and growth
factor binding (Figure 2A). The involved terms of biological
processes and cellular components include extracellular matrix
organization, extracellular structure organization, extracellular
matrix, and collagen-containing extracellular matrix. The above
results demonstrated the significant association of module genes
with ECM remodeling. Increasing evidence has revealed that
CAFs aremajor contributors to ECM remodeling in the TME (14,
39, 40). CAFs can alter the structure, arrangement, and stiffness
of the ECM by secreting various matrix proteins, growth factors,
and cytokines, which in turn affect the migration and invasion
of cancer cells (41). Another study emphasized that CAFs can
also promote the expression of fibronectin and laminin through
the secretion of cytokine TGF-β1, which affects the remodeling

process of ECM (42). Subsequent pathway enrichment results
of KEGG, REAC, and WP similarly demonstrated the close

association of these module genes with ECM (Figures 2B–D),
such as ECM-receptor interaction, ECM proteoglycans, and

miRNA targets in ECM, and membrane receptors. Notably, the

Frontiers in Medicine | www.frontiersin.org 6 April 2022 | Volume 9 | Article 880326

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Tian et al. A CAFs-Related Gene Panel for Melanoma

enrichment results for KEGG and WP presented significant
associations of these genes with the PI3K-AKT signaling pathway

(KEGG: FDR = 2.4E-05; WP: FDR = 4.9E-04), suggesting that

CAFs-related genes may be involved in the regulation of the
PI3K-AKT signaling pathway. The previous study has revealed
that CAFs can regulate proliferation, apoptosis and, invasion of
lung cancer cells by activating the PI3K-AKT-mTOR signaling
pathway through secretion of IL-22 (43).

Identification of Key CAFs-Related
Differential Genes by Machine Learning
2191DEGswere retained by performing gene differential analysis
of anti-PD-1 treatment-responsive and non-responsive patients
in the GSE91061 dataset. Subsequently, we obtained 27 CDEGs
with the intersection of 184 CAFs-related genes and 2191 DEGs
(Figure 3A). To further identify the KCDEGs, a linear model was
first constructed for the 27 CDEGs using LASSO regression with
variable screening and regularization (Figure 3B). The mean-
squared error of the model was minimized when log(λ) =

−2.788 (Figure 3C). Finally, we screened nine genes as the best
variables to distinguish patients responding and non-responding
to anti-PD-1 treatment. Concurrently, a random forest classifier
was built based on 27 CDEGs, and we selected ntree = 150
to ensure the stability of the constructed model (Figure 3D).
Then all molecules were ranked by mean decrease accuracy
and mean decrease Gini (Figure 3E). The intersection of the
top20 genes ranked by two methods in the random forest model
and the 9 genes identified by LASSO was extracted. Finally,
we obtained 6 KCDEGs identified by two machine learning
algorithms (Figure 3F).

Expression Analysis of KCDEGs
KCDEGs may display diversified expression patterns in
different patients, and we further investigated their expression
between patients responding and non-responding to anti-
PD-1 therapy. Supplementary Figure 2A showed that CDK14
(Cyclin Dependent Kinase 14), SYNPO2 (Synaptopodin 2),
TCF4 (Transcription Factor 4), and TFPI (Tissue Factor
Pathway Inhibitor) expression were significantly elevated in
the response group (Student’s t-test, P < 0.05). Although
the expression of GJA1 (Gap Junction Protein Alpha 1)
and CPXM1 (Carboxypeptidase X, M14 Family Member
1) had no significant change, CPXM1 tended to increase
somewhat in the non-response group (Student’s t-test, P
= 0.054). In addition, we investigated the expression of
KCDEGs in GSE114445 (Supplementary Figure 2B). Among
them, expressions of CDK14, SYNPO2, TCF4, and GJA1
displayed a gradual decrease in normal skin, nevus and
melanoma samples. In contrast, the expression of TFPI was
significantly increased in melanoma samples compared to
nevus (Student’s t-test, P < 0.05), but without change in
normal skin (Student’s t-test, P = 0.73). Notably, CPXM1
expression demonstrated a progressive or gradual increasing
trend in normal skin, nevus, and melanoma samples while
decreasing in patients responding to anti-PD-1 therapy,

which showed the gene might serve as a pro-cancer molecule
in melanoma.

Gene Set Enrichment Analysis of KCDEGs
As shown in Figure 4A, all enriched KCDEGs in 28 cancer
hallmarks (FDR < 0.05) were involved in their respective
biological processes in a certain state. For example, the
enriched KCDEGs-related genes involved in DNA repair,
MYC targets, E2F targets, and oxidative phosphorylation
were repressed, while others were activated in epithelial-
mesenchymal transition (EMT), KRAS signaling up, allograft
rejection, and inflammatory response. Moreover, EMT was the
most significant activated term and closely associated with
all KCDEGs (CDK14: NES = 2.34, FDR = 2.5E−09; GJA1:
NES = 1.57, FDR = 3.3E−04; SYNPO2: NES = 1.87, FDR
= 1.8E−04; CPXM1: NES = 1.61, FDR = 1.4E−03; TCF4:
NES = 1.74, FDR = 4.8E−06; TFPI: NES = 1.88, FDR =

2.0E−06) (Figure 4B). Taken together, the above results fully
demonstrate the close association of KCDEGs with cancer
development, especially the regulatory association with EMT
confirmed in several studies (44–46). In addition, previous
studies have identified an association between EMT and elevated
PD-1 levels in lung adenocarcinoma patients (47). This evidence
suggests a potential link among CAFs, EMT, and anti-PD-1
therapy response.

Survival Impact and Staging Expression of
KCDEGs on Melanoma Patients
Based on mRNA expression and clinical data of TCGA-SKCM,
Kaplan-Meier curves demonstrated that high expression of
CDK14 (Log-rank P = 0.0073, HR = 0.69) and SYNPO2 (Log-
rank P = 0.0014, HR = 0.65) is tended to predict better
overall survival (OS) (Figure 5A). In contrast, high expression
of GJA1 (Log-rank P = 0.0017, HR = 1.50) and CPXM1
(Log-rank P = 0.0073, HR = 1.40) was associated with worse
OS in patients. To further examine the association between
KCDEGs and tumor stage, the mRNA expression distribution of
KCDEGs in patients with different tumor stage was investigated,
and we can observe a trend of elevated expression of GJA1
[F = 2.4, Pr(>F) = 0.0499] and CPXM1 [F = 1.0, Pr(>F)
= 0.406] with advanced stage, although CPXM1 was not
significant (Figure 5B).

The Role of KCDEGs in the Melanoma TME
TME was suggested to have an important effect on the
progression of malignant tumors and response to anti-PD-1
therapy (48, 49), which is confirmed by our findings. Twenty-one
TME signature fractions significantly correlated with KCDEGs
were traced in our further investigation (Pearson correlation,
P < 0.05). As demonstrated in Figure 6A, KCDEGs were
significantly and positively correlated with stromal fractions
such as fibroblasts, endothelial cells, and mesangial cells, but a
significant negative correlation with melanocytes. In the analysis
of the relationship between KCDEGs and immune fractions,
TCF4 and TFPI were positively associated with immune score
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FIGURE 3 | KCDEGs were identified by the LASSO and random forest algorithm. (A) Venn diagram showing the intersection between the green module genes and

the differential anti-PD-1 treatment response genes. (B,C) LASSO was used to determine the optimal gene variables, and the model achieved the best performance

when log(λ) was set to −2.788. (D,E) Random forest was used to screen gene variables, 150 trees were selected to build a robust model, and genes were sorted

according to mean decrease accuracy and mean decrease Gini. (F) Venn diagram of six KCDEGs identified by two machine learning algorithms. KCDEGs, key

CAFs-related differentially expressed genes; LASSO, least absolute shrinkage and selection operator.
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FIGURE 4 | Gene set enrichment analysis of KCDEGs. (A) Heatmap depicting 28 cancer hallmarks enriched by KCDEGs. Red or blue means FDR < 0.05 and gray

means FDR > 0.05. (B) All KCDEGs were enriched in the epithelial-mesenchymal transformation pathway.

(P < 0.01), while CPXM1 showed a negative association (P <

0.05). Meanwhile, TCF4 and TFPI were positively related to
CD4+ memory T cells, dendritic cells (DCs), monocytes, CD4+

T cells (P < 0.05) and negatively related to Th1 and macrophages
M2 (P < 0.05). CPXM1 was only positively correlated with
CD4+ memory T cells (P < 0.05) and negatively correlated with
macrophages (P < 0.05).

The complexity of the relationship between KCDEGs and
TME signature also indicates that they act as different
mechanisms in TME. To better evaluate the ability of combined
KCDEGs impacting on survival and TME, we performed
multivariate Cox regression analysis and calculated risk score
according to the following equation:

Risk score = −0.132∗ExpCDK14 − 0.088∗ExpSYNPO2

−0.114∗ExpTCF4 + 0.157∗ExpGJA1

+0.095∗ExpCPXM1 + 0.072∗ExpTFPI

Kaplan-Meier curve demonstrates that the high risk score group
(high-risk group) has worse survival (Log-rank P= 0.00011, Cox
P = 6E−05, HR= 2.7, 95% CI 1.7–4.4) (Figure 6B). In addition,
there is a significant difference in TME between the high- and
low-risk groups (Figures 6C,D). In particular, compared with
the low-risk group, the components of the immune score and
macrophages, monocytes, as well as CD8+ naïve T cells are
lower (Wilcoxon test, P < 0.0001), while the components of
melanocytes, Tregs, and CD4+ memory T cells are higher in the
high-risk group (Wilcoxon test, P < 0.0001).

Association of KCDEGs With CAFs-Related
Stimulators and Immunotherapy-Related
Molecules
Correlation analysis was applied in six KCDEGs (SYNPO2,
CDK14, CPXM1, TFPI, TCF4, and GJA1), five CAFs-related
stimulating factors (LIF, HSF1, IL6, IL1B, and CXCL12),
five antitumor immune-related molecules (CXCL10, CXCL9,
CXCR3, CCL5, and CCL4), and five immune checkpoint-
related molecules (TIGIT, LAG3, CTLA4, CD274, and
PDCD1). KCDEGs displays significant positive correlations
(Spearman correlation, P < 0.05) with most of the molecules
(Supplementary Figure 3), which implies KCDEGs and the
highly correlated molecules may perform similar functions and
play a synergistic regulatory role in tumor development (50).
But CPXM1 and GJA1 did not show significant correlations with
antitumor immune-related molecules and immune checkpoint-
related molecules. Notably, HSF1 was negatively correlated with
all other molecules, suggesting that it may exert the opposite
regulatory function to them.

We can conclude the following: (i) KCDEGs may affect the
secretion of CAFs-related stimulating factors or participate in
the activation of CAFs. For example, IL-1β and IL-6 are pro-
inflammatory cytokines that can promote the activation of CAFs
through NF-κB and JAK-ROCK-STAT3 signaling pathways, thus
causing tumor progression (51, 52). Heat shock factor 1 (HSF1)
regulates the pro-tumor effects of CAFs by activating β-catenin
and YAP/TAZ signaling pathways (53). (ii) Antitumor immune-
related molecules including CXCL10, CXCL9, CXCR3, CCL5,
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FIGURE 5 | The association of KCDEGs with survival and staging was determined by GEPIA. (A) Kaplan-Meier curve showing the survival of patients with high and

low expression of KCDEGs based on TCGA-SKCM. The built-in box plot shows the expression level of KCDEGs in SKCM and normal samples. (B) Violin diagram

showing the expression level of KCDEGs in samples with different TCGA-SKCM stages. SKCM, skin cutaneous melanoma.

and CCL4 belong to the chemokine family and have been
reported in several studies to recruit immune cells such as
cytotoxic T lymphocytes (CTL) and NK cells to kill tumor cells

(54). KCDEGs may generate similar tumor-suppressive effects
with the five molecules above. (iii) The high positive correlation
of KCDEGs with immune checkpoint-related molecules implies
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FIGURE 6 | Correlation between KCDEGs and tumor microenvironment (TME) components. (A) Heatmap of the Pearson correlation between KCDEGs and 21 TME

features. *, P < 0.05; **, P < 0.01. (B) Kaplan-Meier curve showing the survival difference of patients between high and low risk score groups. (C,D) Heatmap and

box plot depicting differences of TME features in two risk score groups. Wilcoxon test, *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.

that they may affect the benefit from ICB therapy and turn into
potential targets for immunotherapy.

Evaluation and Validation of Response
Prediction Performance of KCDEGs for
Anti-PD-1 Treatment
The above results of the correlation analysis have suggested
a strong association between KCDEGs and ICB therapy. Six

KCDEGs (except SYNPO2, whose corresponding probe was
not found in GSE122220) were evaluated in discovery and
validation sets to predict the response to anti-PD-1 therapy by
ROC curves. The predictive power of the ROC was inferred
by calculating its AUC, with a larger AUC indicating better
prediction. In the discovery set, CDK14, SYNPO2, TCF4 and
TFPI are the best predictors (AUC > 70%) (Figure 7A).
In the two validation sets, the AUC ranges from 56.4
(SYNPO2 in GSE78220) to 75% (TCF4 in GSE12220). Overall,
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FIGURE 7 | Receiver operating characteristic (ROC) curve analysis of KCDEGs of discovery set and two validation sets. (A) Independent diagnostic performance of

KCDEGs in discovery set (GSE91061) and two validation sets (GSE78220 and GSE122220). No corresponding probe of SYNPO2 was found in GSE122220. (B)

Combined diagnostic performance of KCDEGs in the discovery set and two validation sets. AUC, area under the curve.

TCF4 possessed the most stable prediction effect (GSE91061:
AUC = 72.1%; GSE78220: AUC = 74.9%; GSE122220: AUC
= 75.0%) and may be a promising anti-PD-1 treatment
response predictor. Concurrently, combined KCDEGs, have

a satisfactory prediction effect beyond the single evaluation,
where there is 90.5% AUC in the discovery sets, while
75.4 and 100% AUC in the two validation sets, respectively
(Figure 7B).
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FIGURE 8 | Characteristic network and single-cell analysis of KCDEGs. (A) Multidimensional feature network of KCDEGs. Different feature nodes are marked by

different colors, and a larger circle means more nodes are connected. (B–G) Heatmap showing KCDEGs expression of different cell types in six single-cell RNA-seq

datasets analyzed by Tumor Immune Single Cell Hub, and the built-in single-cell UMAP map depicting the expression distribution of KCDEGs in SKCM single-cell

dataset GSE72056. DE, different expression.

Summary of Features and the Single-Cell
Localization of KCDEGs
The above multidimensional systematic analysis aided in
better dissecting the features of KCDEGs and their impacts
of TME. To intuitively determine the importance of each
KCDEG, a multi-feature linkage network of KCDEGs was
constructed, which includes KCDEGs, phenotypic features

(Stage, Survival, DE between SKCM and Normal, DE between
R and NR), TME (Stroma/Immune/Microenvironment score,

Fibroblasts, Melanocytes, CD4+T/Th1/Th2/Tregs cells) and
ROC (Figure 8A). Each KCDEGs has respective nodes: TFPI

(nodes= 14), TCF4 (nodes= 13), CDK14 (nodes= 12), SYNPO2

(nodes = 11), GJA1 (nodes = 8), and CPXM1 (nodes = 7), of
which more nodes in the network are more important.
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The results of the single-cell analysis demonstrated that
CDK14 is predominantly distributed in B cells (Figure 8B),
SYNPO2 presented highest expression in fibroblasts (Figure 8C),
TCF4mainly enriched in fibroblasts, B cells, and endothelial cells
(Figure 8D), GJA1 presented highest expression in fibroblasts
and endothelial cells (Figure 8E), CPXM1 mainly distributed
in fibroblasts (Figure 8F) while TFPI exhibited the highest
expression in fibroblasts and endothelial cells (Figure 8G).
Additionally, the results were verified in the other five datasets
(Supplementary Figure 4).

DISCUSSION

Although anti-PD-1 therapy is expensive and exerts adverse
effects, anti-PD-1 immune checkpoint inhibitors have been
confirmed of excellent clinical activity in melanoma treatment
(55). However, not all patients can produce an objective response
to it (4). It is essential and urgent to determine the patients’
response using reliable biomarkers to predict anti-PD-1 efficacy
before the treatment. CAFs can suppress antitumor immune
responses through upregulation of PD-1 expression, and CAFs-
related genes may be the potential markers in predicting the
efficacy of anti-PD-1 immune checkpoint inhibitors (56–58). In
this study, we successfully elucidated the potential regulatory
efficacy of CAFs-related genes in TME and discovered a six-
gene panel for prediction of response to anti-PD-1 therapy. Our
discovery manifests the panel is favorably consistent with the
clinical response of patients, which can aid in the better clinical
management of melanoma patients.

We first calculated the CAFs score for each patient based
on 56 CAFs markers reported in literature through the GSVA
algorithm. Subsequently, WGCNA was applied to construct gene
co-expression networks, which has the potential to identify
CAFs-related genes (59),and the green module from networks
was of the highest correlation with the CAFs score. By
intersecting green module genes and the DEGs, we obtained
27 response-associated CDEGs for anti-PD-1 therapy. Finally,
6 KCDEGs (CDK14, SYNPO2, TCF4, GJA1, CPXM1, and
TFPI) were identified by the methods of lasso regression and
random forest.

Comprehensive analysis implied that KCDEGs are closely
associated with CAFs and appeared as potential predictors of
anti-PD-1 therapy efficacy in melanoma. First, gene expression
analysis demonstrated six KCDEGs expressed with significant
differences could reflect patients’ response status to anti-PD-
1 therapy, with CDK14, SYNPO2, TCF4, TFPI up-regulated in
responders. In addition, the expression of six KCDEGs presented
significant differences in SKCM. Secondly, GSEA indicated that
KCDEGs were enriched in several cancer hallmarks such as EMT,
MYC targets, KRAS signaling, and inflammatory response. EMT
is the process epithelial cells acquire a mesenchymal phenotype
after downregulating epithelial features, which exhibited crucial
functions in cancer progression. Previous studies confirmed that
EMT could promote CAF activation and alter the secretory
phenotype of CAFs in the mesenchyme (60–62). Additionally,
MYC is one of the widely studied oncogenes, and high MYC

targets scores in breast cancer were associated with increased
tumor immune cell infiltration (63). Moreover, CAFs have been
verified to have complex crosstalk in KRAS-driven tumorigenesis
and to influence immune regulation through the immune
checkpoint (64). Taken together, KCDEGs may be a vital part
of the melanoma immune infiltration regulatory network and
suggest a predictive effect on the response to anti-PD-1 therapy.

Survival analysis shows that high expression of CDK14
and SYNPO2, plus low expression of GJA1 and CPXM1 were
associated with better survival in SKCMpatients. As patients with
excellent prognoses often displayed positive responses to anti-
PD-1 therapy (65), we speculated that the combination of CDK14
and SYNPO2 (high expression), as well as GJA1 and CPXM1
(low expression), may be associated with a positive response
to anti-PD-1 therapy. As an activator of the WNT pathway
through mediating the phosphorylation of LRP6 in the G2/M
phase, CDK14 was found that it could promote the progression
of several cancers (66–68). However, our findings suggest that
high expression of CDK14 is associated with better prognosis
and anti-PD-1 therapy response in melanoma patients, implying
a unique mechanism of CDK14 in melanoma. As expected,
SYNPO2, whose promotor methylation and low transcriptional
expression were found to associate with metastasis and poor
clinical outcome in melanoma (69), can be a potential predictor
to provide new therapeutic strategies in this study. GJA1 is
a gene encoding the protein connexin 43 (Cx43) that is a
vital component of gap junctions and was disclosed to be of
an important role in communication between tumor cells and
surrounding immune cells like NK and dendritic cells (DC) (70).
The up-regulation of GJA1 expression implicates a crucial link
between melanoma cells and endothelial cells, thus enhancing
tumor metastasis in melanoma (71). Interestingly, Cx43 has
generally been reported as a potential cancer suppressor to
improve therapeutic efficacy against melanoma (72). CPXM1 is
suggested as an immune-related gene to predict cancer prognosis
(73, 74), which is consistent with our findings.

Correlation analysis of KCDEGs with various fractions in
TME revealed all these six KCDEGs (TFPI, TCF4, CDK14,
SYNPO2, GJA1, and CPXM1) positively correlated with stroma
score, endothelial cells, and fibroblasts (Figure 6A), which can
be promisingly accountable for tumor progress and prognosis of
melanoma patients. For example, TFPI, encoding tissue factor
pathway inhibitor, is closely associated with the endothelial cell
surface and can regulate angiogenesis (75). Notably, endothelial
cell activation requires the elevated expression of Snail1, which
can strengthen CAF activation in a paracrine manner promoting
immune infiltration in TME by secreting IL-6 in tumor
development (9, 76). All of these are witnessed by the co-
culture of CAFs with endothelial cells under hypoxic conditions
promoting breast cancer angiogenesis (77) and tumor exposed-
lymphatic endothelial cells (teLEC) reported as the promoter of
cancer cell invasion and tumor cell proliferation by regulating
IL-6 (78). Taken together, we believe TFPI may mediate the
action of CAFs and endothelial cells through transcription factors
and cytokines, thereby regulating immune cell infiltration in
TME, which is also investigated from the correlation analysis of
KCDEGs-immune cell fractions. TCF4 and TFPI, up-regulated
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in the PD-1 therapy response group and low expressed in the
SKCM group (Figures 5A,B), were positively related to CD4+
memory T cells, CD4+ T cells, monocytes, DC cells (Figure 6A).
In other words, the decreased expression of TCF4 and TFPI are
associated with a low level of immune infiltrations or immune
desert in TME. Interestingly, current studies keep the point that
a certain of the desert immune microenvironment (DIM) in
patients caused by CAFs can result in poor outcomes of anti-PD-
1 therapy for patients (11). It is reasonable that TCF4 and TFPI
play an important role in inhibiting CAFs-mediated DIM. For
instance, TCF4, known as immunoglobulin transcription factor 2
(ITF-2; E2-2; SEF-2), contributes to the development of lymphoid
(79) and mature plasmacytoid dendritic cells (pDCs), including
Pitt-Hopkins syndrome caused by E2-2 haploinsufficiency (80)
and the tumor-suppressive effect in SHH medulloblastoma (81).
In all, the inhibition of TCF4 and TFPI expression may lead to
CAFs-related desert immune microenvironment, which results
in the non-response to anti-PD-1 therapy of patients.

We also analyzed the correlation between six KCDEGs and
CAFs-related stimulators, antitumor immune-related molecules
as well as immune checkpoint-related molecules. All KCDEGs
except CPXM1 and GJA1 were positively relevant to most of the
mentioned molecules. This suggests that KCDEGs are directly
or indirectly involved in the activation process of CAFs and
affect the response to immunotherapy in melanoma patients,
which is consistent with our previous conclusion that CAFs-
related genes can serve as a predictive marker panel of response
to anti-PD-1 therapy.

Although the six KCDEGs can distinguish responders and
non-responders of anti-PD-1 immunotherapy, the therapeutic
efficacy is often influenced by multiple factors in the TME and
immune system. Our results also demonstrated an inconsistent
correlation of each KCDEGs with immune fractions. This implies
the predictive limitation of the accuracy and specificity in
anti-PD-1 immunotherapy using a single marker. Combining
two or more markers may be more effective for predicting
the efficacy of anti-PD-1 therapy (82). To this end, we first
employed multivariate Cox regression analysis to assess the
OS and TME variety of combined-KCDEGs in SKCM patients.
Survival analysis revealed worse OS in the high-risk KCDEGs
group. In addition, the two groups had significant differences
in multiple TME metrics and anti-tumor immune components.
Immune score and cells (including CD8+ naive T cells, DCs,
macrophages, and monocytes) tended to decrease in the high-
risk group, suggesting that the overall high-risk score of KCDEGs
relates to immune infiltration suppression and PD-1 therapy
non-response. And this is supported by poorer survival in the
high-risk group. Surprisingly, the AUC of combined-KCDEGs
(the six-gene panel) was 90.5% in the discovery sets and
reached 75.4∼100% in the validation sets, which is a substantial
improvement compared with the previous study (83) (AUC =

0.75 in the discovery sets and 0.71 in the validation sets). These
results fully demonstrate the significant advantage of KCDEGs
in anti-PD-1 efficacy prediction. It also indicates that the vital
role of CAFs in patient response to anti-tumor immunotherapy
may be beyond our imagination and deserves to be explored
in detail.

We identified six key genes with predictive value for anti-
PD-1 treatment efficacy in melanoma patients via WGCNA
and supervised machine learning. However, several limitations
remain in this study. We applied robust computational biology
methods, including WGCNA, supervised random forest, and
LASSO regression, to screen predictive gene panels frommultiple
perspectives, but validation by experimental biology methods
such as RT-PCR is also urgently needed. Secondly, the limited
number of samples may make the efficacy assessment model
inaccurate, cohorts with small samples often lead to overfitting of
machine learningmodel and reduce the prediction accuracy, thus
themodel needs to be validated in a larger patient cohort. Thirdly,
it is necessary to evaluate the actual predictive effect of the six-
gene panel in a clinical patient cohort. Finally, the regulatory
mechanism of KCDEGs induced by CAFs in immunotherapeutic
suppression is unclear and deserves to explore.

CONCLUSION

Using WGCNA combined with supervised machine learning
algorithms, we identified a novel CAFs-related panel, including
six genes (CDK14, SYNPO2, TCF4, GJA1, CPXM1, TFPI), which
can distinguish the response of melanoma patients under anti-
PD-1 immunotherapy. The multigene may become a potential
biomarker panel to guide immunotherapy in the future.
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