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T-cell acute lymphoblastic leukaemias (T-ALL) are aggressive malignant proliferations

characterized by high relapse rates and great genetic heterogeneity. TAL1 is amongst the most

frequently deregulated oncogenes. Yet, over half of the TAL1þ cases lack TAL1 lesions,

suggesting unrecognized (epi)genetic deregulation mechanisms. Here we show that TAL1 is

normally silenced in the T-cell lineage, and that the polycomb H3K27me3-repressive mark is

focally diminished in TAL1þ T-ALLs. Sequencing reveals that 420% of monoallelic TAL1þ

patients without previously known alterations display microinsertions or RAG1/2-mediated

episomal reintegration in a single site 50 to TAL1. Using ‘allelic-ChIP’ and CrispR assays, we

demonstrate that such insertions induce a selective switch from H3K27me3 to H3K27ac at

the inserted but not the germline allele. We also show that, despite a considerable

mechanistic diversity, the mode of oncogenic TAL1 activation, rather than expression levels,

impact on clinical outcome. Altogether, these studies establish site-specific epigenetic

desilencing as a mechanism of oncogenic activation.
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T
-cell acute lymphoblastic leukaemia’s (T-ALL) are malig-
nant proliferations of immature T-cell progenitors.
Although the outcome of T-ALLs has greatly improved

in the last 10 years, B30% of cases relapse within the first 2 years
following diagnosis; moreover, acute- and long-term toxicities
remain important issues for long-term survivors, underlining the
critical need of better risk stratification of T-ALL patients, and the
implementation of more adapted and/or targeted therapies.
A major obstacle in the molecular dissection of these processes
is that T-ALLs constitute a particularly heterogeneous group of
disease, characterized by complex combinations of multigenic
aberrations and oncogenic cooperation. The deregulation of over
40 distinct oncogenes and tumour suppressors has been reported,
occurring through a large diversity of genomic aberrations
and epigenetic mechanisms1,2. Chromosomal alterations mostly
consist of translocations, inversions and microdeletions occurring
at the vicinity of proto-oncogenes and leading to their
deregulated expression.

TAL1 is one of the most frequently deregulated T-ALL
oncogenes3. In physiological conditions, TAL1 is a regulatory
gene that promotes access to alternative fates in haematopoiesis.
Expressed in early haematopoiesis, its expression is maintained in
the erythroid lineage, but normally irreversibly epigenetically
silenced in the T-cell lineage4–6 (Supplementary Fig. 1). Events
leading to the illegitimate maintenance or re-expression of TAL1
in the T-cell lineage are thought to constitute strong drivers of
T-ALL leukemogenesis. Known TAL1 dysregulation mechanisms
consist of t(1;14)(p34;q11) translocations (1–2%) and SIL-TAL
deletions (15–20%). Yet, over half of the TAL1þ cases lack TAL1
lesions, suggesting unrecognized (epi)genetic deregulation
pathways7. In such ‘unresolved cases’, TAL1 expression can be
monoallelic, compatible with a direct alteration in cis within or
around the TAL1 gene, or biallelic, likely reflecting indirect
deregulation in trans7.

Here we sought to gain insights into the (epi)genetic
deregulation pathways of TAL1 ‘unresolved’ cases. Using ChIP-
seq and an ‘allelic-ChIP’ assay allowing to discriminate histone
marks separately on each allele, we describe a new process of
oncogene activation, whereby the targeted eviction of polycomb
H3K27me3 marks and concurrent recruitment of H3K27ac
marks by micro- and macroinsertional events, trigger the
monoallelic desilencing of TAL1. Incidentally, we also report
the first example of oncogenic activation by recombination-
activating gene (RAG)-mediated episomal reinsertion, a very
elusive event predicted in vitro as a source of oncogenic activation
over 10 years ago8,9, but never identified before in human cancer.
We further show that this new epigenetic desilencing process is a
recurrent event in T-ALL, accounting for 420% of unexplained
cases of monoallelic TAL1 oncogene activation. Finally, we
demonstrate that the mode of activation (monoallelic in cis
versus biallelic in trans) rather than the level of TAL1 expression
impacts on prognosis, with cis-mediated alterations significantly
associated with adverse clinical outcome.

Results
Microinsertions induce epigenetic switch and TAL1 expression.
To investigate the (epi)genetic deregulation pathways of
TAL1 ‘unresolved’ cases, we first took advantage of chromatin
immunoprecipitation coupled to a high-throughput sequencing
(ChIP-seq) data set describing active/inactive epigenetic marks
in mouse developing thymocytes6,10. A large region starting
upstream of the TAL1 promoter and encompassing part of the
gene body was enriched in H3K27me3, suggesting the
involvement of polycomb complex (PcG) repressive activity in
TAL1 silencing (Fig. 1a). This profile was also observed in human

TAL1� peripheral CD4þ T cells11, but absent in TAL1-
expressing cells12 (CD34þ haematopoietic stem cells, HSC;
erythroblasts; Fig. 1b), in line with the gradual deposition of
H3K27me3-repressive marks during T-cell lineage specification6

(Supplementary Fig. 1). To determine if deregulation of this
silencing occurs in TAL1þ T-ALLs, ChIP-seq was also
performed in the Jurkat (TAL1þ ) T-ALL cell-line and a
control TAL1� sample (DA). Sample DA displayed the
expected H3K27me3 deposition, coherent with TAL1 silencing
in T cells (Fig. 1b). Surprisingly, however, low levels of
H3K27me3 marks were also observed in Jurkat. Since, in
contrast to normal TAL1-expressing cells, Jurkat displays
monoallelic expression of TAL1 (Supplementary Fig. 2), we
reasoned that a monoallelic chromosomal alteration might have
prevented H3K27me3 deposition on one of the two alleles,
resulting in an averaged, intermediate ChIP-seq signal. To test
this possibility, we sequenced B10 kb upstream of TAL1
(Supplementary Fig. 3), covering the regulatory region enriched
in H3K27me3 marks. Amid single-nucleotide polymorphisms
(SNPs), we found a monoallelic alteration consisting of a 12-bp
microinsertion B7 kb upstream of the TAL1 p1a promoter, in a
region prone to DNA looping with TAL1 promoters13.
Interestingly, this insertion mapped at the border of the
repressive H3K27me3 pattern (Fig. 1a,b), in line with the
possibility that it disrupted normal epigenetic silencing of
the TAL1 locus. To further investigate the association of the
insertion with potential allelic distortion of the repressive
H3K27me3 mark, we performed an ‘allelic-ChIP’ that
discriminates H3K27me3 marks at the inserted versus germline
allele (Fig. 2a). A significant decrease of H3K27me3 signal was
observed at the inserted allele compared with the germline allele
(Po0.005). Accordingly, knockdown (by shEZH2) or inhibition
(using the EZH2 inhibitor GSK126) (ref. 14) of the Polycomb
H3K27me3 methyl transferase EZH2, allowed partial reversion of
H3K27me3 deposition at the germline (non-inserted) allele.
Considering the cooperative role of histone modifications in
expression regulation, we further analysed the relevance of
acetylation in presence or absence of histone deacetylase inhibitor
(sodium butyrate)15. ChIP-seq showed a slight enrichment of
H3K27ac with significant overall increase on sodium butyrate
treatment (Fig. 2b). Similar to H3K27me3, H3K27ac marks
extended to the insertion site, suggesting dual epigenetic
regulation and differential allelic recruitment. Indeed, allelic
quantification through tag retrieval and allelic-ChIP revealed a
difference of H3K27ac between inserted and GL alleles
in a pattern symmetrical to and functionally coherent with
H3K27me3. Acetylation levels were histone deacetylase inhibitor
dependent. Overall, this suggested that Jurkat’s microinsertion
contributed to site- and allele-specific switch from H3K27me3
to H3K27ac deposition, leading to the maintenance of TAL1
expression through T-cell differentiation.

A recurrent epigenetic mechanism of TAL1 deregulation. To
determine if similar structural abnormalities occurred recurrently
in TAL1 patients, 134 primary T-ALL samples were analysed by
high-density Affymetrix SNP array-6 analysis; an B700-bp
region surrounding the Jurkat insertion site was also sequenced in
a subset of 93 samples and six cell lines; in parallel, the literature
was reviewed for cases with unexplained TAL1 activation. While
no macromolecular TAL1 alteration was identified by SNP array
(0/134), sequencing revealed seven new cases of similar micro-
insertions (1–9 bp), all precisely located at the Jurkat insertion
breakpoint (Fig. 3a). Such insertions were not present in the
germline from 2/2 available patients tested (Supplementary
Fig. 4). No additional mutation/indel could be found in the

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7094

2 NATURE COMMUNICATIONS | 6:6094 | DOI: 10.1038/ncomms7094 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


surrounding B700 bp region in tumour samples. Significantly,
insertions were exclusively found in TAL1þ patients; moreover,
among patients with informative SNPs in the TAL1 30 UTR
allowing distinction of mono- from biallelic expression7 (n¼ 60),
insertions were exclusively found in monoallelic cases (4/19,
420%), in agreement with a cis-mode of TAL1 activation
(Fig. 3b).

Oncogenic RAG1/2-mediated episomal reintegration. One
additional candidate was recovered by data mining16. In this case

(patient #OC), TAL1high activation concurred with the insertion
of a large piece of chromosome 7 disrupting the TAL1 locus.
Strikingly, breakpoint mapping by ligation-mediated PCR
revealed that the insertion occurred at the very same insertion
site, although this time with few nucleotide deletions on each side
of the breakpoint (Fig. 3a). Detailed analysis of the junctions
revealed the occurrence of RAG1/2-mediated reinsertion of an
B370-kb TCRb episomal circle (TRECb, excised during normal
V(D)J recombination, Fig. 4 and Supplementary Fig. 5). This
establishes the first example of oncogenic RAG1/2-mediated
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(repressive chromatin mark dependent on the PcG). The TAL1 region is zoomed, and the insertion breakpoint localization to the human orthologue region

(114,722,607) is indicated by a red arrow. (b) ChIP-seq profiles of polycomb repressive chromatin mark H3K27me3 in normal human TAL1þ (HSC;
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reintegration, demonstrating that TRECs may indeed contribute
to oncogenesis17. Owing to the large TRECb size, we considered
the possibility that, unlike other microinsertions, a promoter
located in the episome could have initiated a 47-kb-long fusion
transcript encompassing TAL1 (Supplementary Fig. 6). However,
reverse transcription-PCR (RT–PCR) exon walking and 50 RACE
assays indicated that transcripts initiated from the TAL1 p4
promoter, excluding this possibility.

Epigenetic modulation and TAL1 gene expression. Allelic-ChIP
was then performed on patients #TAMFA and #OC. Similar to

Jurkat, significant enrichment of the repressive H3K27me3
mark was consistently observed in germline compared with
inserted alleles (Fig. 5a,b). The amplitude of the allelic distortion
appeared higher in OC than in Jurkat and TAMFA, possibly due
to the large difference in the insertion size. Of note, TAL1
transcription levels were also higher in OC (Fig. 3b). Using
CrispR DNA editing, we next mimicked site-specific insertion
and disruption of the region 7 kb 50 of TAL1 in the TAL-negative
PEER cell line (Fig. 5b). In clone #2.4 recapitulating the 12-bp
Jurkat insertion at its 30 end, an approximately fivefold increase of
TAL1 could be observed. While we cannot formally exclude the
possibility that the selection cassette contributed to the fivefold
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change in clone #2.4, a 55-fold increase was observed in clone
#5.10, in which an B1.3 kb deletion 50 of the insertion site
mimicked locus disruption in patient #OC; furthermore, this was
accompanied by an allelic switch from H3K27 methylation to
acetylation. This provides direct evidence for a causal relationship
between site mutagenesis, epigenetic modulation and TAL1 gene
expression.

The mode of TAL1 activation impacts on clinical outcome.
Patients with identified insertions were globally of adverse
prognosis. We sought to determine if clinical outcome correlated
with quantitative or qualitative aspects of TAL1 deregulation. A
cohort of 165 adult T-ALL treated prospectively in the GRAALL
(Group for Research in Adult Acute Lymphoblastic Leukaemia)
trial was split into TAL1 expression quartiles, and compared for
disease-free (DFS) and overall survival (OS). The seven patients
with identified insertions (three of whom were GRAALL treated),
all belonged to the high-expression quartiles (Q3–4). However, no
significant difference in survival was observed between the
quartiles (Fig. 6a,b), suggesting that quantitative TAL1 expression
does not correlate with clinical outcome. We next tested whether
cis-mediated TAL1 alterations leading to monoallelic expression
(including or not the SIL-TAL1þ cases) affected the clinical

outcome compared with trans-mediated events, associated with
biallelic TAL1 expression. Clinical outcome was indeed found to
be significantly improved in the biallelic group (DFS, P¼ 0.04;
OS, P¼ 0.03; Fig. 6c–f). Although numbers are low, monoallelic
cases retained an inferior OS trend in multivariate analysis
(including age, leukocytosis; P¼ 0.07, Cox analysis). Despite
genetic heterogeneity, monoallelic cases also displayed higher
blasts counts at diagnosis than biallelic cases and a significantly
lower frequency of deregulation of recurrent oncogenes such as
TLX1, CALM-AF10 and TLX3 (Supplementary Table 1).
This supports the emerging notion that the mode of alteration
may shape the oncogenic landscape in a more profound manner
than (and potentially override the effect of) transcriptional
levels, and that this may eventually impact on the tumour’s
clinical behaviour18. Deciphering the mechanisms underlying
the (epi)genetic deregulation of biallelic TAL1þ cases will be
instrumental to resolving this issue19–22 (Supplementary Fig. 7
and Supplementary Table 2).

Discussion
Establishing the detailed maps of the complex oncogenic
networks involved in T-ALL has contributed to major genetic
discoveries, and has been of prime importance for further
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therapeutic improvement. Over three decades of intense efforts in
genomic research have allowed unravelling the extraordinary
diversity of the mechanisms by which oncogenes are deregulated
in this disease1. Yet, a large number of major oncogene
deregulations still remain unexplained to date. Among the
diversity of mechanisms involved, V(D)J recombination-
mediated alterations (translocations, microdeletions) constitute
the hallmarks of T-ALLs23–26. Interestingly, despite arrays of
biochemical and functional evidence that the reintegration of
excised episomal circles (TRECs) by the V(D)J recombinase
(RAG1/2) might constitute a potent source of genomic instability,
such events remained so far unreported in human cancer
patients8,9,27–30. Here we report the first case of such an

oncogenic RAG1/2-mediated episomal reintegration, demon-
strating that TRECs can indeed contribute to human
oncogenesis (Supplementary Fig. 1). Most intriguingly, this
insertion occurred in a pediatric SCID-X1 patient who
developed a leukaemia secondary to retroviral reinsertion (in
front of LMO2, a known TAL1-cooperating oncogene) following
gene therapy16. The screening of two other SCID-X1 patients’
leukaemic samples31,32, and of a large collection of T-ALLs did
not reveal additional episomal insertions, and the reason for the
extraordinary coincidence of two rare oncogenic integration
events in this patient remains unanswered.

This and the other insertional mutagenesis T-ALL cases
described here also revealed a novel oncogenic activation
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pathway, whereby a genetic alteration drives a site-specific and
monoallelic epigenetic deregulation. We demonstrate that such
insertions drove a switch from H3K27me3 to H3K27ac
deposition, leading to the maintenance and/or re-expression of
TAL1 expression through T-cell differentiation. Interestingly, the
difference in TAL1 expression levels observed in mutants from
the gene editing assay (Fig. 5) suggest that while small insertions
might be sufficient to prevent the deposition of PcG repressive
marks during T-cell lineage specification (thus permitting
H3K27ac switch and maintenance of TAL1 expression), further
disruption of the region 50 of the insertion site (by deletion or
insertional uncoupling) might be necessary to impose desilencing
once TAL1 extinction is established in the T-cell lineage6

(Supplementary Fig. 1). These kinetics are coherent with
thymocyte ontogeny in patient #OC, in which TRECb
rearrangement/reintegration (DN2-3) likely occurred after TAL1
silencing (DN1-2). Altogether, our data are in line with current
models of permanent gene extinction of transcription factors
during T-lineage commitment6 (Supplementary Fig. 1) and
further identify locus control regions involved in deposition

and/or maintenance of TAL1 silencing. Their genetic disruption
constitute a recurrent epigenetic mechanism of TAL1
deregulation in T-ALLs, contributing to a substantial fraction
(420%) of the TAL1þ monoallelic ‘unresolved cases’, and
associated with adverse prognostic. That a cis-deregulation
regrouping as diverse mechanisms as SIL-TAL deletions,
translocations or insertional desilencing impact more on
prognosis than TAL1 expression levels underlines the
fundamental oncogenic difference between a deregulation
targeting a single locus, and the wider effect of trans-acting
factors. Transcription factors indeed often bind to a large number
of target genes (hundreds to thousands) and their deregulation
(whether gain or loss) will likely affect a complex set of cellular
functions, some of which might antagonize tumour progression,
or resistance to treatment. Recently, reports identifying loss-of-
function mutations in polycomb-related components19–21,33 have
provided the framework by which global epigenetic modification
might trigger the indirect (and biallelic) activation of numerous
target genes, likely including a complex and conflicting set of
oncogenes and tumour suppressors. In humans, PcG are recruited
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to and repress specific regions in the genome through as yet
undefined set(s) of DNA-binding transcription factors and long
non-coding RNAs34. The insertional mutagenesis described here
identifies a site- and allele-specific switch from H3K27me3
recruitment/maintenance to H3K27ac, providing new avenues to
decipher the mechanisms and DNA-binding intermediates
involved3. A complex interplay between transcription factors
and PcG would be in line with recent findings that Notch1
activation antagonizes PRC2 silencing of Notch1 target genes in
T-ALL oncogenesis19. In intricate T-ALL networks where both
NOTCH and TAL1 deregulation can coexist, we find that while
NOTCH patients are associated with a favourable prognosis,
monoallelic, but not biallelic TAL1, expression tends to convert
the clinical outcome towards more adverse prognosis in the
Notch subgroup, and to further aggravate the bad prognosis
of Notch1WT patients. This suggests that distinct modes of
deregulation of the same epigenetic complex might coexist in a
tumour cell, leading to complex and potentially conflicting
clinical outcomes which ought to be clarified when considering
epigenetic inhibitors for new lines of treatment15,33,35.

Methods
ChIP. ChIP was performed as previously described10. In brief, the cells were
chemically crosslinked by the addition of one-tenth volume of fresh 11%
formaldehyde solution for 10 min at room temperature. Following the quenching
of the reaction with glycine (250 mM final concentration, 5 min, room
temperature), cells were rinsed twice with 1� PBS and flash frozen in liquid
nitrogen and stored at � 80 �C before use. Cells were resuspended, lysed and
sonicated to solubilize and shear crosslinked DNA. Sonication was conducted using
a Bioruptor (Next Gen, Diagenode) for 15 min (30 s on, 30 s off), resulting in
sheared DNA between 100 and 400 bp with the bulk at B250 bp. The resulting
whole-cell extract was incubated overnight at 4 �C with 100 ml of Dynal Protein G
magnetic beads that had been preincubated with the appropriate antibody. The
anti-H3K27me3 antibodies used were: # 07-449, Millipore (2 mg), and # ab6002,
Abcam (1mg); the anti-H3K27ac antibodies used were: #ab4729, Abcam (2 mg) and
# 39133, active motif (5mg). Beads were washed eight times with RIPA buffer and
one time with TE containing 50 mM NaCl. Bound complexes were eluted from the
beads by heating at 65 �C with occasional vortexing, and crosslinking was reversed
by overnight incubation at 65 �C. Whole-cell extract DNA (reserved from the
sonication step) was also treated for crosslink reversal. Immunoprecipitated DNA
and whole-cell extract DNA were then purified by treatment with RNaseA,
proteinase K and multiple phenol:chloroform: isoamyl alcohol extractions.

ChIP-seq. Before sequencing, ChIP DNA was quantified using the picogreen
method (Invitrogen, USA) and quality controlled on a 2100 Bioanalyzer (Agilent).
At least 1 ng of ChIP or input DNA was used for library preparation according to
the Illumina ChIP-seq protocol. After end repair and adapter ligation, fragments
were size selected on a gel before preamplification and clustering. The resulting
fragments were again verified on a 2100 Bioanalyzer before clustering and 25 or 36
cycle sequencing on a Genome Analyzer II (Illumina, USA) according to the
manufacturer’s instructions. Raw data were bowtie aligned and the tags elongated
and further processed to wiggle files as described36. ChIP-seq experiments were
performed on two independent biological replicates (samples for primary cells or
culture for cell lines). Data presented in Fig. 1 are available under accession number
GSE29362 for TBP, Pol II, H3K4me1, H3K4me3 and H3K36me3 or GSE38577for
H3K27me3(1A), and for H3K27me3 in human cells (1B) GSE12646 for HSC and
erythroblast, GSE12889 for CD4þ and GSE59257 for the data newly generated
(Jurkat and DA) in this article. Technical replicates were merged before alignment
with Bowtie and the resulting BAM files were used as treatment in MACS2. Input
data sets were used as control when available (Jurkat, DA). Enriched regions for
genomic tracks of Fig. 1a,b were extracted as BED files using MACS2 peak
detection algorithm with the following parameters : genome sizes¼ 2.70eþ 09 for
human and 1.87eþ 09 for mouse, bandwidth¼ 300, model fold¼ (5, 50), q value
cutoff¼ 5.00e� 02, larger scaled towards smaller, l range¼ 1,000–10,000 bps,
Broad on.

Assessment of wt versus inserted ChIP-seq signal. To identify a difference in
H3K27ac enrichment in ChIP-seq between alleles with and without insertion
(12 bp) in Fig. 2b, we aligned all 25 bp reads of each experiment to this specific
region of insertion using the R package ‘Biostrings’. This alignment was performed
against a region of 52 bp around the insertion site allowing for up to two mis-
matches, and the number of hits on forward and reverse strands was cumulated.
For the mutant allele, the Jurkat insert sequence (50-CCGTTTCCTAAG-30) was
inserted in the reference sequence before alignment, extending the initial alignment
region to a size of 64 bp.

Allelic-ChIP. Input and IP genomic DNAs were analysed by RT–PCR using power
SybrGreen on a 7,500 Fast Real-time PCR system (Applied Biosystems). IgG
control ‘cycle over the threshold’ Ct values were subtracted to Input or IP Ct values
and converted into bound value by 2� (IP Ct or input Ct- IgG IP Ct). Allelic-ChIP was
carried out using allele-specific primers (by substituting one of the germline
primers with a primer located in or overlapping the insertion). EZH2 knockdown
was achieved using a doxycycline-induced short hairpin RNA (sh-RNA)-targeting
EZH2 (pTRIPZ-EZH2, openbiosystem # V21HS-63066). A non-silencing sh-RNA
(pTRIPZ-NS) was used as control. Jurkat cells were electroporated and cells
containing the pTRIPZ were selected on puromycine. Knockdown of EZH2 was
obtained by the addition of doxycycline (2 mg ml� 1) to the cells during 10 days.
Western blot was performed using the anti-EZH2 BD Biosciences # 612666.

Sequencing and SNP array. For Jurkat mapping, a region of 10 kb 50 of TAL1
exon 1 was mapped on both alleles by LRPCR/cloning and standard Sanger
sequencing as previously described37 (see Supplementary Fig. 2 for details on
mapping strategy). Identification of allelic variants (SNPs versus somatic indels/
mutations) was performed with vector NTI using alignment against reference
TAL1 sequence and variants (http://www.ncbi.nlm.nih.gov/SNP; http://projects.
tcag.ca/variation, Supplementary Fig. 8). For the sequencing screen on T-ALL
patients and cell lines, a region of B700 bp surrounding the Jurkat insertion site
was directly PCR/sequenced on both strands in a subset of 93 samples and six cell
lines. Heterogeneous sequences (ambiguous reading due to allelic differences)
were systematically cloned, sequenced and analysed as above. For SNP array,
hybridization on Affymetrix Cytogenetics SNP Array-6 was performed according
to the manufacturer’s recommendations. Data analysis was performed with
Chromosome Analysis Suite software using the following settings: the CGH log2
copy number ratio for heterozygous deletion was defined as 0.5 to 1.5, whereas log2
copy number ratios o1.5 were defined as homozygous deletions. Gene copy
number (GCN) aberrations were compared with the Database of Genomic variants
(http://projects.tcag.ca/variation) to study only non-variant GCV aberrations.

Patients. Diagnostic samples from a consecutive series T-ALLs from 165 adults
(older than 16 years) included in GRAALL-03/05 trial (registration #NCT00327678
and #NCT00222027) were analysed for TAL1 expression. Sample collection and
analyses were approved by the local ethical committee. Informed consent was
obtained from the patients or relatives in accordance with the Declaration of
Helsinki, with the institutional review board approval of all involved hospitals.
Diagnosis of T-ALL was based on the World Health Organization 2008 criteria,
defined by expression of cytoplasmic and/or surface CD3, and negativity of CD19
and MPO, as reported38. To be included, samples had to contain at least 80% of
lymphoblasts. Immuno-geno/phenotyping and oncogene quantification were
performed as previously described38,39.

Cell lines. Cell lines used in this study were purchased from the ATCC collection
and were mycoplasma free.

RQ-PCR. RNA was reverse transcripted using MMLV (Invitrogen). We used a
TaqMan assay to quantify TAL1 transcript with the following primers: TAL1 F:
50-ACA-ATC-GAG-TGA-AGA-GGA-GAC-CTT-C-30, TAL1 Probe: fam-50-CTA-
TGA-GAT-GGA-GAT-GGA-GAT-TAC-TGA-TG-30-tamra, TAL1 R: 50-ACG-
CCG-CAC-AAC-TTT-GGT-G-30 , 40 cycles were run on ABI 7500HT (Applied
Biosystem) as described40. TAL1 transcript quantification was performed after
normalization with the housekeeping gene ABL using the DCt method and results
calculated according to the following formula 2D(CtABL–CtTAL1).

TAL1 allelic expression analysis. Allelic expression was performed as previously
described7. In brief, polymorphic markers in the 30 UTR of the TAL1 gene were
identified by PCR amplification and direct sequencing of 100 ng of genomic DNA.
Allelic expression analysis was performed by PCR amplification and by direct
sequencing of RT–PCR products from heterozygous patient samples. Three
different PCRs were made to cover nine most frequent SNP among the 11 SNP
previously described7.

Statistical analysis. ChIP. The power of t-test was estimated a priori using
pwrR-package, and the expected variations between conditions evaluated.
Differences in ChIP data between inserted and GL TAL1 alleles were analysed by
unpaired t-test. Samples collections constituted of five or six technical replicates
were first checked for normal distribution using Kolmogorov–Smirnov test and
the equality of variances was tested using F test. Results of t-test are shown as
two-tailed P values. The statistical power of executed t-tests was at least 80%.
Errors bars on histograms represent s.e.m.

OS/DFS. Patients’ characteristics were compared using the Fisher’s exact test.
Median comparisons were performed using the Mann–Whitney U-test. OS and
DFS were calculated from the date of prephase initiation. Events accounting for
DFS were induction failure and first relapse from any cause in first CR. OS
and DFS were estimated by the Kaplan–Meier method and then compared by
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the log-rank test. All calculations were performed using the SPSS software, version
15.0 and the GraphPad Prism, La Jolla, CA, USA.

Ligation-mediated PCR. Genomic DNA was extracted using QIAamp
deoxyribonucleic acid Blood mini kit according to the manufacturer’s instructions
(Qiagen). DNA (500 ng) was used for LM-PCR; DNA was digested by DraI,
EcoRV, PvuII, SmaI, SspI or StuI restriction endonucleases. Purified digested
DNAs were ligated with an adapter (composed of two complementary primers
GWAþ and GWAB� ). A primary PCR amplification was performed using an
adapter-specific primer (AP1) and primer specific for the different TCRb gene
segments (ext). A secondary PCR was performed using nested AP2 and TCRb
primers (int), and analysed on 1% agarose gel. Non-germline PCR products were
purified and sequenced. The functional and non-functional V(D)J rearrangements
from patient OC were obtained using Jb2.7-extB/intB and AP1/2 primers. The
breakpoints corresponding to the episomal insertion were then obtained using
Vb7.4-extB/intB, Db1-extA/intA and AP1/2 primers, and validated by direct PCR
using TAL1.OC.1B and Vb7.4-intB primers.

RT–PCR exon walking and 50 RACE. Total RNA was extracted using a column-
based system RNAeasy mini kit (Qiagen) according to the manufacturer’s
instructions. Reverse transcription was performed with SuperScript III Reverse
transcriptase (Invitrogen) and random primers (applied Biosytem). cDNAs were
analysed by real-time quantitative PCR (RT–PCR) using power SybrGreen on an
ABIPRISM 7500 (Applied Biosystems). All PCRs were performed in duplicate.
50-RACE was performed using 2 mg of total RNA and the 50/30 RACE kit, 2nd
generation (Roche). Modifications from the instruction manufacturer were the
generation a poly(G) tailing of first strand cDNA and the use of an oligo d(C)
anchor primer. PCR was performed using the Pfu Ultra II fusion HS DNA
polymerase (Agilent technologies).

Genome editing in T-ALL cell line by type II CRISPR system. PEER T-ALL cells
line were cultured in RPMI medium (Life Technologies) containing 20% fetal calf
serum, 1% L-glutamine, 1% sodium pyruvate and 100 U ml� 1 penicillin/strepto-
mycin (Life Technologies) at 37 �C in the presence of 5% CO2. The day of
transfection, 1 million cells were nucleofected according to the manufacturer’s
instruction (Lonza), with 500 ng DNA donor sequence containing Neomycin-
resistant gene and 2 mg of the Cas9/gRNA expression vector (Addgene #42230).
The chimeric guide RNA targeted TAL1 insertion site, and was cloned according to
Cong et al.41. One day after nucleofection, cells were plated in 96-wells plate at 104

cells per well and incubated in presence of 1,200 mg ml� 1 geneticin G418 (Life
Technologies) for 2 weeks. After selection and growing, a PCR was conducted to
amplify the targeted region with genomic DNA derived from the surviving clones,
and amplicons were separated on a 1% agarose gel then extracted with GEL/PCR
clean up wizard (Promega) and sequenced (MWG-Biotech). CRISPR guide RNA:
50-GAAAGACGTAACCCTACTTCC-30 .

Primers list is available on request.
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le Canceropôle PACA, CALYM consortium, l’Institut National du Cancer (INCa
PLBIO09), la Fondation de France (#2008001490) and institutional grants from
INSERM, CNRS and AMU. M.L. is a recipient of a fellowship from INCa
(#ASC12035ASA). B.N. is the recipient of a CHRT INSERM/Assistance Publique-
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