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Abstract

In clonal systems, interpreting driver genes in terms of molecular networks helps understanding how these drivers elicit an adaptive

phenotype. Obtaining such a network-based understanding depends on the correct identification of driver genes. In clonal systems,

independent evolved lines can acquire a similar adaptive phenotype by affecting the same molecular pathways, a phenomenon

referred to as parallelism at the molecular pathway level. This implies that successful driver identification depends on interpreting

mutated genes in terms of molecular networks. Driver identification and obtaining a network-based understanding of the adaptive

phenotypeare thusconfoundedproblemsthat ideally shouldbesolvedsimultaneously. In this study,anetwork-basedeQTLmethod is

presented that solvesboth thedriver identificationand the network-based interpretation problem.As input the methoduses coupled

genotype-expression phenotype data (eQTL data) of independently evolved lines with similar adaptive phenotypes and an organism-

specific genome-wide interaction network. The search for mutational consistency at pathway level is defined as a subnetwork

inference problem, which consists of inferring a subnetwork from the genome-wide interaction network that best connects the

genes containing mutations to differentially expressed genes. Based on their connectivity with the differentially expressed genes,

mutated genes are prioritized as driver genes. Based on semisynthetic data and two publicly available data sets, we illustrate the

potential of the network-based eQTL method to prioritize driver genes and to gain insights in the molecular mechanisms underlying

an adaptive phenotype. The method is available at http://bioinformatics.intec.ugent.be/phenetic_eqtl/index.html
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Introduction

Because of their short generation times, large population sizes

and quasi clonal behavior, experimental evolution of microor-

ganisms offers great potential for trait selection and testing

evolutionary theory (Dettman et al. 2012; Kawecki et al.

2012). Evolution experiments start from a single clone propa-

gated for many generations under a predefined conditional

set up defined as the selection regime. As the organisms prop-

agate they gradually accumulate genetic variation (single nu-

cleotide polymorphism (SNP’s), INDELs, etc.). Some of this

variation will cause a clonal fitness increase and a concomitant

selective sweep, which ultimately increases population fitness.

The acquired genetic variation can be identified in the evolved
lines of the population through sequencing. Genes containing
mutations that are fixed in the population, that reach a high
frequency in the population, or of which the origin coincides
with an increase in fitness (Herron and Doebeli 2013; Kvitek
and Sherlock 2013; Hong and Gresham 2014) are pinpointed
as likely drivers, where a driver in this context is defined as any
gene carrying adaptive mutations, that in isolation or in com-
bination with other drivers can elict a fitness increase and
concomittant clonal expansion.

In most evolution studies, however, a mechanistic under-

standing of how the selected driver mutations elicit the

adaptive phenotype is still lacking. Such a mechanistic
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interpretation depends on correctly identifying and interpret-

ing driver genes in terms of the genome-wide interaction net-

work of the organism of interest to find the molecular

pathways that drive the observed adaptive phenotype. The

identification of the driver genes is in itself nontrivial because

during a selection sweep, passenger mutations, that is muta-

tions that do not contribute to the phenotype, are likely to

hitchhike to fixation along with driver mutations (Barrick and

Lenski 2013). Furthermore, because under strong selection

pressures hypermutators frequently arise (Foster 2007;

Wielgoss et al. 2013), the ratio of driver genes to passenger

genes can become low, further complicating the identification

of driver genes.

To identify driver genes, one can exploit parallelism of

mutations at the gene/nucleotide level. Genes observed to

be recurrently mutated in independently evolved lines with a

similar phenotype are more likely to be drivers (Tenaillon

et al. 2012; Hong and Gresham 2014). However, indepen-

dently evolved lines can also acquire similar adaptive pheno-

types by mutations in different genes that affect the same

molecular pathways (Tenaillon et al. 2012; Kvitek and

Sherlock 2013; Hong and Gresham 2014), rather than by

sharing exactly the same mutations or mutated genes.

Identifying driver genes underlying an observed phenotype

thus requires identifying mutational parallelism between in-

dependently evolved lines at the molecular pathway level (Lin

et al. 2007; Wood et al. 2007; Ding et al. 2014; Lang and

Desai 2014). In other words, driver gene identification and

acquiring a network-based understanding of the adaptive

phenotype are confounded problems that have to be

solved simultaneously.

In this study, we illustrate how a network-based method in

combination with coupled genotype-expression phenotype

data (eQTL data) of parallel evolved lines can aid in simulta-

neously prioritizing driver genes and providing a network-

based interpretation of the molecular mechanisms underlying

the evolved adaptive traits. To this purpose, the network-

based eQTL method uses an organism-specific genome-

wide interaction network, compiled from publicly available

interactomics data (Cloots and Marchal 2011; Sánchez-

Rodrı́guez et al. 2013) to drive the search for mutational con-

sistency at the pathway level.

By generating a semisynthetic experimental evolution

benchmark, the ability of the method to prioritize driver

genes is demonstrated. To illustrate the performance of

both driver gene prioritization and network-based interpre-

tation of the data in a real setting, the method is applied to

eQTL data obtained from two previously described evolution

experiments in Escherichia coli. The first data set aims at

identifying the adaptive pathways that gave rise to improved

Amikacin resistance in four independently evolved lines

(Suzuki et al. 2014). The second data set focuses on unveiling

the molecular interactions between two distinct ecotypes

that evolved from a common ancestor in the long-term

evolution experiment of Lenski et al. (1991) (Plucain et al.

2014). For both data sets, the method prioritizes driver genes

that contribute to the adaptive phenotypes and unveils their

molecular modes of action.

Materials and Methods

Network-Based eQTL Method

The eQTL analysis method is based on the probabilistic logical

querying language ProbLog (De Raedt et al. 2007). To simul-

taneously prioritize driver genes and unveil adaptive molecular

pathways, elicited by these driver mutations, the driver gene

identification problem is reformulated as a decision theoretic

subnetwork inference problem (Van den Broeck et al. 2010)

over multiple probabilistic networks Qi, derived from the

genome-wide interaction network G. The method consists

of three steps (fig. 1).

Construction of Probabilistic Networks

For each of the parallel evolved lines i of an evolution ex-

periment, the genome-wide directed interaction network

G is converted into a probabilistic network Qi by assigning

to each edge a weight that reflects the probability the

edge is playing a role under the assessed condition,

given the differential expression data as depicted in

figure 1A. To this end, per node the probability is calcu-

lated that an expression value at least as extreme as the

one associated with that node would be observed by

chance, given the null hypothesis that the expression

value of the gene which corresponds to the node is not

significantly differentially expressed, is true. Calculation is

performed using a two-tailed P-test assuming that the log2

fold changes follow a normal distribution N m;sð Þ (Pawitan

et al. 2005; Feng et al. 2012). By standardizing, this dis-

tribution to Nð0;1) this probability can be calculated for

any differential expression value Dgene using Formula 1 in

which Zgene corresponds to the standard score associated

with Dgene.

Pgene¼
P X > Zgene

� �
þP X <�Zgene

� �
if Zgene> 0

P X < Zgene

� �
þP X >�Zgene

� �
if Zgene< 0

GivenNð0;1Þ

(

(Formula 1)

As in the network-based eQTL method the edges, not the

nodes, are weighted, the value Pgene is propagated to the

edges that terminate in it. A high value for the probability

that a specific edge is involved in a specific experimental

condition is assigned to edges that terminate in highly

differentially expressed genes. Therefore, 1 � Pendgene

will be assigned to all edges. Using the cumulative

normal distribution of N m;sð Þ which is written as

� m;sð Þ, this can be simplified as shown in Formula 2.

Pedge¼ðj0:5�� m;sð ÞðDendgeneÞjÞ�2 (Formula 2)
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Where Dendgene is the differential expression data of the

end gene of the interaction. If no differential expression

data is available for Dendgene, Pedge is set to 0.5.

Pathfinding in Probabilistic Networks

Each probabilistic network Qi allows for determining the prob-

ability of connectedness between a gene Ci;j, from a set of

genes Ci, and a gene set Ai, defined as Pðpath Ci;j;Ai

� �
jQiÞ.

This probability of connectedness expresses how likely it is that

there exists a path that connects the gene Ci;j to any gene in

the gene set Ai, in the probabilistic network Qi. A path be-

tween two nodes is a sequence of consecutive edges from the

genome-wide interaction network that connects these two

nodes and for which all edges are directed in the same

direction. The probability of such a path is simply the product

of the probabilities of the edges it contains. In the proposed

eQTL setting, each gene Ci;j is defined as significantly differ-

entially expressed in evolved line i and gene set Ai is the set of

mutated genes obtained from evolved line i. A path connects

a significantly differentially expressed gene to genes mutated

in the same evolved line. The rationale behind this is that the

significantly differentially expressed genes are effects of mu-

tations and thus connect to the “causal” mutations through

the probabilistic network. The probability of connectedness P

ðpath Ci;j;Ai

� �
jQiÞ represents the probability with which the

differential expression of Ci;j can be induced by the set of

mutations, given the probabilistic interaction network Qi

and quantifies which mutations are most likely to cause the

differential expression of Ci;j.

FIG. 1.—Overview of the network-based eQTL method. The input of the method consists of, respectively, coupled genotype and expression phenotype

data for a set of evolved lines with the same phenotype and a genome-wide interaction network. Red and green indicate, respectively, over- and under-

expression with respect to a reference. Genes that are considered to be significantly differentially expressed according to a test statistic are indicated by a

specific symbol as displayed on the figure legend. Mutated driver and passenger genes are indicated with two different symbols as displayed on the legend.

The numbering of each mutated gene indicates the evolved line in which this mutated gene occurred. (A) Construction of the end point specific probabilistic

subnetworks: for each evolved line the genome-wide interaction network is converted into a probabilistic subnetwork by assigning to each edge in the

genome-wide interaction network a weight that is interpreted as the probability that the edge has an influence on the assessed phenotype. These weights

depend on the level of differential expression of the terminal node of the edge. Genes that are more differentially expressed (darker red/green) will give rise to

higher weights on the edges (indicated by the width of the edge). (B) Pathfinding in each of the probabilistic subnetworks. The mutated and significantly

differentially expressed genes occurring in each of the evolved lines are mapped to the corresponding end point specific probabilistic subnetworks. For each

significantly differentially expressed gene, all possible paths from this gene to all mutated genes in the same end point are searched for (paths are shown as

black curves). (C) Optimal subnetwork selection. Optimization is performed by integrating the paths found in all end point specific probabilistic networks

according to a predefined cost function that positively scores the addition of paths connecting pairs of mutated genes-differentially expressed genes

observed in any of the end points, but that penalizes the addition of edges. As a result, paths that are strongly connected to the expression phenotype

and that overlap with each other are selected as the optimal subnetwork.
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Inference of the Optimal Subnetwork by Combining the
Data from All Evolved Lines

Identifying driver mutations from a set of independent end

points with the same phenotype corresponds to inferring a

single subnetwork Koptimal over all independent end points

that best connects the significantly differentially expressed

genes Ci;j and the set of mutations Ai for all end points to-

gether as depicted in figure 1C. A subnetwork K of a network

G is defined as a subset of the edges in G together with the

nodes occurring in the selected edges. Note that a subnet-

work in this context can thus consist of any number of dis-

connected parts of the original network G.

For each subnetwork, K from G the probability of

connectedness changes to Pðpath Ci;j;Ai

� �
jQi;KÞ as paths

that are valid in Qi are not necessarily valid in a subnetwork

K. Therefore, the probability of connectedness changes

to Pðpath Ci;j;Ai

� �
jQi;KÞ when working with subnetworks

K, denoting that the edges along the path have to be pre-

sent in both Qi and K: Each subnetwork K should be scored

based on the sum of probabilities that there exists a path

between each significantly differentially expressed gene Ci;j

in Ci and the list of mutated genes Ai, for each indepen-

dently evolved line i, out of a total of n independently

evolved lines as described in Formula 3. Between different

end points, it is expected that the same adaptive pathways

are triggered (parallel evolution). Also, within every end

point separately, multiple paths are expected to be found

in regions with many significantly differentially expressed

genes that are likely to be important for the phenotype.

Therefore, paths between driver genes selected from differ-

ent end points and their respective sets of differentially ex-

pressed genes should overlap in the optimal subnetwork. By

restricting the size of the network through a cost based on

the number of edgesjKj in the subnetwork, the method will

preferentially select these overlapping paths. This edge cost

can be modulated using the cost factor xe. Koptimal is defined

as the subnetwork that has the maximum possible value of

the score function SðKÞ (Formula 3).

S Kð Þ ¼

Xn

i

Xl

j

ðPðpathðCi;j;AiÞjQi;KÞÞ

0
@

1
A� jKj � xe

(Formula 3)

Computing the probability that there exists a path between

two nodes in a probabilistic network is known as the two-

terminal reliability problem, which is nondeterministic poly-

nomial time hard (NP-hard). This explains why there is no

known efficient exact inference algorithm and why we

employ an approximation algorithm to compute

PðpathðCi;j;AiÞjQiÞ. This probability is approximated by

using only the N most likely paths of maximal length l be-

tween the differentially expressed gene Ci;j and any mutated

gene of Ai (De Raedt et al. 2007; De Maeyer et al. 2013). The

resulting paths (for all Ci) are then represented as a Boolean

formula (as in probabilistic logic programming languages [De

Raedt et al. 2007]): each path corresponds to a conjunction

of the edges that are present in the path, and a set of such

paths corresponds to the disjunction of the conjunctions cor-

responding to these paths. This formula is then compiled into

an equivalent deterministic decomposable negation normal

form (d-DNNF) using knowledge compilation techniques

(Darwiche and Marquis 2002). The advantage of the

d-DNNF is that it contains the same information as the orig-

inal set of paths and that it can efficiently be evaluated in

polynomial time for each subnetwork K (Darwiche and

Marquis 2001). Selecting such a subnetwork K corresponds

to setting all edges not in K to false when evaluating the

d-DNNFs. The optimal subnetwork Koptimal is determined by

sampling different subnetworks K from G by performing a

random-restart hill climbing optimization as outlined in Van

den Broeck et al. (2010). Note that, as Koptimal is a subset of

G, it is possible that Koptimal is not necessarily connected.

Driver Gene Prioritization

Because subnetworks obtained using a higher edge are more

enriched in driver genes than subnetworks obtained using a

low edge cost (higher positive predictive value [PPV], more

stringent conditions) and subnetworks detected at high

edge costs are in general contained within the ones retrieved

at lower edge costs, mutated genes are prioritized based on

the highest edge cost for which they are still selected (i.e.

ranks of mutated genes are based on the most stringent con-

dition under which they are still selected). The reason for this is

that mutated genes that are detected at the highest edge cost

(most stringent parameter) represent the most pronounced

signals in the data. Mutated genes that represent weaker sig-

nals (mutations that explain less of the expression data) are

only retrieved at less stringent edge parameter costs. To this

end, for each data set multiple optimal subnetworks are in-

ferred using a gradually decreasing edge cost, that is a param-

eter sweep over the edge cost. Mutated genes that are

retrieved using a high edge cost are strongly connected to

the expression phenotype and thus receive the lowest (best)

rank. Note that this prioritization strategy can result in assign-

ing identical ranks to different mutated genes. These priori-

tized mutated genes, together with the inferred subnetworks

are visualized by depicting the union of all edges and nodes

present in the different inferred subnetworks.

Parameter Settings

To infer subnetworks, the maximum length of a path is set to

four edges based on both biological (Gitter et al. 2011;

Navlakha et al. 2012) and computational considerations.

To approximate the probability of connectedness

Pðpath Ci;j;Ai

� �
jQi;KÞ, the 20-best paths were used that con-

nect each differentially expressed gene Ci;j to the set of
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mutated genes Ai . The edge cost parameter determines the

size of the inferred subnetwork and forces the selection of

overlapping paths. The behavior of the edge cost is character-

ized on a semisynthetic data set as indicated in the Result

section. As described in the Driver Gene Prioritization para-

graph, a parameter sweep of the edge cost was performed to

prioritize the mutated genes.

As lower edge costs do not affect ranks of genes prioritized

at higher edge costs, the choice of the lower bound on the

edge cost does not interfere with the results of the highest

ranked genes. For convenience and visualization purposes, we

choose a cut off on the sweep at a cost that corresponds to

finding a network of no more than 120 nodes. Conversely,

when setting the conditions too stringent that is very high

edge cost, subnetworks can no longer be inferred.

Therefore, as smallest edge cost we chose the most stringent

value at which a subnetwork could be inferred. This resulted in

a parameter sweep of the edge cost from 1.75 to 0.25 for the

Amikacin (AMK) resistance data set and from 0.975 to 0.025

for the coexistence ecotypes data set. The edge cost sweep

was performed with a step size of 0.025. Note that the upper

limit of the edge cost in the sweep corresponds to the value

for which no subnetwork was inferred anymore.

Data Sets

Semisynthetic Benchmarking Set

The semisynthetic benchmark data set was based on data

published by Stincone et al. (2011) (has been deposited at

Gene Expression Omnibus under the accession GSE13361)

assessing for 27 E. coli K-12 MG1655 single gene knockout

strains involved in acid resistance, the expression profiles rela-

tive to a wild-type E. coli K-12 MG1655. Levels of differential

expression of single gene knockout strains (27 strains) with

respect to the reference were obtained from COLOMBOS

(Engelen et al. 2011). As no repeats were available for the

different experiments, and thus no relevant P values were

available, significantly differentially expressed genes were de-

termined as genes having a log2 fold expression change larger

than 2. For each KO strain, the knocked out gene was con-

sidered a “known” driver gene and the measured levels of

differential expression as the corresponding expression phe-

notype. Five of those strains, namely phoH, cadB, ycaD, spy,

yjbJ, and grxA, were discarded for benchmarking, because

these genes only have incoming interactions in the genome-

wide interaction network or, in the case of yjbJ, are not pre-

sent in the interaction network. In addition, the experiment

corresponding to the hns KO strain was removed as the

COLOMBOS database did not contain the appropriate data.

For each of the remaining 20 strains, the presence of passen-

ger genes was mimicked by randomly selecting a nucleotide

position in the reference genome and mapping this position to

a gene. Passenger mutations had to obey following condi-

tions: 1) randomly selected genes did not belong to the set

of driver genes and 2) they were connected in the genome-

wide interaction network with outgoing interactions. The

number of passenger mutations assigned to each data set

was selected from a binomial distribution with n, the total

number of selected mutations, being equal to 9 and P, the

chance of adding a passenger mutation, being equal to 0.5.

On average, this mimics an addition of five passenger muta-

tions with a standard deviation of 1.5 for each of the 20 strains

in each data set. This way the total number of mutated genes

in the semisynthetic data set is of the same order of magni-

tude as the number of passenger mutations per driver muta-

tion observed in real data sets (Tenaillon et al. 2012; Herron

and Doebeli 2013; Suzuki et al. 2014).

AMK Resistance Data Set

The genomic data for the four Amikacin resistant strains was

obtained from Suzuki et al. (2014). Raw sequencing has been

deposited at the DNA Data Bank of Japan sequence read ar-

chive under the accession PRJDB2980. Only the Illumina reads

were used. The data of the four Amikacin resistant lines was

mapped to the ancestral E. coli K-12 MDS42 strain using

Bowtie2 (Langmead and Salzberg 2012). SNPs and small

INDELs were called using freebayes (Garrison and Marth

2012) while large INDELs were called using Pindel (Ye et al\\.

2009). This resulted in a total of 59 mutations throughout the

four strains. These mutations were mapped to genes as fol-

lows: mutations within the coding region of a gene were

mapped to the encoded gene, mutations in intergenic regions

were mapped to the closest gene if there was a gene within

250 bp of the intergenic region. This resulted in 51 mutated

genes. Of these 51 mutated genes, 41 could be mapped to

the E. coli K-12 MDS42 reference genome.

Normalized expression data for each of the four Amikacin

resistant strains and the ancestral line has been deposited at

GEO under the accession GSE59408. Differentially expressed

genes were defined as genes having an absolute log2 fold

expression change value higher than 2. This cut off value

was selected as no repeated measurements were available

and thus no P values could be calculated. Differential expres-

sion values were obtained between the Amikacin resistant

strains and an ancestral line.

Coexisting Ecotypes Data Set

Genomic data was obtained from Plucain et al. (2014).

Mutations present in both clones of the same ecotype, but

not in clones of the other ecotype, were selected as candidate

driver mutations that could explain the origin of speciation

into the observed coexisting ecotypes. It was hereby assumed

that potential driver mutations are likely to be ecotype-speci-

fic, as mutations common to all clones most likely originated

before divergence of the ecotypes. This resulted in the selec-

tion of 87 candidate driver mutations, which could be mapped

to 86 potential driver genes. The mapping of mutations to
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genes was taken from Plucain et al. (2014). Of those 86 genes,

62 genes could be mapped to the E. coli B REL606 genome-

wide interaction network, which were used as input.

As expression phenotype, we used the degree to which

gene expression differed between, respectively, the L and

S ecotype as determined by microarray experiments per-

formed by Le Gac et al. (2012) (has been deposited at GEO

under the accession GSE30639). Microarrays of 6 biolog-

ical replicates of the L ecotype, 6 biological replicates of

the S ecotype, and 5 biological replicates of the ancestor

were available. Using PCA analysis one microarray of the S

ecotype and one microarray of the ancestor were found to

be outliers and were discarded from subsequent analyses

(supplementary fig. 1, Supplementary Material online).

The LIMMA package (Smyth 2004) was used to identify

the degree of differential expression between the eco-

types. As for this data set repeated measurements for

the expression data were available, significantly differen-

tially expressed genes are defined as genes having a P

value of maximum 0.05 and an absolute value of log2

fold change of minimal 0.75. The cut off on the log2

fold change was taken lower than in the other data sets

as here we impose an additional cut off on the P value.

Genome-Wide Interaction Networks

In this article, a genome-wide interaction network refers

to a comprehensive representation of current interac-

tomics knowledge on the organism of interest. Networks

are represented as graphs GðN; EÞ in which nodes N cor-

respond to genetic entities (genes, proteins, or sRNAs) and

edges E to the interactions between these entities. Every

edge is assigned an edge type, indicating the molecular

layer to which the interaction represented by the edge

belongs (e.g. protein–DNA, protein–protein, metabolic,

or signaling interactions). Depending on its type and

provided the proper information is available, an edge

will be added as a single-directed interaction (e.g. pro-

tein–DNA interactions, sRNA–DNA, kinase-target, etc.) or

two-directed interactions (protein–protein interactions,

undirected metabolic interactions, etc.).

An overview of the genome-wide interaction networks

used in this study for the three different E. coli strains:

E. coli K-12 MDS42, E. coli B REL606, and E. coli K-12

MG1655 is given in table 1. To compile these networks

metabolic interactions and (de)phosphorylation interac-

tions were derived from KEGG (Kanehisa et al. 2014)

version 72.1, protein–DNA, sigma interactions, and

sRNA–DNA interactions from RegulonDB version 8.6

(Salgado et al. 2013) and high-confidence physical pro-

tein–protein interactions from String (Jensen et al. 2009)

version 10. Interactions involving RpoD, the primary sigma

factor, were removed from these interaction networks as

RpoD regulates over one-half of the genes in the interac-

tion network.

Results

Method Overview

A network-based eQTL method was devised to simultaneously

prioritize driver genes and unveil molecular pathways involved

in the adaptive phenotype. As input, the method requires a

genome-wide interaction network of the organism of interest

and coupled genotype-expression phenotype (eQTL) data for

a set of independently evolved lines (strains/populations) with

similar phenotypes (fig. 1). The expression phenotype is de-

fined as the level of differential expression of every gene be-

tween an evolved line and a reference.

To prioritize driver genes, all genes from the end points

carrying allelic variants (hereafter referred to as mutated

genes) will be assessed for their ability to explain the adap-

tive expression phenotype. Hereto the method infers from

Table 1

Selected mutated genes prioritized as driver genes

AMK Resistance Coexisting Ecotypes

Gene name Rank Line Type Gene name Rank Line Type

CyoB 1 2,4 frameshift gntR 1 S missense

CpxA 2 1,3 missense, in-frame del arcA 1 S missense

NuoG 3 2 nonsense evgA 1 S missense

rseA 3 4 nonsense dnaK 2 S intergenic

nuoN 3 4 In-frame del acs 3 S intergenic

nuoC 4 4 missense flgG 4 S synonymous

fusA 5 1,2,3,4 missense fbaB 5 L missense

phoQ 6 1 missense cpsG 5 L Large del

arcB 7 3 Frameshift del fruK 6 S missense

gapA 8 2 missense rpiR 7 L intergenic

ClsA 9 1 missense glk 7 S intergenic

rho 10 1 missense
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the genome-wide interaction network the subnetwork that

best connects the mutated genes in each of the evolved

lines to the set of significantly differentially expressed genes

in the corresponding evolved lines, assuming that 1) the

expression phenotype is at least partially a consequence

of the driver mutations and 2) the adaptive molecular path-

ways, but not necessarily the driver genes, are to some

extent similar, resulting in parallelism at the molecular path-

way level.

An overview of the proposed network-based eQTL method

is given in figure 1. The method consists of three steps (see

Materials and Methods). In a first step (fig. 1A), the genome-

wide interaction network is for each evolved line separately

converted into a condition-specific probabilistic network using

the expression data of the corresponding evolved line. These

condition-specific probabilistic networks are subsequently, in a

second step (fig. 1B), used to find all paths between mutated

and significantly differentially expressed genes for each

evolved line separately. A path is here defined as a sequence

of consecutive edges in the genome-wide interaction net-

work. These paths represent possible molecular mechanisms

by which mutations could induce the observed pattern of

differential expression. In the third step, (fig. 1C) all these

paths are analyzed together to find the optimal subnetwork,

which aims at selecting the subnetwork of the genome-wide

interaction network that captures the molecular mechanisms

that drive the adaptive phenotype common to all evolved

lines. The optimization enforces the selected subnetwork to

have two properties. First, it selects the subnetwork that con-

tains the most likely paths that explain the connection be-

tween the mutated and differential expressed genes.

Second, it enforces the network to contain parallel molecular

pathways between the different evolved lines. The optimal

subnetwork thus contains the molecular mechanisms likely

to drive adaptation. Possible driver mutations which occur in

the optimal subnetwork are prioritized based on the strength

of their connectivity with downstream effects and their in-

volvement in parallel molecular pathways (see Materials and

Methods).

Performance of Network-Based eQTL Method on a
Semisynthetic Data Set

To assess the performance of prioritizing causal mutations by

the network-based eQTL method, a semisynthetic benchmark

data set was constructed based on a previously published

knockout expression profiling experiment (Stincone et al.

2011). This study assesses differential expression profiles be-

tween 20 knockout strains with altered fitness in acidic con-

ditions and the wild-type E. coli K12 strain. To mimic the eQTL

set up, each of the knocked out genes was considered a

“driver gene” and the presence of passenger genes was sim-

ulated by adding a number of randomly selected genes to

each knockout data set (see Materials and Methods).

Differential expression profiles between each knockout

strain and the wild type were derived from the original pub-

lication data (see Materials and Methods). The performance of

the network-based eQTL method was measured in terms of

correctly distinguishing driver from passenger genes.

The main parameter of the method is the edge cost, that is

the cost for selecting an edge in the inferred subnetwork (see

Materials and Methods). As a lower amount of mutated genes

will be selected using a higher edge cost, mutated genes can

be prioritized by the maximum edge cost for which they are

selected. This allows assigning a rank for every selected mu-

tated gene based on the maximum edge cost. This prioritiza-

tion is motivated by the fact that mutations which are selected

at high edge costs need to be better connected to the expres-

sion and/or have a higher degree of parallelism with other

mutations than mutations which are selected at lower edge

costs. This reasoning was tested by analyzing the semisyn-

thetic data set for a wide range of edge costs (see Materials

and Methods for specific parameter settings). As can be seen

in figure 2, the PPV is high for low ranks and decreases for

higher ranks, meaning mutated genes having low ranks are

likely to be driver genes. Furthermore, the sensitivity clearly

increases with increasing rank, leading to a trade-off between

selecting few passenger mutations and selecting many driver

mutations. Even for high ranks, results are still better than a

random selection of genes as this would correspond to a PPV

of 0.2 (on average for every driver gene, four passenger genes

were added).

Unveiling the Molecular Mechanisms Underlying
Amikacin Resistance

We applied the eQTL analysis on the eQTL data set from the

study of Suzuki et al. (2014). In this study, four independent E.

coli MDS 42 lines were grown in the presence of the amino-

glycoside antibiotic until all four strains attained increased

Amikacin resistance compared with the parental strains.

The network-based eQTL method was applied using the

genome-wide interaction network of E. coli MDS 42 and

the data of the four parallel evolved strains (see Materials

and Methods). Out of 41 mutated genes, we prioritized 12

as potential drivers based on their association with the expres-

sion data (table 2). The inferred adaptive pathways containing

those prioritized genes are visualized in figure 3.

One very plausible driver mutation is fusA, encoding the

elongation factor G which is consistently carrying a missense

mutation in all four strains (mutational consistency at gene

level). Mutations in the fusA ortholog have previously been

found to confer aminoglycoside resistance in Staphylococcus

aureus (Norstrom et al. 2007).

Prioritized genes that are also plausible candidate dri-

vers are those that are consistently mutated at pathway

level. Examples of those are the highly prioritized genes

cyoB, nuoG, nuoN, and nuoC, affected in lines 2 and/or 4
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by nonsense or frameshift mutations. These genes are

members of the electron transport chain which are

known to downregulate the protein complexes to which

they belong (NADH dehydrogenase or terminal oxidase,

see supplementary fig. 2, Supplementary Material online)

implying an involvement of the electron transport chain in

the adaptive phenotype. cpxA is another likely driver as it

shows mutational consistency at gene level in two lines

(lines 1 and 3). cpxA is a sensor kinase that is known to

regulate the cpx response in conjunction with the tran-

scription factor cpxR. The mutations in cpxA seem to

result in lines 1 and 3 in an activation of the cpx response

FIG. 2.—Performance assessment of the network-based eQTL method on the semisynthetic data set. Data of all selected mutated genes at specific ranks

are presented as Tukey boxplots. Note that multiple mutated genes can have identical ranks as ranks are assigned based on the maximal edge cost for which

a mutation is present within the subnetwork and thus multiple mutated genes can have identical maximal edge costs for which they are present within the

subnetwork. The upper plot shows the PPV, (fraction of the selected mutations which are true positives, i.e. driver mutations) in terms of the ranks of the

selected mutations. It can be seen that low ranks have higher PPV values. Note that at rank 1, the variance is high. This is because inferred subnetworks for

rank 1 are small, and therefore more prone to random effects. That is the selection of one additional false positive in a particular random set largely affects

the PPV. Solutions are clearly less variable from rank 2 onwards. The lower plot shows the sensitivity (fraction of all possible true positives selected) in terms of

the ranks of the selected mutations. Sensitivity increases with rank, implying a trade-off between PPV and sensitivity.

Table 2

Data sets used to compile the Escherichia coli genome-wide interaction networks

Interaction Type E. coli K12 MG1655 E. coli B REL606 E. coli K12 MDS42a

Protein–protein 2,737 (Jensen et al. 2009) 2,721 (Jensen et al. 2009) 2,534 (Jensen et al. 2009)

Protein–DNA 4,492 (Salgado et al. 2013) 3,415 (Salgado et al. 2013) 3,890 (Salgado et al. 2013)

Sigma 727 (Salgado et al. 2013) 1,225 (Salgado et al. 2013) 592 (Salgado et al. 2013)

Metabolic 2,798 (Kanehisa et al. 2014) 5,136 (Kanehisa et al. 2014) 2,462 (Kanehisa et al. 2014)

Phosphorylation and dephosphorylation 44 (Kanehisa et al. 2014) 38 (Kanehisa et al. 2014) 40 (Kanehisa et al. 2014)

Srna 213 (Salgado et al. 2013) 2 (Salgado et al. 2013) 171 (Salgado et al. 2013)

Size (edges) 11,011 12,537 9,689

Size (nodes) 2,732 2,650 2,418

aThe E. coli K12 MDS42 network was derived from the E. coli K12 MG1655 network by deleting all edges connecting genes that do not exist in E. coli K12 MDS42.

De Maeyer et al. GBE

488 Genome Biol. Evol. 8(3):481–494. doi:10.1093/gbe/evw010 Advance Access publication February 1, 2016

Deleted Text:  
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw010/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw010/-/DC1


with the targets of cpxR being overexpressed compared

with the ancestral strain. This increased cpx response has

previously been found to have an effect on the electron

transfer chain (Raivio et al. 2013).

These results are consistent with what is described in the

original article of Suzuki et al. (2014) and are in line with the

knowledge that Amikacin uptake is dependent on proton-

motive force (Allison et al. 2011). Our results confirm these

previous findings although the different lines seem to be trig-

gered through two different molecular systems either by di-

rectly affecting the electron transfer chain or through

mutations in cpxA.

FIG. 3.—Visualization of subnetworks inferred from the Amikacin resistance data set based on data from 100 randomizations. The visualization was

created by merging separate inferred subnetworks resulting from a parameter sweep of the edge cost from 0.25 to 1.75. The width of the edge displays the

stringency at with the edge was selected (the wider the edge the more stringent the condition. More Stringent conditions correspond to higher edge costs).

Node borders are subdivided into four parts to visualize in which line a mutation occurred (evolved lines compared with ancestral line). The inner color of the

nodes is also subdivided into four parts where each part represents the degree of differential expression in the corresponding line. The colors of the edges

represent the edge types.
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In addition to genes associated with the proton-motive

force, the method prioritizes additional genes, such as rseA

explain a large part of the expression phenotype and therefore

receive a high rank. However, as a mutation in the antisigma

factor which inhibits rpoE leads to large effects on the expres-

sion phenotype and other independently evolved lines do not

show effects in molecular pathways associated with rseA or

rpoE, we would need more data to completely rule out the

rseA mutation in line 4 being a false positive.

Unveiling the Molecular Mechanisms of Coexisting
Ecotypes in Glucose-Limited Minimal Medium

A second test case consisted of transcriptomics data and ge-

nomics data, described, respectively, by Plucain et al. (2014)

and Le Gac et al. (2012). These data sets provide the molecular

characterization at generation 6,500 of Ara-2, one of the 12

populations that were evolved in the E. coli long-term evolu-

tion experiment in glucose minimal medium (Lenski et al.

1991; Barrick et al. 2009). By this time, the ancestral line

had diverged into two distinct, stable ecotypes (Le Gac et al.

2012). Associated studies by Rozen et al. (Rozen and Lenski

2000; Rozen et al. 2005, 2009) showed that the L ecotype

grows faster on glucose, but secretes byproducts that S can

exploit, implying a cross-feeding mechanism between the L

and S ecotypes that can explain their stable coexistence.

Plucain et al. (2014) experimentally identified a minimal set

of mutations. Two S-specific mutations in, respectively, arcA

and gntR and one in spoT, shared by both the L and S strains

that when reintroduced together in the ancestral strain were

sufficient to mimic the evolved S ecotype in invading and

stably coexisting with the L ecotype. However, the fitness

level of this reconstructed S ecotype was lower than the fitness

level of the evolved S ecotype (Plucain et al. 2014), suggesting

that additional mutations play a role in establishing the phe-

notype of the evolved S ecotype. Both the L and S ecotypes are

hypermutators and have accumulated a large number of mu-

tations. Such setting complicates the identification of the cor-

rect driver genes.

By applying the network-based eQTL method on this cou-

pled genomics-transcriptomics (eQTL) data (Le Gac et al.

2012; Plucain et al. 2014) (see Materials and Methods), we

tested to what extent we could successfully prioritize the

known important driver genes in a data-driven way and

could identify missing drivers explaining the adaptive pheno-

type. The network-based eQTL method resulted in prioritizing

11 mutated genes out of 62 identified mutated genes (table

2, fig. 4).

Given the available data, we could only focus on identifying

drivers that originated after the divergence between both eco-

types. Using this input data, we were able to successfully pri-

oritize the driver genes originally identified by Plucain et al.

(2014), which are arcA and gntR, but not spoT as this muta-

tion was present before the divergence of the two ecotypes.

The selected subnetwork (fig. 4) shows that, consistent with

the prioritized mutations in arcA and gntR, the TCA cycle and

the Entner–Doudoroff pathway are upregulated in S as com-

pared with L (supplementary figs. 3 and 4, Supplementary

Material online). Figure 4 shows how the S-specific mutation

in gntR is responsible for the observed upregulation of the

Entner–Doudoroff pathway (gntT, gntK, edd, eda). As gntT

is a gluconate transmembrane transporter protein, the in-

ferred subnetwork provides an explanation of one of the pre-

viously described mechanisms of the cross-feeding phenotype

(Rozen et al. 2005) in which the gluconate released by the L

ecotype is metabolized by the S ecotype. The S-specific mu-

tation in the arcA gene relates to the S-specific upregulation of

the TCA cycle (gltA, fumC, sdhC, sdhD, sdhA, sdhB). arcA was

previously found to be repetitively mutated in strains of fast

switching phenotypes (Luli and Strohl 1990), meaning that the

S ecotype could have a fast switching phenotype. Besides the

already previously prioritized adaptive alleles, the method

could prioritize several additional mutated genes.

acs carrying an S-specific mutation in a cis binding site el-

ement known to promote acs expression (Beatty et al. 2003)

was prioritized. Consistently, the network shows how acs is

highly upregulated in the S-strain as compared with the L

strain. acs is an extracellular acetate scavenger involved in

the conversion of acetate to acetyl coenzyme which implies

that, in addition to gluconate, acetate might also be (partly)

responsible for the cross-feeding phenotype between L and S.

Acetate consumption has previously been linked to the origin

of cross-feeding phenotypes in experimental evolution (Barrick

and Lenski 2013; Herron and Doebeli 2013).

Interestingly, an intergenic mutation associated to dnaK in

the S ecotype appears highly prioritized (table 2).

Overexpression of the gene dnaK, a heat shock chaperone,

has previously been found to mitigate the effect of deleterious

mutations in hypermutators (Maisnier-Patin et al. 2005).

Although in our network, this mutation does not lead to sig-

nificantly higher expression levels of dnaK, the mutation could

indirectly interfere with for example the stability of the mRNA

and as such affect protein expression (Burgess 2011), hereby

protecting both hypermutator strains.

For the S ecotype, the molecular mechanism involved in

triggering the coexistence phenotype are clear, the mecha-

nism of the L ecotype in the coexistence phenotype is, given

the available data, less obvious. However, the uxuA and uxuB

genes are more pronouncedly expressed in the L strain than in

the S strain. Both genes are involved in catalyzing the reaction

of D-fructuronate to 2-dehydro-3-deoxy-D-gluconate, which

could play an important role in gluconate cross feeding.

Discussion

Here, we present a network-based eQTL method that exploits

parallelism between independently evolved lines to search for

mutational consistency at the molecular pathway level.
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Because the method searches for parallel molecular pathways

between the different evolved lines, these identified driver

mutations are likely to be adaptive. In the context of this ar-

ticle, this adaptive effect is different from directly affecting

fitness as some of the adaptive mutations will elicit their

effect on the phenotype only in the presence of additional

adaptive mutations (epistasis).

Key to the method is the use of the interaction network to

guide the search. The method belongs to the class of subnet-

work selection methods that have been used to interpret

FIG. 4.—Visualization of subnetworks inferred from the coexisting ecotypes data set. The visualization was created by merging separately inferred

subnetworks resulting from a parameter sweep of the edge cost from 0.025 to 0.975. The width of the edges represents the maximal 30 mutation cost for

which these edges were selected. The width of the edge displays the stringency at with the edge was selected (the wider the edge the more stringent the

condition. More Stringent conditions correspond to higher edge costs). Node borders are subdivided into two parts to visualize in which strain a mutation

occurred. The inner color of the nodes represents the degree of differential expression (L ecotype compared with S ecotype). The colors of the edges

represent the edge types.
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differential expression data on networks (Ma et al. 2011;

Alexeyenko et al. 2012; Glaab et al. 2012), for gene prioriti-

zation (Verbeke et al. 2013; Hu et al. 2014) or for linking KO

genes or genes from a genetic screen to an expression phe-

notype (Ourfali et al. 2007; Lan et al. 2011), but that have not

yet been used to solve the combined problem of searching for

molecular pathway consistency in independently evolved

clones and driver gene identification.

Several recent studies in cancer have shown how searching

for mutational consistency at pathway level between indepen-

dently evolved samples can aid in prioritizing drivers. These

methods use genomic information as input and identify

driver genes as genes carrying somatic mutations that are

frequently mutated in different tumor samples and/or that

are in each other’s neighborhood in a human genome-wide

interaction network (Vandin et al. 2011; Babaei et al. 2013;

Hofree et al. 2013; Verbeke et al. 2015) and/or that display

patterns of mutual exclusivity over different tumor samples

(Vandin et al. 2012; Leiserson et al. 2013). All of the afore-

mentioned techniques rely mainly on genomic information

and are applicable only when large numbers of independent

samples are available (in a cancer setting often at least 1,000

tumor samples are available (Cancer Genome Atlas Research

et al. 2013). This in contrast to evolution experiments in mi-

croorganisms which contain too few independently evolved

samples (clones) to directly apply the aforementioned data-

driven methods that mainly rely on genotype data.

Therefore, we combine molecular profiling data (expression

data) with genomic data to increase the signal of mutational

consistency at the molecular pathway level. This compensates

partly for the number of evolved samples usually available in

studies on microbial clonal systems. Because of the eQTL set-

ting drivers that affect expression are more likely to be iden-

tified. Based on the few eQTL studies that have been

performed it appears that at least in microbes adaptive muta-

tions often result in a sometimes marginal but significant ex-

pression response compared with their (immediate) ancestor

(Carroll and Marx 2013; Rodriguez-Verdugo et al. 2015).

Furthermore, in contrast to the statistical and diffusion-

based methods used in cancer research, we have developed

a method that can more explicitly exploit prior information to

drive the search for drivers. To that end, our method relies on

a probabilistic subnetwork selection technique that in a first

pathfinding step uses an explicit path definition to find paths

in a weighted (by expression data), probabilistic subnetwork.

This allows integrating prior and/or condition-specific data on

the biological process of interest to steer the search toward

specific parts of the genome-wide interaction network by ex-

ploiting the directionality of the network to define biologically

relevant paths and by assigning prior weights to the edges of

the network that are likely to be active under the assessed

conditions.

The optimization function actively searches for overlap in

the selected subnetworks allowing to detect mutational

consistency at molecular pathway level, despite even a low

number of independently evolved lines. The required overlap

between paths can be tuned using the edge cost parameter.

Driver mutations exhibit a high degree of mutational consis-

tency at the molecular pathway level. Therefore, using a high

edge cost, which forces the selection of subnetworks with a

large overlap between paths over the different evolved lines,

leads to fewer false positives amongst the identified driver

mutations. On the semisynthetic data set, it was illustrated

how a sweep on the edge cost parameter can be used to

successfully prioritize the most likely candidate drivers.

Using two biological data sets, the potential of applying the

method on eQTL data for studying the molecular mechanisms

underlying adaptive traits was illustrated. From a large number

of potential mutations, the method was able to select previ-

ously identified driver mutations. In addition to this, potential

driver mutations could be identified and verified with litera-

ture. The potential of the method to distinguish passengers

from driver mutations was also shown on mutator pheno-

types, where a large amount of passenger mutations are pre-

sent but where the method was able to rank the previously

identified driver genes as highly likely to be driver genes.

It is important to note that even if few mutations are avail-

able, it is often not clear which of those are the drivers (as is

illustrated in the case of the Amikacin resistance) and which

are potentiating mutations. Microbial systems are not guaran-

teed to display mutational consistency at gene level, solely

relying on mutational consistency of the same mutation in

independent lines to identify drivers might fail. Because of

this, the experimental identification of drivers is tedious as it

requires reintroducing all possible individual driver mutations

and, in case of complex phenotypes, their possible combina-

tions in the ancestral strain (Barrick and Lenski 2013). As illus-

trated with the biological test cases, the combination of an

eQTL setting with the dedicated network-based approach

allows to drastically reduce the list of possible driver genes.

Using a dedicated network-based analysis to an eQTL data

sets is key to better understanding basic concepts of microbial

evolution. Experimental evolution has become an important

experiment in wet-lab practice to study interesting pheno-

types, for example the role of epistasis (Chou et al. 2011;

Khan et al. 2011; Kvitek and Sherlock 2011; Woods et al.

2011) or to understand the degree to which parallelism

occurs (Khan et al. 2011; Tenaillon et al. 2012; Herron and

Doebeli 2013; Kvitek and Sherlock 2013). Interpreting identi-

fied drivers in terms of the molecular interaction network can

potentially contribute to a better understanding of why epis-

tasis or parallelism occurs beyond the level of mutational con-

sistency. An illustration of such parallelism was shown in the

analysis of the Amikacin data set, where based on only four

independently evolved lines, the network method was able to

identify two different mechanisms by which strains alter their

proton-motive force to lower Amikacin uptake. Each of these

mechanisms was identified by exploiting parallelism at
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molecular pathway level. Interestingly both mechanisms, one

involving direct mutations in the electron transport chain and

one involving mutations in cpxA, appeared mutually exclusive

that is strains had either mutations in their electron transfer

chain or in cpxA but never simultaneously in both. This shows

that the network-based eQTL method is not only able to suc-

cessfully exploit parallelism but also allows identifying conver-

gent ways of evolution that lead to the same adaptive

phenotype.

In this study, we presented a network-based analysis

method that exploits public interactomics knowledge to ana-

lyze eQTL data sets. The results of this method provide a si-

multaneous prioritization of driver mutations and an

understanding of the adaptive phenotype at the molecular

pathway level. This method exploits the potential of coupled

genotype-expression data sets to study experimental evolution

and bacterial trait selection in bacteria.
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