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Regulatory RNAs contribute to gene expression control in bacteria. Antisense RNAs
(asRNA) are a class of regulatory RNAs that are transcribed from opposite strands of
their target genes. Typically, these untranslated transcripts bind to cognate mRNAs and
rapidly regulate gene expression at the post-transcriptional level. In this article, we review
asRNAs that modulate bacterial fitness and increase virulence. We chose examples that
underscore the variety observed in nature including, plasmid- and chromosome-encoded
asRNAs, a riboswitch-regulated asRNA, and asRNAs that require other RNAs or RNA-
binding proteins for stability and activity. We explore how asRNAs improve bacterial fitness
and virulence by modulating plasmid acquisition and maintenance, regulating transposon
mobility, increasing resistance against bacteriophages, controlling flagellar production, and
regulating nutrient acquisition. We conclude with a brief discussion on how this knowledge
is helping to inform current efforts to develop new therapeutics.
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INTRODUCTION

Amajor breakthrough in biology was the discovery of non-coding RNAs (ncRNAs) that regulate gene
expression instead of coding for proteins. ncRNAs play important regulatory roles in all domains of
life (Katayama et al., 2005; Beiter et al., 2009; Georg and Hess, 2011; Lybecker et al., 2014). In bacteria,
ncRNAs regulate gene expression at the post-transcriptional level by binding to messenger RNAs
(mRNAs) to control several processes, including pathogenesis (Gripenland et al., 2010; Gottesman and
Storz, 2011; Kacharia et al., 2017). Typically, ncRNAs that are encoded on the opposite strands of
target genes (complementary to sense transcript) are known as cis-acting antisense RNAs (asRNAs),
while an ncRNA that is encoded in a separate part of the genome in relation to its target mRNAs is
called a trans-acting small RNA (sRNA) (Waters and Storz, 2009; Thomason and Storz, 2010; Georg
and Hess, 2011). Regulatory RNAs generally have an advantage over regulatory proteins because their
synthesis require lower energy and they act rapidly. In addition, their co-degradation along with target
mRNAs allow precise control of regulatory circuits, which is key for bacteria to quickly adapt to host
immune response (Storz et al., 2011; Updegrove et al., 2015). asRNAs are particularly useful for rapid
gene regulation because they bind to target mRNAs with perfect complementarity, whereas sRNAs
form imperfect complementarity with target mRNAs and often require chaperone proteins such as
Hfq and ProQ for stability and function (Georg and Hess, 2011; Saberi et al., 2016; Hoynes-O’Connor
and Moon, 2016; Dutcher and Raghavan, 2018).

Initially, asRNAs were thought to be rare in bacteria, and the pervasive antisense transcription
observed in microarray-based studies were assumed to be experimental artifacts (Johnson et al., 2005;
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Perocchi et al., 2007; Georg and Hess, 2011). Even with the advent
of high-throughput sequencing, it was initially difficult to
differentiate between bona fide asRNAs and transcriptional noise
because of low sequence coverage (Georg et al., 2009; Yamaguchi
et al., 2011; Georg and Hess, 2018). With the increase in
sequencing resolution, recent studies have confirmed the
presence of abundant asRNAs in bacteria and have revealed it to
be a genome-wide phenomenon (Dornenburg et al., 2010; Georg
and Hess, 2011; Raghavan et al., 2012; Thomason et al., 2015).

asRNAs have been shown tomodulate bacterial pathogenicity by
either regulating the expression of virulence genes (Giangrossi et al.,
2010) or by controlling biochemical processes that improve bacterial
fitness, which in turn boosts virulence (Gripenland et al., 2010;
Lejars et al., 2019). In this mini review, we focus on the latter. In
particular, we cover examples where we generally understand the
mechanism of action and where the genome locations of asRNAs
have been determined. We also chose examples that underscore the
variety observed in nature, including short asRNAs and long
asRNAs, those found in plasmids and those encoded on genomes,
asRNAs that require binding stability from other RNAs or proteins,
and asRNAs that work in concert with riboswitches. These
examples are presented in several sections based on the main
roles asRNAs play in pathogenesis: 1) acquisition and regulation
of virulence plasmids, 2) modulation of transposon mobility, 3)
increasing resistance against bacteriophages, 4) controlling flagellar
production, and 5) regulating nutrient acquisition.

MODES OF ANTISENSE
RNA-BASED IMPROVEMENT
IN FITNESS AND VIRULENCE

Acquisition and Maintenance of
Virulence Plasmids
A major avenue through which bacteria acquire new virulence
factors is by obtaining new plasmids via conjugation, a process
that involves asRNAs. An example of this is F-like plasmids, which
are part of a large group of conjugative plasmids frequently found
in Escherichia coli and throughout Enterobacteriaceae (Jerome
et al., 1999). These plasmids frequently harbor accessory genes,
including antibiotic resistance genes, enterotoxins, and other
virulence genes (Koraimann, 2018). Conjugation is encoded by
the Tra-operon, with initiation requiring TraJ. Initiation is
regulated by FinOP, which consists of the RNA binding protein
FinO and FinP, an asRNA. FinP attaches to the ribosome binding
site of traJ, inhibiting its translation and promoting mRNA
degradation (Figure 1A). FinO contributes by helping promote
FinP binding to traJ, as well as protecting FinP from RNase E
cleavage (Arthur et al., 2003). FinP levels are controlled by RNase
E digestion, preventing binding to traJ. These processes play out
temporally during conjugation, starting with initial high level of
traJ expression, followed by dampening and repression,
maintaining bacterial fitness by reducing the metabolic burden
of the plasmid (Glover et al., 2015).

Once bacteria acquire advantageous virulence factors through
plasmids, some plasmids are retained through toxin/antitoxin
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
systems (Gerdes and Wagner, 2007). These systems function by
encoding a toxin and a paired strong antitoxin — many of which
function as asRNAs, on the plasmid. During cell division, loss of
the plasmid in a daughter cell results in loss of the strong antitoxin,
leading to the death of cells without a plasmid copy. A well-studied
system is the hok/sok system of R1 plasmids in E. coli and R100 in
Shigella flexneri, known for harboring various antibiotic resistance
genes (Ogata and Levine, 1980; Cox and Schildbach, 2017). This
system encodes the Hok (host killing) toxin, which leads to cell
death by depolarization of the cell membrane (Pecota et al., 2003),
and Sok (suppression of killing), an asRNA antitoxin, which
degrades very quickly (Gerdes and Wagner, 2007). Sok acts by
binding to hok mRNA to block translation of the toxin (Figure
1B). Within the E. coli chromosome, sok gene has a very weak
promoter, resulting in the production of small amounts of
antitoxin that are degraded quickly and are unable to keep up
with the Hok toxin, leading to cell death. On the R1 plasmid, the
sok gene has a strong promoter, producing many times more of
Sok than Hok (Gerdes et al., 1990). Hence, if the cell contains an
R1 plasmid, excess Sok continues to bind all of Hok and prevent
cell death. This ensures that after cell division, E. coli daughter cells
will survive only if they maintain the plasmid. Thus, the Sok
asRNA maintains bacterial fitness by promoting the retention of
the R1/R100 plasmid, which has been found to improve bacterial
stress response and growth in growth-limiting conditions
(Chukwudi and Good, 2015).

Replication control is another asRNA-based mechanism used
by bacteria to maintain plasmids. The presence of too many copies
of a plasmid can increase the metabolic burden of the cell,
lowering fitness through reduced growth rate and weakened
competitiveness (Baltrus, 2013; Vogwill and MacLean, 2015).
However, too few plasmid copies could result in the loss of a
potentially useful plasmid in subsequent generations (Millan and
MacLean, 2017; Pluta and Espinosa, 2018). Bacteria encode
plasmid copy number control systems in order to maintain
optimal number of plasmids. One that has been widely studied
is found in ColE1-related plasmids (Lacatena and Cesareni, 1981)
present in E. coli. The plasmid is named for containing the gene
that encodes Colicin E1, the product of which is active against E.
coli, as well as containing a gene for conferring immunity to
Colicin E1. Under stressful conditions such as nutrient depletion,
overcrowding, or antibiotics E. coli express Colicin E1, which
promotes bacterial proliferation in mixed microbe niches such as
the intestinal tract (Spangler et al., 1985; Riley and Gordon, 1999).
To replicate the plasmid, RNAII (a pre-primer) attaches to DNA
at origin of replication. RNAII is then trimmed into a primer,
which initializes plasmid replication. The 5′ region of RNAII
contains the asRNA RNAI, which inhibits ColE1 plasmid
replication (Figure 1C). RNAI inhibits plasmid replication with
the help of the Rom protein by binding to RNAII, preventing
RNAII from binding to the plasmid origin of replication. As the
copy number of ColE1 plasmid increases, so does the
concentration of RNAI, resulting in a balance of copy number
through negative control (del Solar and Espinosa, 2000). This
ensures that there are enough copies of the virulence plasmid to
pass on to daughter cells, while maintaining fitness by reducing the
February 2021 | Volume 10 | Article 596277
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metabolic burden of what are often large — sometimes hundreds
of kilobases long, plasmids (Sengupta and Austin, 2011).

Regulation of Transposon Mobility
Another role for asRNAs in maintaining bacterial fitness and
virulence is by controlling the movement of transposons, which
are genetic elements that move from one position to another
within a genome (Bourque et al., 2018). Insertion of transposons
in virulence associated genes could reduce a bacterium’s
pathogenicity or increase its susceptibility to antibiotics (Murray
et al., 2009; Murray et al., 2015; Kalindamar et al., 2019). In
addition, transposable elements could modulate virulence by
affecting biofilm formation (Arciola et al., 2004; Kiem et al.,
2004; Perez et al., 2015) and reduce fitness by interrupting
metabolic genes (Lapierre et al., 2002; Christie-Oleza et al., 2008;
Moffatt et al., 2011). Bacteria defend against this by controlling
transposases, the enzymes required for transposons’ mobility. An
example of inhibition of bacterial transposase can be seen in the
Tn10 transposable element, which is found in S. flexneri and other
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Enterobacteriaceae (Ma and Simons, 1990). Tn10 contains a
number of tetracycline resistance genes and a pair of IS10
insertion sequences that each encode transposases that promote
transposon mobility. IS10s also encode antisense RNA (RNA-
OUT), which is found in the 5′-most segment of the transposase
mRNA (RNA‐IN). RNA-OUT inhibits transposase translation by
binding RNA‐IN and blocking ribosome binding site (Figure 1D).
As the Tn10 copy number increases, asRNA increases to suppress
the transposition of the transposon (Ellis et al., 2015); thus,
bacteria are able to maintain fitness by reducing the chance of
mobile elements disrupting essential genes or virulence factors.

Modulation of Bacteriophages
During infection, pathogenic bacteria have to outcompete other
bacteria that share their niche and defend against both internal
and external threats. One of the major dangers that bacteria face
is from bacteriophages, many of which have lysogenic and lytic
growth cycles (Echols, 1972). In the lysogenic cycle, phage DNA
is integrated into the bacterial chromosome, allowing replication
A B

DC

FIGURE 1 | Acquisition and regulation of virulence plasmids and modulation of transposons. Examples of asRNA post-transcriptional regulation of acquisition and
regulation of virulence plasmids and modulation of transposons. (A) finP control of plasmid acquisition through conjugation in E. coli F plasmid (NC_002483.1),
(B) hok/sok toxin-antitoxin to maintain plasmids in S. flexneri R100 plasmid (NC_002134.1), (C) RNAI control of plasmid copy number in E. coli pColK plasmid
(NC_006881.1), and (D) RNA-OUT regulation of transposase expression, controlling transposon movement in S. flexneri R100 plasmid (NC_002134.1). Each panel
shows the relative position and size of the asRNA (blue), the target it regulates (green), and any factors required for stable binding (orange). In these examples, the
successful binding of asRNA to its target promotes degradation.
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of the phage to occur more passively along with that of the
bacterium. In lytic reproduction, the phage actively creates a
large number of progeny and quickly lyse the bacterial cell to
continue its lifecycle. Temperate phages include both cycles and
are found in about half of microbial genomes currently
sequenced (Touchon et al., 2016). While attempting to block
infection by phages with lytic growth cycles often reduces
virulence and fitness, allowing temperate phages to stay in the
lysogenic cycle benefit bacteria by delaying eventual cell lysis
(Seed et al., 2014; León and Bastıás, 2015; Harrison and
Brockhurst, 2017; Howard-Varona et al., 2017). An example of
this can be seen in Salmonella’s maintenance of lysogeny in P22
phages (Liao et al., 1987). In P22, lytic growth is inhibited by the
regulatory protein C2, which blocks the transcription of proteins
needed for the development of lytic cycle. The switch to lytic
growth is brought on by the anti-repressor protein Ant, which
blocks C2 binding to the OR and OL operators of the P22 phage.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Repression of this progression into the lytic replication cycle can
be accomplished through Sar, an asRNA in the intergenic region
of arc-ant mRNA (Schaefer and McClure, 1997). Sar blocks the
ant ribosome binding site, which results in a failure to produce
Ant and thus increasing bacterial fitness by preventing the escape
of the prophage from the lysogenic state (Figure 2A).

Control of Flagella Production
By modifying their outer structures bacteria evade immune
response and improve persistence within hosts. An example of
asRNA’s involvement in this process is observed in Listeria
monocytogenes, where a long asRNA regulates flagella
production in response to temperature (Toledo-Arana et al.,
2009). At 30°C, L. monocytogenes expresses flagella on its surface
and exhibits swimming motility. Producing flagella requires the
expression of a number of genes, including the flagellum export
apparatus genes (fliP, fliQ, and fliR). When the temperature rises
A B

DC

FIGURE 2 | Modulation of bacteriophages, flagella production, and nutrient acquisition. Examples of asRNA post-transcriptional regulation in pathogenic bacteria to
increase fitness during infection. Repression of temperate bacteriophages is seen in (A) sar repression of lytic growth in Enterobacteria P22 phage (NC_002371.2).
sar blocks the anti-repressor ant from binding to C2 (orange), which prevents escape from lysogenic growth. Temperature dependent regulation in bacteria is
represented by (B) Anti0677 control of flagella formation in response to temperature change in L. monocytogenes (NC_003210.1). Examples that highlight regulation
of nutrient acquisition can be seen in (C) RNAa control of iron acquisition in V. anguillarum pJM1 plasmid (NC_005250.1) and (D) AspocR/B12 riboswitch control of
opportunistic propanediol catabolism in L. monocytogenes (NC_003210.1). Each panel shows the relative position and size of the asRNA (blue), and the target it
regulates (green). In (A–C), the successful binding of the asRNA to its target promotes mRNA degradation, with iron required in (C) for stable binding. In (D), when
B12 is absent, a full-length version of the asRNA is transcribed, which binds to pocR mRNA and blocks propanediol fermentation. When B12 is present and binds to
the riboswitch, transcription ends prematurely, resulting in the production of PocR, which promotes propanediol fermentation.
February 2021 | Volume 10 | Article 596277
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to 37°C, the motility gene repressor mogR switches off flagella
formation (Lebreton and Cossart, 2017). Overlapping fliP, fliQ,
and fliR is a large asRNA, Anti0677, which negatively regulates
their expression by promoting mRNA degradation by direct
interaction (Figure 2B). Additionally, the end of Anti0677 both
contains the coding sequence for and drives the expression of
MogR. These two effects — the antisense component Anti0677
and increased expression of MogR — together suppress flagella
formation within the host, possibly reducing the host
inflammatory response attempting to lyse the invading bacteria
(Hayashi et al., 2001). The term “excludon” has been proposed
for transcripts such as Anti0677 that both code for proteins and
regulate the expression of multiple genes or operons encoded
divergently from them (Sesto et al., 2013).

Regulation of Nutrient Acquisition
Bacteria can optimize their growth rates by modulating nutrient
acquisition. This capability bestows increased fitness to pathogens
by allowing them to survive under nutrient-poor conditions such as
infections (Parrow et al., 2013; Fonseca and Swanson, 2014). An
example of this phenomenon is iron uptake suppression in the fish
pathogen Vibrio anguillarum (Chen and Crosa, 1996; Sesto et al.,
2013). Iron is an essential nutrient formost bacteria because it plays
critical roles in numerous metabolic processes (León-Sicairos et al.,
2015). V. anguillarum contains the pJM1 plasmid, which encodes
most genes necessary for iron-anguibactin siderophore transport
and biosynthesis (Naka et al., 2010). Among these are transport
proteins FatA and FatB, which are encoded by genes fatA and fatB
that are transcribed together as a polycistronic mRNA. An asRNA
termed RNAa, which is encoded within fatB, is expressed in
response to increasing iron levels. It binds to the fatB portion of
the fatA-fatB mRNA and represses the translation of both genes
(Figure 2C). Iron further stabilizes the binding of RNAa to fatA-
fatBmRNA, leading to its degradation. This system helps to reduce
the fitness cost associated with metabolic burden by synthesizing
iron siderophoresonlywhen confrontedwith iron-poor conditions,
thereby allowing the bacterium to optimize its resources to
outcompete other bacteria.

Another example of improving metabolic fitness through
regulating bacterial nutrient acquisition is the regulation of
propanediol catabolism in L. monocytogenes (Mellin et al., 2013).
Propanediol is a byproduct of the fermentation of rhamnose and
fucose, and is often produced by commensal bacteria in host
intestines (Bobik et al., 1997; Degnan et al., 2014). Propanediol
fermentation is facilitated through a coenzyme B12-dependent
process and can support bacterial growth by providing ATP
(Toraya et al., 1979). Some studies suggest that propanediol
catabolism gives bacteria a competitive advantage, with mutations
in related genes resulting in a virulence defect (Conner et al., 1998).
Within L. monocytogenes, the presence of propanediol activates the
transcription factor PocR, which controls the expression of
propanediol catabolism genes that require vitamin B12 as a
cofactor. On the opposite strand of pocR gene, there is a vitamin
B12 riboswitch-regulated asRNA, AspocR (Figure 2D). When
vitamin B12 is absent, a full-length version of AspocR is
transcribed, which inhibits pocR expression. When vitamin B12 is
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
bound to the riboswitch, AspocR transcript ends prematurely, and
hence cannot inhibit pocR. This leads to the production of PocR,
which promotes the expression of propanediol catabolism genes.
Thus, the riboswitch-regulated asRNA allows the expression of
propanediol fermentation genes only when both propanediol and
B12 are present, thereby reducing the fitness cost associated with
unnecessary metabolic burden.
CONCLUSIONS

asRNAs are ubiquitous in bacteria and are involved in a
multitude of pathogenesis-related mechanisms. The wide range
of asRNA functions span the control of intra- and extra-
chromosomal DNA, as well as adaption strategies to improve
persistence under changing environments. Some asRNAs are
only found in specific bacterial species, while others are found
across bacteria. Because asRNAs play important roles in
modulating the fitness of pathogenic bacteria, current research
is focused not only on identifying new asRNAs, but also to use
them to our advantage by developing novel asRNA-based
therapeutics. For instance, bacterial antibiotic resistance genes
can be targeted with synthetic asRNAs, resulting in antibiotic
sensitive bacteria (Ji et al., 2004; Nikravesh et al., 2007). Other
possible applications include using asRNA to silence bacterial
metabolism or ribosomal protein coding genes (successfully
shown in E. coli) and protection from bacteriophages in the
production of live mucosal vaccines (Sturino and Klaenhammer,
2006; Alessandra et al., 2008; Suzukia et al., 2020). Applications
of these techniques beyond in vitro studies have been limited due
to difficulties in delivering asRNAs to the site of infection (Good
and Stach, 2011; Saberi et al., 2016). As these impediments are
addressed, the use of asRNAs in therapeutics will likely expand
and contribute to the understanding of the rich landscape of
bacterial control systems.
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